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Chapter 8

Introduction to Series

In this chapter we give a rigorous definition of infinite sums of real numbers. We are

interested in expressions of the form

∞∑
i=1

ai = a1 + a2 + · · ·+ an + · · ·

and need to make sense of such expressions. This is closely related to sequences since

this “infinite sum” is (by definition! as you will see) the limit of the sequence of partial

sums (sn) where

sn =
n∑
i=1

ai = a1 + a2 + · · · an.

You have probably seen that
∞∑
i=0

1

2i
= 2.

To see that: an easy induction shows that

sn =
n∑
i=0

1

2i
= 2− 1

2n
,

then the limit of the sequence (sn)n of partial sums is 2.

However, there are some surprising subtleties in these series. One of the basic tricky

ones is the Harmonic Series:
∞∑
i=1

1

n

which equals ∞. That might seem counter-intuitive but, to see it, collect terms together
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to get:

∞∑
i=1

1

n
= 1 +

(
1
2

)
+

(
1
3

+ 1
4

)
+

(
1
5

+ 1
6

+ 1
7

+ 1
8

)
+ · · ·

≥ 1 +
(
1
2

)
+

(
1
2

)
+

(
1
2

)
+ · · · .

(8.1)

So this gives an infinite sum of halves, which is therefore infinite. In contrast, we will see

that
∞∑
i=1

1

n1.001
<∞.

So, we are going to need some new techniques!

8.1 The Basic Definitions

For real numbers an, an infinite series is an expression of the form

∞∑
n=1

an (also written a1 + a2 + a3 + · · ·+ an + · · · ).

This may also be written
∑

n≥1 an or even just
∑
an.

Given such a series, we form the sequence of partial sums (sn)n≥1 defined by

setting

sn = a1 + a2 + · · · an =
n∑
i=1

ai.

If sn → s as n → ∞, we then say that the series
∑∞

n=1 an is convergent with sum s,

and write
∑∞

n=1 an = s.

If there is no real number s with this property, that is if the sequence (sn) does not

have a limit, then we say that the series
∑∞

n=1 an is divergent. If the series is divergent

but limn→∞ sn = +∞ then we say that
∑∞

n=1 an = +∞ (similarly with −∞).

The Harmonic Series, revisited. Let’s first check that the harmonic series (8.1)

really does have sum ∞. So, what we have seen is that for any K there exists N (in fact

N = 22K works) such that
∑N

n=1 1/n gives (more than) a sum of 2K copies of 1/2. In

other words, if m ≥ N then

sm =
m∑
n=1

1

n
≥

N∑
n=1

1

n
≥ K.
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Which is just what one needs to prove to see that
∑∞

i=1 1/n = +∞.

Remark. Sometimes (as in the next example), it is more convenient to start the se-

ries/sequence at 0, thus looking at series of the form
∑∞

n=0 = a0 + a1 + · · · .

Example 8.1.1 (Geometric series). Let r be a real number with |r| < 1. Then the series∑∞
n=0 r

n converges with sum 1/(1− r).

Proof. Here, an = rn and

sn = a0 + a1 + · · ·+ an = 1 + r + · · ·+ rn.

So

rsn = r + r2 + · · ·+ rn+1.

Subtracting we obtain

(1− r)sn = 1− rn+1

because all the other terms cancel. Hence

sn =
1− rn+1

1− r
.

Now since −1 < r < 1, rn+1 → 0 as n→∞. (Use 4.1.2.) Hence

sn =
1− rn+1

1− r
→ 1− 0

1− r
=

1

1− r

(by AoL). So, by definition,
∞∑
n=0

rn =
1

1− r
.

�

Remark: This proof only works for |r| < 1. It might be tempting to put in other values

of r since the right hand side is well defined for any r with r 6= 1. But this gives nonsense,

e.g.
∞∑
n=0

2n =
1

1− 2
= −1

is definitely not correct.

Example 8.1.2 (Using partial fractions). Prove that the series

∞∑
n=1

1

n(n+ 1)
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converges to 1.

Proof Here an = 1/n(n+ 1) and

sn = a1 + a2 + · · ·+ an =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)
.

A trick that sometimes works is to use partial fractions on the terms. Here we use

the identity
1

x(x+ 1)
=

1

x
− 1

x+ 1

valid for x 6= 0,−1. Hence

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n+ 1

)
.

Now all the terms cancel apart from the first and the last, so we obtain

sn = 1− 1

n+ 1
→ 1− 0 = 1 as n→∞.

Thus
∞∑
n=1

1

n(n+ 1)
= 1.

�

Remark: It is very important in Example 8.1.2 that one only rearranges terms in a finite

sum rather than rearranging terms in the infinite sum
∑∞

n=1 1/n(n + 1). The reason is

that, with infinite sums, you can get all sorts of strange different answers by arranging

things in different ways—the details can be found in Section 12.2.

It is quite rare for one to be able to find an exact formula for the nth partial sum

(i.e. for the number sn) as we did in these two examples. So, just as we did with the study

of sequences, we need to build up a stock of general theorems that will help us to tell

when a series does and does not converge without explicitly computing the partial sums.

Our first result along these lines states that a series cannot converge unless the terms

(i.e. the an) form a null sequence. Note, however, that the converse of this statement is

false in general, as we saw with
∑∞

n=1 1/n. Here is a similar type of example.

Example 8.1.3 (of non-convergence). Prove that the series

∞∑
n=1

1√
n

diverges.
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Proof Here, an = 1/
√
n and we have shown (see Example 3.2.3) that (an)n≥1 is a null

sequence. However, the series
∑∞

n=1 an does not converge. For

sn =
1√
1

+
1√
2

+
1√
3

+ · · ·+ 1√
n
,

from which we deduce that

sn ≥ (number of terms) · (smallest term) = n · 1√
n

=
√
n.

Thus sn ≥
√
n for all n ∈ N, so sn → +∞ as n → ∞ by the Infinite Sandwich Rule

(since
√
n → +∞ as n → ∞). Hence, by definition, the series

∑∞
n=1 1/

√
n does not

converge. �

Theorem 8.1.4. (The nth term Test.) If
∑∞

n=1 an is a convergent series, then (an)n≥1

is a null sequence.

Proof. Suppose that
∑∞

n=1 an = s. Let sn = a1 + · · · + an be the nth partial sum. So

sn → s as n→∞. Hence limn→∞ sn−1 → s as well (see Lemma 4.1.3), and so by AoL,

lim
n→∞

(sn − sn−1) = s− s = 0.

