MATH10242 Sequences and Series:
Solutions 11, for revision exercises for week 12 Tutorial

I give, in square brackets, some references to results in the notes. These are to remind
you where to find the relevant results; you are not expected to memorise these numbers
for the exam! (But, of course, you should know the results.)

Question 1:

(a) Define what it means for a sequence (a,),>1 to tend to —oo.

(b) Define what it means for a sequence (a,),>1 to be bounded below.

(¢) The following statement is not correct; modify it to a correct statement.

“Every sequence contains a convergent subsequence.”
(Adding “It is not true that” at the beginning is not what I have in mind.)

(d) Some students seem to believe that every sequence is convergent or tends to +o0o
or tends to —oo or switches between a finite number of values. Give an example of a
sequence which has none of these properties.

Solutions:
(a) a, = —occ as n — oo if, given any K < 0 there is N > 1 such that, for all n > N, we
have a,, < K. It is allowable to have a,, < K.

(b) (ay)n>1 is bounded below if there is K € R such that K < a,, for all n € N. Similarly,
K < a, is allowable.

(¢) “Every bounded [that is, bounded above and bounded below| sequence contains a
convergent subsequence.”

(d) There are lots of possibilities. We could start with the sequence 1,—1,1,—1,... and
modify it to, say, 1 +1,—1 — 4,143, -1 — ..., that is, a, = (=1)"*(1 4+ 1).

The sequence sin(n) probably is an example but this might not be so easy to prove.

Question 2:
(a) Fix € > 0. Find a natural number N such that

2n* —In(n)

—— 2| <
n(n—1)2+1 c

for all n > N.
What have you (if you managed to answer the question) just shown about the sequence

on® —Inn

an:n(n—l)Q—l-l‘

You might make use of the fact that for all ¢ > 0 we have Inz < 2¢/c for all x > 1.



(b) Fix a real number K. Find a natural number N such that Inn—n < K for alln > N.
What does that prove?

Solutions: There will be more than one way of doing each of these. Remember that
you're not looking for the least “N” that works, just some N that will do the job.
(a) Consider

2n3 —Inn 2n3 —Inn — 2n(n — 1)% — 2
nn—12+1 - n(n—1)2+1 ‘
2n3 —Inn — 2n® + 4n? — 2n — 2
- n(n—1)2+1 ‘
~ |4n* —2n —Inn — 2
B n(n—1)2+1 ‘

On the numerator use the triangle inequality to get
‘4n2—2n—lnn—2| <4n’+2n+1Inn+2,

dropping the modulus signs since all the terms are positive. Then, by the fact given in
the question, Inn < n so

‘4n2—2n—lnn—2|§4n2—|—2n+n+2§4n2+3n2+2n2=9n2,

since n > 1. Then

2n’ —Inn 9In? < 9n*>  9n
n(n—1)2+1 “nan-12+1"nn-12 (n—1)?2
for n > 2. Simple, but not simple enough. Note that n—1 > n/2 for all n > 2. So, for

such n, we get
In 36n 36
2| < < = —.
“(n—1)2 7 n? n

2n3 —Inn
nn—1)2+1
Thus we can choose N = [36/¢] + 1.

Note I recommend the use of the triangle inequality though if you work harder you can
often do better. For example, we start with 4n? — 2n —Inn — 2 > 0 for n > 2. This is
true because

n+Inn+2<2n+n+2 since Inn <n
=3n+2<3n+n since2<n

= 4n < 2n? since 2<n
This positivity means that
4n® —2n —Inn — 2| = 4n® —2n — Inn — 2 < 4n>.
So we can replace the 9 in the argument above with 4 and choose N = [16/¢] + 1.

Remember I am after an N which works and its easy to show it works, not the best
possible N.

on® —Inn

What all this shows is that the sequence m

converges to 2.
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(b) If we use Inn < n we get Inn —n < 0 which does not help. But we can do better.
Form the hint given, with ¢ = 1/2 we have Inn < 2n'/? which is < n/2 if n > 16. For
such n we then have Inn —n < —n/2 which is < K if n > [-2K] + 1. Hence choose
N = max(16, [-2K] + 1).

Since K was arbitrary, that proves that the sequence Inn —n tends to —oo as n — oo.
Question 3: Find the limits of the following sequences.
3 —pt
@ (35—
*/n>1

(b) ((n + n1/2)1/2 _ nl/Q)

n>1

Solutions:
(a) Among the functions appearing, that with the highest order of growth is n! [p.31,
4.1.4], so divide throughout by it, to get

n 4 3" _ nt
3" —n _ n! n!

