

MATH10242 Sequences and Series: Exercises 6, for Week 7 Tutorials

You should attempt (at the very least!) Question 1 from this sheet.

Question 1: Do the following sequences converge/diverge/tend to infinity or tend to minus infinity?

(These also appear in the course notes, at the end of Chapter 5.)

$$(a) (\cos(n\pi)\sqrt{n})_{n \geq 1} \quad (b) (\sin(n\pi)\sqrt{n})_{n \geq 1}$$

$$(c) \left(\frac{\sqrt{n^2 + 2}}{\sqrt{n}} \right)_{n \geq 1} \quad (d) \left(\frac{n^3 + 3^n}{n^2 + 2^n} \right)_{n \geq 1}$$

$$(e) \left(\frac{n^2 + 2^n}{n^3 + 3^n} \right)_{n \geq 1} \quad (f) \left(\frac{1}{\sqrt{n} - \sqrt{2n}} \right)_{n \geq 1}$$

Question 2: Complete the proof of Theorem 5.1.8, by proving the following result:

Theorem: Suppose that $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ both are sequences that tend to infinity. Prove:

- (i) $a_n + b_n \rightarrow \infty$ as $n \rightarrow \infty$;
- (ii) $a_n \cdot b_n \rightarrow \infty$ as $n \rightarrow \infty$.

(iii) Let $M \in \mathbb{N}$. Assume that $(c_n)_{n \geq 1}$ is a sequence such that $c_n \geq a_n$ for all $n \geq M$. Prove that $c_n \rightarrow \infty$ as $n \rightarrow \infty$.

Question 3: There are many variants on Question 2. Can you think of some? Here is one:

- (i) Suppose that $a_n \rightarrow \infty$ as $n \rightarrow \infty$ and that $(b_n)_{n \geq 1}$ is a sequence of non-zero numbers that converges to $\ell > 0$. Prove that $a_n/b_n \rightarrow \infty$ as $n \rightarrow \infty$.
- (ii) What happens if $\ell = 0$ in part (i)?

Question 4: Use the subsequence test to show that:-

- (i) the sequence $\left(\frac{n}{8} - \left[\frac{n}{8} \right] \right)_{n \geq 1}$ does not converge;
- (ii) the sequence $\left(\left[\sin\left(\frac{n\pi}{4}\right) \right] - \sin\left(\frac{n\pi}{4}\right) \right)_{n \geq 1}$ does not converge.

Question 5: Assume that $n^{1/\sqrt{n}} \rightarrow \ell$ as $n \rightarrow \infty$.

Use the subsequence test to show that $\ell = 1$. [Hint: We do know $\lim_{m \rightarrow \infty} m^{1/m} = 1$.]

Question 6*: Prove that $(n!)^{-1/n} \rightarrow 0$ as $n \rightarrow \infty$. [Hint: Use 4.1.4 with $c = 1/\varepsilon$.]

Extra Questions for Week 7:

Question 7.

- (a) Does every bounded increasing sequence converge?
- (b) Does every increasing sequence of negative terms converge?
- (c) Does every decreasing sequence of negative terms converge?
- (d) Is every bounded sequence convergent?
- (e) Is the limit of an increasing, convergent sequence necessarily equal to the supremum of the set of its terms?
- (f) Let $(a_n)_{n \geq 1}$ be a sequence of nonzero terms. If $1/a_n \rightarrow l$ as $n \rightarrow \infty$ and $l \neq 0$, does it necessarily follow that the sequence $(a_n)_{n \geq 1}$ converges?
- (g) Let $(a_n)_{n \geq 1}$ be a convergent sequence and let $(b_n)_{n \geq 1}$ be a bounded sequence. Is $(a_n b_n)_{n \geq 1}$ necessarily a convergent sequence?

Question 8.

- (a) Suppose that the sequences $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ converge to a and b respectively. Show that the sequence $(a_n - b_n)_{n \geq 1}$ converges to $a - b$.
- (b) Suppose that the sequence $(a_n)_{n \geq 1}$ converges to a limit ℓ . Suppose also that, for every n , $a_n \leq r$. Prove that $\ell \leq r$.
- (c) Suppose that the sequence $(a_n)_{n \geq 1}$ converges to a limit ℓ . Suppose also that there is an integer M such that, for every $n \geq M$, $a_n \leq r$. Is $\ell \leq r$? If so, give a proof; if not, give a counterexample.