But sn − sn−1 = an. So an → 0 as n→∞, i.e. (an)n≥1 is a null sequence. �

Theorem 8.1.5. (Algebra of Infinite Sums)

(i) If
∑∞

n=1 an and
∑∞

n=1 bn are both convergent series, with sums A and B respectively,

then the series
∑∞

n=1(an + bn) is also convergent with sum A+B.

(ii) If
∑∞

n=1 an is a convergent series with sum A, and λ is any real number, then the

series
∑∞

n=1 λan is convergent with sum λA.

Proof. (i) For n ∈ N, let sn =
∑n

k=1 ak and tn =
∑n

k=1 bk be the partial sums and

similarly let un =
∑n

k=1(ak + bk) be the partial sums for the series
∞∑
n=1

(an + bn).

Then, rearranging terms in a finite sum as we might,

un =

(
n∑
k=1

ak

)
+

(
n∑
k=1

bk

)
= sn + tn for n ∈ N.
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But sn → A and tn → B as n→∞ by the definition of convergence of the original series.

Thus, by AoL for sequences, un → A+B as n→∞, i.e.

∞∑
n=1

(an + bn) = A+B,

as required.

The proof of (ii) is left as an exercise. �
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Chapter 9

Series with Non-Negative Terms

In this chapter we establish some key facts about series with non-negative terms. The

theory of such series is very much easier than the general case where negative terms are

allowed.

9.1 The Basic Theory of Series with Non-Negative

Terms

Theorem 9.1.1. Suppose that an ≥ 0 for all n ∈ N and let sn =
∑n

k=1 ak. Then the

series
∑∞

n=1 an is convergent if and only if the sequence (sn)n≥1 is bounded above.

Proof. Note that sn+1 = sn + an+1 ≥ sn, since an+1 ≥ 0. Hence the sequence (sn)n≥1

is increasing. So, by the Monotonic Convergence Theorem, if (sn)n≥1 is bounded above,

then it converges and thus, by definition, the series
∑∞

n=1 an is convergent.

Conversely, if
∑∞

n=1 an is convergent, then (sn) is convergent (definition!) and so

Theorem 2.3.9 says that (sn)n≥1 is bounded above. �

Theorem 9.1.2 (The Comparison Test). If 0 ≤ an ≤ bn for all n ∈ N and
∑∞

n=1 bn

converges, then
∑∞

n=1 an converges.

Equivalently, if 0 ≤ an ≤ bn for all n ∈ N and
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Proof. Let sn = a1 + a2 + · · ·+ an and tn = b1 + b2 + · · ·+ bn. Since an ≤ bn for all n it

follows that sn ≤ tn for all n. But as
∑∞

n=1 bn is a convergent series of non-negative terms

there is, by Theorem 9.1.1, some M > 0 such that tn ≤ M for all n. Hence sn ≤ M for

all n, and so, again by 9.1.1,
∑∞

n=1 an is convergent. �
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Exercise 9.1.3. Let (an)n≥1 be any sequence and let N be any positive integer. Show that

the series
∞∑
n=1

an is convergent if and only if the series
∑

n≥N an (which is the same as the

series
∑∞

n=1 an+N−1) is convergent.

Remark: This exercise is done in the Exercise sheet for Week 9, and essentially means

that for any given test, you need only apply the test for “large n”. Let’s make this precise

with:

Slightly Improved Comparison Test: Let N ∈ N. If 0 ≤ an ≤ bn for all n ≥ N and∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

Proof. By (9.1.3),

∞∑
n=1

bn converges ⇒
∑
n≥N

bn =
∑
m≥1

bN+m−1 converges

⇒
∑
n≥N

an =
∑
m≥1

aN+m−1 converges (by the comparison test)

⇒
∑
n≥1

an converges (by 9.1.3 again).

�

Example 9.1.4. The series
∞∑
n=1

1

n2

is convergent.

Proof We have that
1

(n+ 1)2
≤ 1

n(n+ 1)

for all n ∈ N, and hence by Example 8.1.2 and the Comparison Test,
∑∞

n=1 1/(n+ 1)2

is convergent. Since this is just the series
∑

n≥2 1/n2, the convergence of the series∑∞
n=1 1/n2 follows from Exercise 9.1.3. �

This example shows the value of the Comparison Test: it was straightforward to

calculate the partial sums of the series
∑∞

n=1 1/n(n+ 1) and hence calculate explicitly

the sum of this series (thereby establishing its convergence). But it is impossible to give

a neat formula for the partial sums of the series
∑∞

n=1 1/n2, so we resort to comparing

its terms with those of the series
∑∞

n=1 1/n(n+ 1) in order to establish its convergence.
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In fact, as mentioned in the introduction to this course,

∞∑
n=1

1

n2
=
π2

6

but the proof of this requires methods from next year’s complex analysis course.

Example 9.1.5. For any p ≥ 2, the series

∞∑
n=1

1

np

is convergent. To see this we simply observe that for all n ∈ N, 1/np ≤ 1/n2 (since p ≥ 2)

and apply the Comparison Test to the previous example.

Similarly we have:

Example 9.1.6. For any p ≤ 1 the series

∞∑
n=1

1

np

is divergent.

Proof For suppose that p ≤ 1 and, for a contradiction, that
∑∞

n=1 1/np is convergent.

Since 1/n ≤ 1/np for all n ∈ N we would have, by the Comparison Test, that
∑∞

n=1 1/n

is convergent. But this contradicts Equation 8.1. �

Remark: We’ve left the case 1 < p < 2 open but, later, we will show that
∑∞

n=1 1/np

converges if p > 1 but diverges if p ≤ 1.

We now come to an important test for the convergence of series.

Theorem 9.1.7 (The Ratio Test for series.). Suppose that an > 0 for all n ∈ N and

assume that
an+1

an
→ l

as n→∞.

(i) If l < 1, then
∑∞

n=1 an is convergent.

(ii) If l > 1, then
∑∞

n=1 an is divergent.

Remark: If l = 1, no conclusion can be drawn: For example, if an = 1/n2 or an = 1/n,

then in both cases we have that an+1/an → 1 as n → ∞. But in the first case
∑∞

n=1 an

converges, whereas in the second case it diverges.
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Proof. (i) Suppose that l < 1. We want to compare our series to the geometric series∑
rn for some r. We need a little room to manoeuvre and taking l = r wouldn’t give us

that, so we will take a slightly bigger number for r.

So, choose r so that l < r < 1 (e.g. take r = 1 + l/2 to be the average of l and 1) and

set ε = r − l. Then ε > 0 and we may choose N ∈ N so that

l − ε < an+1

an
< l + ε

for all n ≥ N .

But ε = r− l says that l+ ε = r and so, as an > 0 we get 0 < an+1 < r ·an for n ≥ N .