4+l E 41

As n — oo, all terms apart from the 1 go to 0 so, by the Algebra of Limits [3.2.1], the
limit of the above as n — oo is

(b)

(n +n'/2)Y2 4 nl/2
(n + nl/2)1/2 4 pl/2

(n+ n1/2)1/2 2 = ((n 4 n1/2)1/2 . n1/2) %

n+n?—n
- (n + ni/2)1/2 § p1/2
nl/2
- (n + ni/2)1/2 § p1/2
1
(1 + n—1/2)1/2 +1

which, by the Algebra of Limits, goes to

1 1
(1+0)12+1 2

as n — oQ.

Question 4: Using L’Hopital’s Rule or otherwise, find



Solutions:
(a) Both top and bottom lines go to oo as n — oo (and both functions are, at least for
x > 1, differentiable with nonzero derivative) so we can apply L’Hopital to get

ln(4n1/3—2) , 1 4 . n+1
im ——~ — lim —— . .
n—oo In(n + 1) n—oo 4nt/3 —2 3 1
i 4 n+1
= lim - —
n—oo 3 4n — 2n~2/3
~ m 4 1+1/n
_n1—>oog 4 — 2n—5/3
4 1
3 4
B 1
=3

(b) If you try to use L’Hopital then you have the problem of trying to differentiate n!,
which is not defined at non-integer values, so continuity does not even make sense [there
are continuous interpolations but that’s getting unnecessarily complicated]. So we should
proceed “otherwise”. Note that

In(e¢" — n%) - In(e””) "
n! —nl0 = pl—nl0  pl—plo

and n! is the fastest-growing of these functions, so divide throughout by it to get

e” /n! 0
— —
1—n%nl 140

by the Algebra of Limits [3.2.1] so, by the Sandwich Theorem [3.1.1/3.1.4] (the original
function is sandwiched between 0 and this function which has limit 0) the original limit
is 0.

Question 5: Determine whether the following series converge. In each case you should
briefly justify your answer (for example by saying what test you are using).

(@) 30t () ’T— © =

’fl

n=1 n=1 n=1
o) 3 [e%s) (_1)n . [e%) 1
h
Z n(n + e)? (B) ; n(lnn)? (i) ; n(lnn)?
Solutions: In some cases, other methods will also work.

(a) Let’s try the ratio test [9.1.7], so a, = n'’/e™. Then

1)10  en N 1 1

entl nl0 n e e

Ap1
Qn

as n — o0. Since 1/e < 1 we conclude, by the ratio test, that the series is convergent.



[Note that saying that ¢ grows faster than n'® is not enough - all that tells you is that
the individual terms of the series tend to 0 as n — oo; the question here is what happens
when you add them together. This is a question about a series rather than a sequence.]

(b) You could apply the ratio test but you might also notice from the outset that

=)
en e

and, for n > 3, n/e > 1, so the sequence of terms (n/e)" does not go to 0 as n — oo [this
also follows from the table on p.31]. Hence [by 8.1.4] the series is divergent.

(c) Again the ratio test will work:

2
_ en—l—l ‘en :.”:e—Zn
en+1)?  on

Ap+1
Qn

which tends to 0 < 1 as n — oo, so the series is convergent.
(d) And, yet again, the ratio test does the job:
2l +1)% 3 2 1\° 2
, n

3nt1 Tonp3 T3 3

as n — 00, so the series is convergent.

(e) You can probably see in advance that the ratio test will give the value 1, hence no
conclusion can be drawn from it. But it is an alternating series with the nth term a,
going to 0 as n — oo so, it is convergent (in fact, it’s absolutely convergent by [9.2.3],
that is, the version with all terms positive is also convergent since the power % is < 1.)
(f) This is divergent because the nth terms don’t converge to 0 - in fact they go off to oo
(think of the graph of tan).

(g) The nth term is
3n

(1+e/n)?
which does not tend to 0 as n — oo (in fact it goes to 0o as n — oo) so this diverges.

(h) The individual terms converge to 0 and the series is alternating, so this converges by
the alternating series test [10.1.1]. [The original question had the series going from n = 1
but we should start at n = 2 since In(1) = 0.]