In particular

aN+1 < r · aN , and aN+2 < r · aN+1 < r2 · aN

and so on. So (by induction) we obtain

∀n ≥ N, 0 < an < rn−N · aN

Collecting terms we see that∑
n≥N

an ≤
∑
n≥N

rn−N · aN =
∑
n≥0

rn · aN = aN
∑
n≥0

rn. (∗)

But as 0 < r < 1 it follows from Example 8.1.1 that
∑

n≥0 r
n converges. Now we are

basically done: by The Algebra of Infinite Sums 8.1.5(ii), aN
∑

n≥0 r
n converges and so

from (*) and the Slightly Improved Comparison Test,
∑

n≥1 an converges, as required.

(ii) Now suppose that l > 1. In this case we choose r so that 1 < r < l and, by following

the same procedure as above, we obtain an N ∈ N such that for all n ≥ N we have

an > rn−N · aN = rn ·
(aN
rN

)
.

But, since r > 1, this implies that an →∞ as n→∞ and, in particular, it implies that

(an)n≥1 is not a null sequence. So
∑∞

n=1 an diverges by Theorem 8.1.4. �

Example 9.1.8. Show that the series
∞∑
n=1

n2

2n

converges.
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Proof Let an = n2/2n. Then

an+1

an
=

(n+ 1)2

2n+1
· 2n

n2
=

1

2
·
(

1 +
1

n

)2

.

So, by AoL,
an+1

an
→ 1

2
· (1 + 0)2 =

1

2
as n→∞.

Since 1/2 < 1, it follows from the Ratio Test that
∑∞

n=1 n
2/2n converges. �

Example 9.1.9. Show that the series Let x be any positive real number and consider the

series
∞∑
n=1

xn

n!

converges for all x > 0.

Proof Here, an = xn/n!, so

an+1

an
=

xn+1

(n+ 1)!
· n!

xn
=

x

n+ 1
.

But x/(n+ 1)→ 0 as n→∞ and 0 < 1. So by the Ratio Test,
∑∞

n=0 x
n/n! converges. �

Example 9.1.10. (The Bouncing Ball.) Suppose that a rubber ball is dropped from a

height of 1 metre and that each time it bounces it rises to a height of (2/3) of the

previous height. How far does it travel before it stops bouncing (and yes it does stop)?

Solution: First it drops 1m. Then it rises up and drops 2/3m. Then it rises up and drops

(2/3)2m, etc etc. So the total distance travelled is

1 + 2× 2
3

+ 2×
(
2
3

)2
+ 2×

(
2
3

)3
+ · · ·

= 1 + 2× 2
3

(
1 + 2

3
+
(
2
3

)2
+ · · ·

)
= 1 + 4

3
· 1

1− 2/3
= 5.

�
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9.2 The Integral Test

We consider a function f : [1,∞)→ R which is:

(i) positive (at least, non-negative), so f(x) ≥ 0 ∀x ≥ 1;

(ii) decreasing, so f(x) ≤ f(y) ∀ x ≥ y ≥ 1;

(iii) continuous.

Here continuity (meaning being continuous) is a condition you may have seen before,

but will be made precise in your analysis course next year. For the record (although

you need not remember this) the definition is as follows. A function f is continuous

on X = [1,∞) if for all x ∈ X and ε > 0 there exists δ > 0 such that if y ∈ R with

|x− y| < δ then |f(x)− f(y)| < ε. That is,

∀x ∈ X, ∀ε > 0,∃δ > 0 : ∀y ∈ R, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Roughly speaking it means that “there are no breaks in the graph of f”. This condition

rules out functions such as

f(x) =

1 if x ≤ 2,

1
2

if x > 2.

(In this example, try taking x = 2 and ε = 1/4.)

Examples of functions f(x) satisfying (i), (ii) and (iii) are

1

x
,

1

x2
,

1

x ln(1 + x)
, 2−x.

Theorem 9.2.1 (The Integral Test). Let f : [1,∞) → R be a function satisfying the

three conditions above. Then the series

∞∑
n=1

f(n)

converges if and only if the sequence(∫ n

1

f(x)dx

)
n≥1

converges as n→∞.
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This in turn happens if and only if the sequence
(∫ n

1
f(x)dx

)
n≥1 is bounded.

Before giving the proof here are some examples of how the test works.

Example 9.2.2. Consider the series
∞∑
n=1

1

n
.

We shall show that it diverges.

Proof Let f : [1,∞) → R be the function f(x) = 1/x, which clearly satisfies our three

conditions.

Now ∫ n

1

f(x)dx =

∫ n

1

dx

x
= [lnx]n1 = lnn− ln 1 = lnn.

But (as in Example 7.1.3) (lnn)n≥1 is a divergent sequence, so by the Integral Test,∑∞
n=1 1/n is a divergent series. �

Here is the important example which was left partly unresolved in the previous chap-

ter:

Example 9.2.3. If p is a real number with p > 1, then

∞∑
n=1

1

np

is a convergent series.

it Proof Here we take f(x) = 1/xp. This clearly satisfies the three conditions for the

Integral Test to be applicable. We have∫ n

1

f(x)dx =

∫ n

1

x−pdx =

[
x−p+1

(−p+ 1)

]n
1

=
n−p+1

−p+ 1
− 1

−p+ 1
=

1

p− 1

(
1− 1

np−1

)
.

Now since p > 1, we have that 1/np−1 → 0 as n→∞. So∫ n

1

1

xp
dx→ 1

p− 1
(1− 0) =

1

p− 1
as n→∞.

In particular, the sequence
(∫ n

1
1/xpdx

)
n≥1 is convergent (with limit 1/(p− 1)). Hence,

by the Integral Test, the series
∑∞

n=1 1/np is convergent (for p > 1). �
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Exercise 9.2.4. Use the Integral test to prove that the series

∞∑
n=1

1

np

is divergent if p < 1. (We also proved this in Example 9.1.6.)

Proof of the Integral Test: First of all, it is clear that∫ n

1

f(x)dx ≤
∫ n+1

1

f(x)dx

and so the sequences of integrals is an increasing sequence. Hence the second paragraph

of the Theorem is nothing more than the Monotone Convergence test.

So we look at the first assertion. The basic idea is that the integral
∫ n
x=1

f(x)dx

defines the area under that curve for 1 ≤ x ≤ n. This we can approximate by summing

the areas of a series of rectangles with width 1. For x : n ≤ x ≤ n + 1 we have, since f

is a decreasing function, that f (n) ≥ f (x) ≥ f (n+ 1). Integrate this over the interval

[n, n+ 1] to get ∫ n+1

n

f(n) dx ≥
∫ n+1

n

f(x)dx ≥
∫ n+1

n

f(n+1) dx.

Since the integral of a constant equals the constant times the length of the interval,

in this case 1, we get

f(n) ≥
∫ n+1

n

f(x) dx ≥ f(n+1) .

This holds for all real n though we only use it for integers n. In fact, adding these

inequalities for n = 1, 2, 3, ..., N − 1, the integrals all combine as one integral from 1 to

N with
N−1∑
n=1

f (n) ≥
∫ N

1

f (x) dx ≥
N−1∑
n=1

f (n+ 1) =
N∑
n=2

f (n) (∗∗).

After this preparatory work we now prove Theorem 9.2.1.

(⇒): Suppose that the series
∑∞

n=1 f(n) converges. Then the partial sums are bounded

(by 9.1.1, since the terms f(n) are positive). So there is a positive real number M such

that for all N ∈ N we have that
N−1∑
n=1

f(n) ≤M.
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Hence by (∗∗), ∫ N

1

f(x)dx ≤M

for all N ∈ N and so the sequence
(∫ n

1
f(x)dx

)
n≥1 is a bounded sequence.

But since f is a positive function, an increase in the range over which we integrate f

will result in a larger value for the integral. This implies that the sequence
(∫ n

1
f(x)dx

)
n≥1

is an increasing sequence. Thus, by the Monotone Convergence Theorem, it is a conver-

gent sequence as required.

(⇐): Suppose that the sequence
(∫ n

1
f(x)dx

)
n≥1 converges. Then it is bounded (by

Theorem 2.3.9). Let L be a bound for it. So∫ N

1

f(x)dx ≤ L

for all N ∈ N. Hence, by (∗∗),
N∑
n=2

f(n) ≤ L

for all N ∈ N. This means that the partial sums of the series
∑∞

n=2 f(n) are bounded

and so, being a series of positive terms, it converges (by 9.1.1). But then so does the

series
∑∞

n=1 f(n) (by Exercise 9.1.3), as required. �

This completes the proof of the Integral Test.

Remark 9.2.5. Sometimes the integral
∫ n
1
f(x)dx can be awkward to compute at the Left

Hand End, but in that case, since it is always OK to compute integrals of the form∫ n
K
f(x)dx for some fixed 1 ≤ K (and then K ≤ n), it may be that there is a convenient

choice for K.

Indeed, in view of 9.1.3, one only has to verify that that the three conditions (i), (ii)

and (iii) hold for all sufficiently large x, i.e. for all x ≥ K (for some given K ∈ N). The

same proof shows that

∞∑
n=1

f(n) converges ⇐⇒
∞∑
n=K

f(n) converges ⇐⇒
(∫ n

K

f(x)dx

)
n≥K

converges.

Example 9.2.6. Prove that the series

∞∑
n=2

n2

n3 − 1

diverges.
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Proof: Consider the function f : [2,∞)→ R defined by f(x) = x2/(x3 − 1).

Clearly f(x) > 0 for x ≥ 2 and f is continuous. To see that f is decreasing, we

can either use calculus or algebra. Using calculus is easier: after simplification we have

f ′(x) = −(x4 + 2x)(x3− 1)−2. Clearly this is negative for x > 1 and so our function f(x)

decreases.

For an algebraic proof, suppose that 1 ≤ x < y. Then

x2

x3 − 1
≥ y2

y3 − 1
⇐⇒ x2y3 − x2 ≥ y2x3 − y2

⇐⇒ y2 − x2 ≥ y2x3 − x2y3

⇐⇒ (y − x)(y + x) ≥ y2x2(x− y)

⇐⇒ (y + x) ≥ −y2x2

Since the last statement here is true we can reverse the bi-implications. This shows that

f is indeed decreasing.

So we may apply the Integral Test (in the form of 9.2.5). Now∫ n

2

f(x)dx =

∫ n

2

x2

x3 − 1
dx.

In order to evaluate the integral we make the substitution u = x3 − 1. Thus du = 3x2dx

and the new limits are u = 7 to u = n3 − 1. Thus∫ n

2

f(x)dx =
1

3

∫ n3−1

7

du

u
=

1

3
[lnu]n

3−1
7 =

1

3
(ln(n3 − 1)− ln 7).

Since 1
3
(ln(n3− 1)− ln 7)→∞ as n→∞, the sequence

(∫ n
2
f(x)

)
n≥2 diverges and hence

so does the series
∑∞

n=2 n
2/(n3 − 1) by the Integral Test. �

Remark 9.2.7. Assume that conditions (i)–(iii) from Theorem 9.2.1 hold. Let K ∈ N
(usually I would have K = 1.) Then integrals of the form

∫∞
K
f(x)dx are called improper

integrals and in more detail we have the following.

For any K < r < s we have

0 ≤ F (r) =

∫ r

K

f(x)dx ≤
∫ r

K

f(x)dx+

∫ s

r

f(x)dx =

∫ s

K

f(x)dx = F (s),

and so by the Monotone Convergence Theorem either

1. The sequence
(∫ n

K
f(x)dx

)
n≥K is bounded and hence convergent, in which case we
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write its limit as
∫∞
K
f(x)dx and say that “

∫∞
K
f(x)dx converges”.

2. Alternatively the sequence
(∫ n

K
f(x)dx

)
n≥K is unbounded and hence tends to infinity.

In this case we say “
∫∞
K
f(x)dx diverges” or indeed that

∫∞
K
f(x)dx =∞.

So we paraphrase Theorem 9.2.1 as saying that∑∞
n=1 f(n) converges ⇐⇒

∫∞
1
f(x) converges.

(Finally, note that talking about improper integrals usually involves a somewhat different

kind of limit, namely the limit of the F (r) as the real number r tends to infinity. Also,

if the conditions (i)–(iii) do not hold, then you have to be much more careful with the

definitions and properties of improper integrals.)

Example 9.2.8. Prove that the series

∞∑
n=2

1

n lnn

diverges.

Proof Let f(x) = 1/(x lnx) in the Integral Test and consider the integral∫ n

2

1

x lnx
dx.

In order to evaluate it we make the substitution u = lnx. Then du = dx/x and the new

range of integration is from u = ln 2 to u = lnn. Thus∫ n

2

1

x lnx
dx =

∫ lnn

ln 2

du

u
= [lnu]lnnln 2 = ln(lnn)− ln(ln 2).

Now (exercise) ln(lnn) → ∞ as n → ∞ and so the sequence
(∫ n

2
1/(x lnx)dx

)
n≥1

diverges. Hence, by the Integral Test, the series
∑∞

n=2 1/(n lnn) diverges. �

Exercise 9.2.9. Let p ∈ R. Prove that the series

∞∑
n=2

1

n(lnn)p

converges if and only if p > 1. What about the series

∞∑
n=3

1

n lnn (ln lnn)p
?
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(We take the lower limit of summation to be 3 here because ln ln 2 is negative and so

(ln ln 2)p might not be defined.)