(i) This looks amenable to the integral test; let’s check. The function is

and we're looking at in on the interval [2, 00) where it is continuous, positive and decreas-
ing [the original version of the question had the sum going from n = 1 but that doesn’t
make sense since the term is not defined at n = 1, hence the change to the sum from

ﬁ/—»QL So we look at
/ 1
2 I(hll)z !

to determine whether or not it exists; that is, whether or not
S|

li —d
Koo 5 x(Inz)? ‘
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exists.
We have (think of the substitution v = Inn),

/K L[ K__1+1
o rz(nx)2" | Inz|, WK In2

which tends to 1/In2 as n — oo. Thus, the integral converges and hence [9.2.1] so does

the infinite series.

Question 6: (a) Using partial fractions or otherwise, find

(b) Show that the following series converge and show (use partial fractions) that they

have the same sum.

Z 2n+1)

n=1

Solutions:

1 1 1 1
(a) -1 3 1 nr 1), so the Nth partial sum
n? — n— n

and this tends to 3/4 as N — 00, so

XN: 1 = lim s —§
n2—1 Nooo N_4

n=

[The following argument would get some of the marks but not all of them:

o0

1 1 [ 3
N D I BH Pl o) B RS
The problem with it is that, at the second “=” infinitely many terms of the series have
been rearranged and we saw, in Section 12.2, that can lead to nonsense. If you had

justified that step by saying that the series was absolutely convergent by comparison with
>0 ,1/n* and hence rearranging infinitely many terms is justified, then you would get
the marks. But, if you go that route, rather than the first, recommended, route, make

sure that your justification is valid and that you say enough.|
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(b) The first series converges by comparison with >~ | 1/n? [more precisely with 1/4 >~ |

since
1 1

- - <=
2n(2n +1) — 4n?

The second series converges since it is alternating and its terms have limit 0 [10.1.1].

Also,
1 1 1

m@n+1) 2n 2n+ 1
so the Nth partial sum of the first series

N

Y SR 11
Z:: 2n+1 =2 5 2 mriTs

n=1 n=1

and that is the (2N + 1)th partial sum, ton-; say, of the series >~ ,(—1)"/n. So

li = 1 t li t =
; 271/(2”_'_1 Nl_IgOSN 1m 2N+1 = 2N4g2>oo 2N+1 ; n

[In this case, just writing everything in terms of the infinite series ) -, and not going via
partial sums would get comparatively fewer of the marks than doing the same in part (a)
because it is definitely needed here - one of the series involved is not absolutely convergent,
so rearranging infinitely many terms is not a priori valid. I've given full details of the
argument; you could get full marks with a bit less, as long as you make it clear that you
are considering the (finite) partial sums.|

Question 7: (a) Define what it means for a sequence (a,),>1 to (i) converge to a limit ¢,
(ii) tends to oo as n — oo [the original wording said “converge to co” but it’s not a good
idea to use the word “converge” next to a divergent series].

(b) Given a sequence (ay,)n>1, define a new sequence (a),>1 by

. 1
ay = E(a" + apy1).

Prove direct from your definitions above that (i) if a, — ¢ as n — oo then a — ¢ as
n — oo, (ii) if a,, — co as n — oo then ) — oo as n — oc.

(c) Show, by producing suitable examples, that the converse of each of (b)(i) and (b)(ii)
is false.

Solutions:

(a) (i) The sequence (a,),>1 converges to ¢ if, given any € > 0, there is n > 1 such that
| @, — € |< € for all n > N. (ii) The sequence (a,),>1 tends to oo if, given any K € R,
there is n > 1 such that a,, > K for all n > N.

10
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(b) (i) Given € > 0, choose N such that, for all n > N, we have | a, — ¢ |< €. Then, for
n > N, we have

. 1
|an—€]= é(an—i-anﬂ)—ﬁ‘
1 1 1 1

<| (300 -3¢) + (3o = 21)

<1 1€+1 1€ by triangle i lit
- - = - — = rian 1n 1

~ 2an B 2(ln+1 5 Y angle equallty
1 1

=§|an—€|+§|an+1—£|

<15+1A
2” 2"

=£

since both n,n 4+ 1 > N. As required.

(b) (ii) Given K € R, choose N such that, for all n > N, we have a, > K. Let n > N;

then . | . .
a;‘L = §an -+ §Cln+1 > §K+ QK =K

since both n,n + 1 > N. As required.