Final Remark: In the integral test you do have to be careful to check that conditions

(i - iii) hold. The trouble is that without them it is easy to get silly counterexamples.

For example, suppose we take the function y(x) = 1 + cos((2n + 1)π); this function

has been chosen so that f(n) = 0 for all n and f(x) ≥ 0 for all x ≥ 0. So, here∑
f(n) = 0 + · · ·+ 0 = 0 is certainly convergent, whereas the integral

∫∞
x=1

f(x)dx =∞.

Exercises 9.2.10. No doubt when you first saw the techniques of integration it took a

while to get the intuition about which technique to use for which example. The same

goes for our techniques for testing the convergence of infinite series
∑
an (and sequences).

The only way to develop this intuition is to do lots of examples. Here are some examples,

with partial hints about how to approach them:

(1)
∞∑
n=1

n− 1

2n+ 1
.

Answer: Diverges by 9.1.1 as limn→∞ an 6= 0.

(2)
∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2
.

Answer: Converges. Since

√
n3 + 1

3n3 + 4n2 + 2
≤
√
n3 + n3

3n3
≤
√

2

3n3/2

our series converges by comparison with the convergent
∑∞

n=1 1/n3/2. (See CT and 9.2.3.

(3)
∞∑
n=1

ne−n .

Answer: This converges, either by the ratio test or the integral test. By integrating by

parts ∫ n

x=1

xe−xdx = −(x+ 1)e−x
∣∣∣∣n
x=1

= −(n+ 1)e−n + 2e−1 → 2e−1 <∞

as n→∞.

(4)
∞∑
n=1

2n

n!
and

∞∑
n=1

n!

2n
.

Answer: The Ratio Test will work to show the first converges and the second diverges.

(There is an easier test to use for the second one—do you see it?)
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(5)
∞∑
n=1

1

2 + 3n
.

Answer: Since this is closely related to a geometric series we should use the Comparison

Test to compare it to
∑∞

n=1 1/3n and deduce that it converges.
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Chapter 10

Series with Positive and Negative

Terms

10.1 Alternating Series

We know that for a series
∑∞

n=1 an to converge it is definitely not sufficient that the

sequence (an)n≥1 of terms be null. (It is necessary, but not sufficient.) For example,

1/n → 0 as n → ∞, but
∑∞

n=1 1/n does not converge. However, it turns out that if the

terms an decrease in modulus and alternate in sign:

a1 > 0, a2 < 0, a3 > 0, . . .

then it is both necessary and sufficient for the convergence of
∑∞

n=1 an that (an)n≥1 be

null.

For example,
∞∑
n=1

(−1)n+1

n

does converge as the following argument suggests:

We have

1− 1

2
+

1

3
− · · ·+ 1

2n+ 1
− 1

2n+ 2
+ · · · =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ · · ·

(
1

2n+ 1
− 1

2n+ 2

)
+ · · ·

=
1

2
+

1

12
+ · · ·+ 1

(2n+ 1)(2n+ 2)

=
∞∑
n=0

1

(2n+ 1)(2n+ 2)
,
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and this series converges by the Comparison Test since

1

(2n+ 1)(2n+ 2)
≤ 1

(n+ 1)2

for all n.

(I say “suggests” here because the argument is not completely rigorous. Why not?)

For an argument which gives the sum exactly, see the end of the chapter.

Theorem 10.1.1 (The Alternating Series Test). Let (an)n≥1 be a decreasing sequence of

positive terms such that an → 0 as n→∞. Then the series

∞∑
n=1

(−1)n+1an

converges.

Proof. Let

sn =
n∑
k=1

(−1)k+1ak

be a typical partial sum. Then

s2n = a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n
= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n.

Notice that all the terms in brackets here are non-negative since the sequence (an)n≥1

is decreasing. Also a2n > 0. It follows that for all n ∈ N, s2n ≤ a1.

Also

s2(n+1) = s2n + a2n+1 − a2n+2 ≥ s2n

since a2n+1 ≥ a2n+2. Hence (s2n)n≥1 is an increasing sequence which is bounded above

(by a1). Therefore it converges by the Monotone Convergence Theorem. Let its limit be

`. So s2n → ` as n→∞.

Now consider the sequence (s2n+1)n≥1. Then s2n+1 = s2n + a2n+1, and both the series

s2n and a2n+1 converge. So, by the Algebra of Limits Theorem

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

a2n+1 = `+ 0 = `.

It now follows easily in this situation that sn → ` as n→∞, as well, which (by definition)

implies that
∑∞

n=1(−1)n+1an converges, as required.
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In more detail, let ε > 0 be given. Choose N1 so that |s2n − `| < ε for all 2n ≥ N1

and N2 so that |s2n+1 − `| < ε for all 2n + 1 ≥ N2. Then clearly |sm − `| < ε for all

m ≥ N = max{N1, N2}. Hence sn → ` as n→∞ as required. �

Remark: Sometimes it is useful to slightly modify the series in the Alternating series.

The same argument will work (or we can use the version proved) to deduce either of the

following slightly modified versions of the theorem:

(A) Let (an)n≥1 be a decreasing sequence of positive terms such that an → 0 as n→∞.

Then the series
∞∑
n=1

(−1)nan

converges.

(B) Let (an)n≥0 be a decreasing sequence of positive terms such that an → 0 as n→∞.

Then the series
∞∑
n=0

(−1)nan

converges.

Remark: It might be tempting to say that any alternating sum converges. But that is

false: Let an be positive numbers such that an ≥ 0 for all n and (an) is decreasing. Then∑
n≥1(−1)nan converges if and only if (an) is null.

Proof. The direction ⇐ is The Alternating Series Test 10.1.1. The direction ⇒ is the

“Nullity Theorem 8.1.4.” �

Example 10.1.2. Let p ∈ R. Then

∞∑
n=1

(−1)n+1

np

converges if and only if p > 0.

Proof: If p ≤ 0, then for all n, ∣∣∣∣(−1)n+1

np

∣∣∣∣ =
1

np
≥ 1.

So ((−1)n+1/np)n≥1 is not a null sequence and hence the series
∑∞

n=1(−1)n+1/np cannot

converge, by 8.1.4.

On the other hand, if p > 0, then (1/np)n≥1 is a decreasing null sequence of positive

terms. Hence the series
∑∞

n=1(−1)n+1/np converges by the Alternating Series Test. �
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We end this section with a precise formula for the alternating sum
∑∞

n=1(−1)n+1/n.

The last step in this argument requires the definition of an integral as a limit of sums of

areas. If you have not seen this before, do not worry, since it is not something required for

this course. But the computation (pointed out by Carolyn Dean) is fun and interesting.

This computation is not something you need to remember for this course.

Example 10.1.3. The series
∞∑
n=1

(−1)n+1

n

converges to ln 2.

Proof. We know from the Alternating Series Test that the series converges, with sum `,

to be found. This means that the sequence of partial sums (sn)n≥1 converges to `. This,

in turn, means any subsequence converges to `. We will consider (s2n)n≥1.

Claim:

s2n =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

for all n ≥ 1.

Proof of the Claim: It is clear that it holds for n = 1 since s2 = 1 − 1/2 = 1/2. So

suppose that it holds for some k ≥ 1. Then, by definition

s2(k+1) = 1− 1

2
+

1

3
+ · · ·+ 1

2k + 1
− 1

2k + 2

= s2k +
1

2k + 1
− 1

2k + 2

=

(
1

k + 1
+

1

k + 2
+ · · ·+ 1

2k

)
+

1

2k + 1
− 1

2

1

k + 1
by the inductive hypothesis

=

(
1

k + 2
+ · · ·+ 1

2k

)
+

1

2k + 1
+

1

2

1

k + 1
by a simple manipulation.

Thus, by induction, the Claim is proven.

Recall from earlier in the course that if f : [1,+∞) → R is a continuous decreasing

function then

f(n) ≥
∫ n+1

n

f(x) dx ≥ f(n+1) ,

for all n ≥ 1. With f(x) = 1/x this can be rearranged as∫ n

n−1

dx

x
≥ 1

n
≥
∫ n+1

n

dx

x
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(with n ≥ 2 for the first inequality). This can be applied immediately to give an upper

bound on s2n of

s2n ≤
∫ 2n

n

dx

x
= ln (2n)− ln (n) = ln 2.

For a lower bound we first write

1

n+ 1
+ ...+

1

2n
=

(
1

n
+

1

n+ 1
+ ...+

1

2n− 1

)
− 1

n
+

1

2n

≥
∫ 2n

n

dx

x
− 1

2n

= ln 2− 1

2n
.

Combine as

ln 2 ≥ s2n ≥ ln 2− 1

2n

and let n→∞ to get ` = ln 2. �

10.2 Absolute Convergence

Suppose that we are given a series
∑∞

n=1 an where some of the an are positive and some

negative. Then (apart from the Alternating Series Test) there are not so many good rules

for deciding whether
∑∞

n=1 an converges or not. For example something like

1 +
1

2
− 1

3
+

1

4
+

1

5
− 1

6
· · ·

(where every third term is negative) is not something covered by one of our rules. The

one other rule we will have is that the series
∑∞

n=1 an does converge provided the series∑∞
n=1 |an| converges. Before stating the result we make a definition.

Definition 10.2.1. Let
∑∞

n=1 an be any series. We say that

∞∑
n=1

an

is absolutely convergent if the series

∞∑
n=1

|an|
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is convergent.

If
∑∞

n=1 an is convergent, but not absolutely convergent, then we say it is condition-

ally convergent.

For example, the series
∞∑
n=1

(−1)n+1

n2

is absolutely convergent because

∞∑
n=1

∣∣∣∣(−1)n+1

n2

∣∣∣∣ =
∞∑
n=1

1

n2

which is convergent. However, the series

∞∑
n=1

(−1)n+1

n

is conditionally convergent because it converges (see Example 10.1.2) but

∞∑
n=1

∣∣∣∣(−1)n+1

n

∣∣∣∣ =
∞∑
n=1

1

n

which diverges.

The definition above rather presupposes that absolute convergence is stronger than

convergence and we next give a proof of this fact.

Theorem 10.2.2. If the series
∑∞

n=1 an is absolutely convergent, then it is convergent.

Proof. We are given that
∑∞

n=1 |an| converges. Let

pn =

an if an ≥ 0,

0 if an ≤ 0.

Then
∑∞

n=1 pn is a series of positive terms and for all n ∈ N, pn ≤ |an|. Hence
∑∞

n=1 pn

converges by the Comparison Test. Similarly, if

qn =

|an| if an < 0,

0 if an ≥ 0
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then
∑∞

n=1 qn converges.

Hence, by the Algebra of Infinite Sums Theorem 8.1.5,
∑∞

n=1(pn − qn) is convergent.

But for all n ∈ N, pn − qn = an and we are done. �

Example 10.2.3.
∞∑
n=1

1

n2
sin
(nπ

4

)
converges absolutely and hence converges.

Proof: The sine terms are
1√
2
, 1,

1√
2
, 0,− 1√

2
, , · · · ,

so the alternating series test does not help. However, as sin(x) ≤ 1, we do know that

0 ≤
∣∣∣∣ 1

n2
sin
(nπ

4

)∣∣∣∣ ≤ 1

n2

for all n. Hence
∞∑
n=1

∣∣∣∣ 1

n2
sin
(nπ

4

)∣∣∣∣
converges by the comparison test. �

The same sort of argument means that we can modify some of our earlier tests to

work for series with positive and negative terms. For example:

Theorem 10.2.4. (The Modified Ratio Test) Suppose that an for all n ∈ N are any real

numbers and assume that ∣∣∣∣an+1

an

∣∣∣∣→ l

as n→∞.

(i) If l < 1, then
∑∞

n=1 an is absolutely convergent and hence convergent.

(ii) If l > 1, then
∑∞

n=1 an is divergent.

(iii) If l = 1, then we still cannot conclude whether
∑∞

n=1 an is convergent or divergent.

Proof. (i) In this case the Ratio Test 9.1.7 says that
∑∞

n=1 |an| converges; i.e. that∑∞
n=1 an is absolutely convergent.

(ii) In this case we know from the proof of 9.1.7 that |an| → ∞ as n → ∞. So,

certainly an 6→ 0 as n→∞. Thus, by Theorem 8.1.4,
∑∞

n=1 an is divergent. �

Example 10.2.5.
∑∞

n=1 x
n (and indeed

∑∞
n=1(−1)nxn) converges if |x| < 1 and diverges if

|x| > 1. In this case, one can also check that it diverges when |x| = 1.
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Final Comments. In Example 9.2.10, we saw how one might approach testing series

for convergence. Of course, there, the sequences all had positive terms. So how should

one approach general series? In a sense the rules are easier, as there are really only three

possibilities for a series
∑∞

n=1 an:

1. Is limn→∞ = 0? If not then the series diverges by the n-th term test Theorem 8.1.4.

2. Does the Alternating Series Test 10.1.1 apply? If so, use it!

3. Otherwise you had better hope that the Absolute Convergence Test (Theorem 10.2.2)

applies, in which case you are back to the ideas of Chapter 9. As we will see in the

next chapter, one of the most important cases where this case applies is when one

can use the Modified Ratio Test 10.2.4.