(c) For a counterexample to the converse of (i) you could take a,, = (—1)". This does not
converge to a limit but the sequence a; is the constant sequence 0, so converges. For a
counterexample to the converse of (ii), we could take the sequence a,, = n+ (—1)"n which
does not tend to oo whereas a) = 2n does tend to oo as n — oo.

Question 8: Let b be a positive real number and define the sequence (a,,)nen inductively
by

an

for n > 1.

a; — 1 and Ap1 =
n

(a) Prove by induction on n that a, > 0 for all n.
(b) Prove that if 0 < b < 1 then a,, > 1 — b for all n.

(c¢) Deduce that, if b > 0, then the sequence (a,)nen is a decreasing sequence and, by
quoting a suitable theorem, deduce that it converges.

(d) Prove that if 0 < b < 1 then a, — 1 —bas n — oc.

(e) Calculate lim,,_,o a, in the case that b > 1.

Solutions:

(a) Certainly the statement a, > 0 is true for n = 1, so assume it is true for some value
k. Then agyy = ag/(ax + b) which is positive since both ax and b are (a; by the inductive
hypothesis).

(b) Assume 0 < b < 1. Then a; =1 > 1 — b, so we have the case n = 1. Assume that
ar >1—>b. Then agpy > 1 —=biff ag/(ar +0) > 1 —biff

ar > (1 —b)(ax +b) = ar — axb +b—b*
= (Cbk—i-b)— (ak+b)b
= (1—=10)(ax + D).
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But, by the inductive hypothesis ay +b > 1, so (1 —0b)(ax+b) > 1 —b. Thus the condition
has become a; > 1 — b, which is true by the inductive hypothesis. So we do indeed have
ary1 > 1 — b and we conclude by induction that a, > 1 — b for all n.

(c) First assume that 0 < b < 1. Then we have
an
an, +b

since, by (b), a,, +b > 1. So the sequence (a,), is decreasing. But it is, by (a), bounded
below (by 0), hence it converges by the Monotone Convergence Theorem [the decreasing
sequence version of 2.5.3].

Otherwise b > 1, so we can’t use part (b), but we do then have a,, +b > 1 since a,, > 0
by (a), so we still get a,,1 < a,, and deduce convergence as above.

Apt1 = < ap

(d) By (c) the sequence converges to a limit, ¢ say, which must be > 0 since a,, > 0 for
all n. We have

0= 1li lim —n £
= l1m an = l1Im —
n—oo +1 n—oo @, + b / + b

by the Algebra of Limits. So we have %+ bl = {; rearrange to get ¢(¢ — (1 —b)) = 0. This
is where we have to use the assumption 0 < b < 1 (so far, everything needed just b > 0);
because then we have, by part (b), that £ > 1 — b > 0, in particular £ # 0 so we deduce
¢{=1-b0. Thatis, a, —1—0basn — occ.

(e) Now assume b > 1. Then, at the point in (d) above where we had the equation
(¢ — (1 —10)) =0, we see that £ must equal 0, which is the limit of the a, in this case.

Question 9:
(a) Find the radius of convergence for the series

< 2n)! P 2n)!
M2 (n!)f” (H)Z(n(nLl))!m

n=1 n=1

(b) Find the interval of convergence for the series

0y % (i) Y —(_f};xn (i) Y é;‘f);

n=1 n=1 n=1

Solutions: Throughout, we use the Ratio Test to determine the radius of convergence
and, in part (b), we look separately at each end-point of the interval of convergence.

(a)(1)

ani1| A/ (2(n+1))! ~_nl x|
o TR oy
(2n +2)! n!

V@ x|

1
= \/(271—1—2)(2n—|—1)‘n—+1|$|
_J@n+2)(2n+1) 3|
= TESE T

:\/(2+7—2l)(2+7—1) o

(1+3)
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As n — oo, this converges to v/4|xz| = 2|z|. This is < 1 when |z| < 1/2, so 1/2 is the
radius of convergence.

(a)(il) This is almost the same as (i); the only change in the calculation is that

(n+1)! 1
(n+2)! n+2

appears in place of n!/(n+1)! = 1/(n+ 1) and this does not affect the calculation of the
limit, so we get the same radius of convergence, 1/2.

(b))

n-+1

=,

An+1
Qn

which has limit |z| as n — oo. Therefore the RoC is 1. We examine what happens at
r = =x1.
At z =1, the series is >~ 1/n which we know is divergent [p.50, 9.2.2].