For examples of all these cases, see the next Exercise Sheet.
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Chapter 11

Power Series

We now consider (the simplest case of) series where the nth term depends on a real

variable x and we ask for which values of x does the series converge.

Definition 11.0.1. A series of the form
∑∞

n=0 anx
n is called a power series (in the

variable x).

For example we can write ex =
∑∞

n=0 x
n/n! as a power series. Similarly, the geometric

series
∑∞

n=0 x
n is a power series (with an = 1 for all n). As we saw in Example 10.2.5, this

converges absolutely for |x| < 1 and diverges otherwise. For another example, consider

Example 11.0.2.
∞∑
n=1

xn

n
.

Let’s use the (modified) Ratio Test to study this example; set cn = xn/n and apply

the rule to
∑∞

n=1 cn. So,∣∣∣∣cn+1

cn

∣∣∣∣ =

∣∣∣∣ xn+1

n+ 1
· n
xn

∣∣∣∣ = |x| · n

n+ 1
→ |x| as n→∞.

Thus, if |x| < 1 the series converges absolutely, by the Modified Ratio Test 10.2.4, while

it diverges if |x| > 1. When |x| = 1 we get two more cases:

If x = 1 the series is
∑∞

n=1 1/n which we know diverges.

If x = −1 the series is
∑∞

n=1(−1)n/n which we know converges (by the Alternating

Test 10.1.1 and the Remark just after that theorem).
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11.1 The Radius of Convergence of a Power Series

You can attempt to find the points at which a power series converges by applying the

(modified) ratio test. Given
∑∞

n=0 anx
n you consider∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |x| .
If limn→∞ |an+1/an| = L, say, exists then L |x| is the ` of the ratio test. So, if L |x| < 1,

i.e. |x| < 1/L, the series converges (absolutely) whereas, if |x| > 1/L, the series diverges.

This suggests that the set of points of converges is an interval centred on the origin. Is

this true in all cases or only when you can apply the ratio test?

Another indication that it holds in all cases is

Lemma 11.1.1. If the power series
∑∞

n=0 anx
n converges at x0 ∈ R, x0 6= 0, then it

converges absolutely for all y : |y| < |x0| .

Proof.
∑∞

n=0 anx
n
0 converges implies |anxn0 | → 0 as n → ∞. In particular (|anxn0 |)n≥1

is a convergent sequence. But convergent sequences are bounded so there exists M > 0

such that |anxn0 | < M for all n ≥ 1.

Given y : |y| < |x0| set t = |y| / |x0| so 0 ≤ t < 1. Then

|anyn| =
∣∣∣∣anxn0 ( y

x0

)n∣∣∣∣ = |anxn0 |
∣∣∣∣ yx0
∣∣∣∣n < Mtn

The geometric series
∑∞

n=0Mtn converges since t < 1 and so, by the Comparison test,∑∞
n=0 |anyn| converges. �

So again we prove that the series converges in an interval centred on the origin. This

is true in general.

Theorem 11.1.2. Let
∑∞

n=0 anx
n be a power series. then either

i. the series converges absolutely everywhere or

ii. the series converges only at the origin or

iii. there exists unique R > 0 such that the series converges absolutely in (−R,R) and

diverges for all x : |x| > R.
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Proof. Define

S =
{
|x| :

∑∞

n=0
anx

n converges
}
.

This could be written as{
r ≥ 0 : either

∑∞

n=0
anr

n or
∑∞

n=0
an (−r)n converges

}
.

The set S is non-empty since 0 ∈ S. There are two cases, S is unbounded above or S

is bounded above.

Assume S is unbounded. Let x ∈ R be given. By assumption we can find r ∈ S with

r > |x|. But r ∈ S means
∑∞

n=0 anx
n
r converges where xr is one of r or −r. Then Lemma

says that the power series converges absolutely for all y : |y| < |xr| = r. In particular, at

y = x. True for all x ∈ R means the power series converges absolutely everywhere.

Assume S is bounded. Then by the completeness of R the set has a least upper bound

R, say.

If x : |x| > R then, since R is an upper bound for S we have |x| /∈ S and so the power

series diverges at a. Hence the series diverges for all x : |x| > R.

Note, this holds for all R ≥ 0. If R = 0 then the only possible element of S is 0, at

which point the series converges, i.e. the series only converges at the origin.

Assume R > 0. Assume x : |x| < R. If R ∈ S then Lemma 11.1.1 would immediately

give us the convergence at x. But the supremum of a set need not be a member of that

set. Instead we have to make use of the fact that R is the lubS.

Since R is the least upper bound on S the smaller |x| is not an upper bound on S so

we can find r ∈ S : |x| < r ≤ R. Yet again, r ∈ S means
∑∞

n=0 anx
n
r converges where

xr is one of r or −r. Then Lemma 11.1.1 says that the power series converges absolutely

for all y : |y| < |xr| = r. In particular, at y = x. True for all x : |x| < R means the power

series converges absolutely in (−R,R). �

Definition 11.1.3. If the real number R has the property that the series
∑∞

n=0 anx
n

converges for all x with |x| < R, and diverges for all x with |x| > R, then R is called the

radius of convergence (RoC for short) of the power series
∑∞

n=0 anx
n.

We also extend this definition by putting R = 0 if
∑∞

n=0 anx
n only converges for x = 0,

and putting R =∞ if
∑∞

n=0 anx
n converges for all x ∈ R.

By the theorem this definition does cover all possible cases and
∑∞

n=0 anx
n converges

absolutely for |x| < R.
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Finding the Radius of Convergence:

To calculate the Radius of Convergence of a given series we always use the Ratio Test.

In the course of the calculations in the following examples we tacitly assume that x 6= 0.

This is justified since a power series always converges for x = 0.

The Interval of Convergence.

The set {
x :

∞∑
n=0

anx
n converges

}
is called the interval of convergence. Certainly this contains (−R,R) and it may or

may not contain the end points ±R. The Ratio Test will not help at the end points and

you need to use some other rule to see if the series converges there.

Example 11.1.4.
∞∑
n=0

xn.

- Here we already saw that the Radius of Convergence (RoC) is R = 1 and the interval

of convergence is (−1, 1).

Example 11.1.5.
∞∑
n=1

1

n
xn.

- Here we already saw that the RoC is R = 1 and the interval of convergence is [−1, 1);

that is it converges if x = −1 but diverges if x = +1.