At o = —1 the series is Y~ (—1)"/n which convergent by the Alternating Series Test
[10.1.1].
So the Interval of Convergence is [—1,1).

(b)(ii)

[ 2n+1 V/_ 1
—|= *I | =2 rle = 2z]

as n — 00. So RoC=1/2.
At z = 1/2 the series becomes

—~

0 _9\n 0 .
>y

n=1 n=1

which, being an alternating series with terms going to 0, is convergent.
At z = —1/2 the series becomes

o 2n 17l o0
>y

n=1 n=1

-

which is divergent [9.1.6/9.2.4].
So the ToC is (—1/2,1/2].
(b)(iii)
™m—35
= — 7]
m+1)—5

which tends to |z] as n — 0o. So RoC= 1.
At x =1 the series becomes

Ap+1
Qp,

which is convergent by the alternating series test.
At z = —1 the series becomes




which is divergent by comparison [9.1.2] with the divergent series »  1/n (or, more
precisely, by comparison with 1/7>>°,1/n).

Question 10 What is

i ?
1+ . 1
1
1+
1+ —
Hint Look upon this as the limit (if it exists) of
1 1 1 1 2 1 3
-, I =—7 1 :—7 —1 :_7...
'1+¢ 2 1+1+% 3 1+% 5
1
Continuing,
] 1235 8 13 21
'2737578713721° 34
We see here two subsequences
2 5 13 34
1,= ~0.66.., — =0.625, — ~ 0.619.., — ~ 0.618.., ....
"3 "8 © 21 " 55 ’
and 1 3 8 21
- =0.5, -=0.6, —~=0.615.., — ~=0.617...,...
2 U5 ] ’

If we denote our sequence by (a,),>1 the evidence suggests that (agn)n21 is an increas-
ing sequence and (ag, 1)n21 is a decreasing sequence.
Our sequence (a,),>1 can be defined inductively by a; = 1 and

1
1+4+a,

Apy1 = 5

for n > 1.
Let ¢ be the positive root of 22 +x —1 = 0.

i. Prove that a9, < £ and ag,_; > ¢ for all n > 1.
ii. Prove that (as,),~, is an increasing sequence and (as,-1),~, is a decreasing sequence.

iii. Show that lim,_,. a9, = lim,,_ss a2,_1 = L.
Solution First note that £ = (—1++/5) /2 ~ 0.618...

i. Proof by induction. The the base cases a; > ¢ and as < £ hold.
Assume that ag,_1 > ¢ and ag, < ¢ for some k£ > 1. Note that for m > 1 (whether

even or odd) we have

1 1 . 1+am_2

_1+6Lm_1 1—|—1+a1m_2_2+am_2'

(1)
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Next, if z € R then
Il+z | 1
2+x 24
is an increasing function of x. So if x > ¢ we have

(CHECK this last equality). And if x < ¢ we have

1+x<1+£_
Q41 — 240

l. (3)
First apply (1) with m = 2k + 1, then the inductive assumption ag,_1 > ¢, along with
(2) means ag41 > ¢ (technically asgi1)—1 > £).

Secondly, apply (1) with m = 2k + 2, then the inductive assumption ag, < ¢, along
with (3) means agpo < £ (technically a1y < £).

So the result holds for k 4 1, and thus, by induction, for all n.

ii. From (1) we have, for m > 1,

1+ am aZ + ay — 1 )
Ut — Qm = -y = —————
+2 2+ ap, 2+apn,
The quadratic 2? + « — 1 = (z — ) (v — t) where t = — (1+/5) /2 < 0. Then if

0 <z </ we have 22 + © — 1 < 0 whereas, for z > ¢, we have 2> +z — 1 > 0.

If we apply (4) with m = 2k — 1 then ag,_1 > ¢ implies agg 1 — agx—1 < 0 and we have
a decreasing sequence. If we apply (4) with m = 2k then ag, < ¢ implies agy1 —agk_1 > 0
and we have an increasing sequence.

iii By the Monotone convergence Theorem lim,, . as,_1 and lim,, . a2, both exist and
if the limits are a and f respectively, then a > ¢ and 8 < (. But from (1) we see that

both o and [ satisfy
1tz

Tr =
24
Since both « and [ are positive we have o = f = ¢ as required.

Jie. 2?4+ —1=0.

Note, you have to do a little more work to say lim,_, a, = ¢. Can you do it?
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