Example 11.1.6. For
∞∑
n=1

nxn,

we have R = 1 and it diverges if x = ±1.

Proof To find the RoC we let cn = |nxn|. Then
∑∞

n=1 cn is a series of positive terms and

cn+1

cn
=

(n+ 1)|x|n+1

n|x|n
=

(
1 +

1

n

)
· |x| → (1 + 0) · |x| = |x|, as n→∞.

So the (Modified) Ratio Test now tells us that if |x| < 1 then
∑∞

n=1 cn converges abso-

lutely, whereas if |x| > 1 then
∑∞

n=1 cn diverges. This shows that the RoC is 1. It is left

for you to check that it diverges if x = ±1. �

Example 11.1.7. For
∞∑
n=1

(3n)!

(n!)3
xn,
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we have R = 1/27.

Proof Let cn = |(3n)!xn/(n!)3| . Then cn > 0 and

cn+1

cn
=

(3(n+ 1))! · |x|n+1

((n+ 1)!)3
· (n!)3

(3n)! · |x|n

=
(3n)!(3n+ 1)(3n+ 2)(3n+ 3) · |x|n+1

(n!)3(n+ 1)3
· (n!)3

(3n)! · |x|n

=
(3n+ 1)(3n+ 2)(3n+ 3)

(n+ 1)(n+ 1)(n+ 1)
· |x|

=
(3 + 1

n
)(3 + 2

n
)(3 + 3

n
)

(1 + 1
n
)(1 + 1

n
)(1 + 1

n
)
· |x|

→ (3 + 0)(3 + 0)(3 + 0)

(1 + 0)(1 + 0)(1 + 0)
· |x| (as n→∞)

= 27|x|.

So by the Ratio Test,
∑∞

n=1 cn converges for 27|x| < 1, i.e. for |x| < 1/27, and diverges

for |x| > 1/27. Therefore
∑∞

n=1 |(3n)!xn/(n!)3| converges for |x| < 1/27 and diverges for

|x| > 1/27. Thus, as in the previous example (and, indeed, all examples like this), we

conclude that the RoC of the series
∑∞

n=1(3n)!xn/(n!)3 is 1/27. �

Example 11.1.8. For
∞∑
n=0

xn

n!

we have R =∞,

Proof Let cn = |xn/n!| and, just as in Example 9.1.9, we see that cn+1/cn → 0 as n→∞
no matter what x is. Since 0 < 1 it follows that the radius of convergence of this series

(the exponential series) is ∞. �

Example 11.1.9. For
∑∞

n=0 n!xn we have R = 0.

Proof Let cn = |n!xn|, then

cn+1

cn
=

(n+ 1)!xn+1

n!xn
= (n+ 1)x.
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Notice that here for any x 6= 0, (n+ 1)x→∞ > 1 as n→∞. Thus the Ratio Test says

that the series diverges for any x 6= 0. Thus the RoC of the series
∑∞

n=0 n!xn is 0: the

series converges for no value of x except x = 0.

11.2 The n-th Root Test

Theorem 11.2.1. The n-th root test Starting with a series
∑∞

n=1 an assume that the

limit limn→∞
n
√
|an| = ` exists. Then

i. if ` < 1, the series converges absolutely,

ii. if ` > 1, the series diverges,

iii. if ` = 1 the test tells us nothing.

Proof. Assume ` < 1. Choose ε : ` + ε = (1 + `) /2, i.e. ε = (1− `) /2 > 0, in the

definition of limit to find N1 ≥ 1 such that if n ≥ N1 then
∣∣∣ n
√
|an| − `

∣∣∣ < ε. In particular,

n
√
|an| − ` < ε, i.e.

n
√
|an| < `+ ε =

1 + `

2
= L,

say. Because ` < 1 we have L < 1. And |an| < Ln for all n ≥ N1. The geometric series∑∞
n=N1

Ln converges since L < 1 and so, by the Comparison Test,
∑∞

n=N1
|an| converges,

as does then
∑∞

n=1 |an|. Hence
∑∞

n=1 an converges absolutely.

Assume ` > 1. Choose ε : ` − ε = (1 + `) /2, i.e. ε = (`− 1) /2 > 0, in the

definition of limit to find N2 ≥ 1 such that if n ≥ N2 then
∣∣∣ n
√
|an| − `

∣∣∣ < ε. In particular,

−ε < n
√
|an| − `, i.e.

n
√
|an| > `− ε− 1 + `

2
= L,

though this time L > 1 since ` > 1. then |an| > Ln > 1 for all n ≥ N2. This means the

series diverges since the terms do not tend to zero as n→∞. �

Example 11.2.2. Determine if the following series is convergent or divergent.

∑∞

n=1

(
2n3 − 5

(3n2 + 1) (n+ 5)

)n
.

Proof.
n
√
|an| =

∣∣∣∣ 2n3 − 5

(3n2 + 1) (n+ 5)

∣∣∣∣ =

∣∣∣∣ 2− 5/n3

(3 + 1/n2) (1 + 5/n)

∣∣∣∣→ 2

3
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as n→∞. Since 2/3 < 1 the series converges absolutely. �

Example 11.2.3. Determine if
∑∞

n=1 an is convergent or divergent when

a2n+1 =

(
1

3

)n
2n and a2n =

(
1

3

)n+1

2n.

for all as n ≥ 1. So the series starts

1,
2

9
,
2

3
,

4

27
,
4

9
, ...

Why have I asked this question?

Proof.
n
√
|a2n+1| =

2

3
and n

√
|a2n| =

2

31+1/n
→ 2

3

as n→∞. Thus n
√
|an| → 2/3 as n→∞. Since 2/3 < 1 the series converges.

I have asked this question because the ratio test will not work in this example; try it.

�

Example 11.2.4. Determine the interval of convergence of

∞∑
n=1

(
1 +

1

n

)n
xn.

Proof. ∣∣∣∣(1 +
1

n

)n
xn
∣∣∣∣1/n =

∣∣∣∣(1 +
1

n

)∣∣∣∣ |x| → |x|
as n → ∞. Thus, by the n-th root test, the series converges absolutely for |x| < 1 and

diverges for |x| > 1. Thus the radius of convergence is 1.

At the end points, 1 and −1 we note that, by the first two terms from the Binomial

Theorem, (
1 +

1

n

)n
≥ 1 +

n

n
= 2

for all n ≥ 1, and so the terms of the series do not converge to 0 and thus the series

diverges. Hence the interval of convergence is (−1, 1). �

113



Example 11.2.5. What is limn→∞ n
1/
√
n? If N ≥ 1 is an integer and we set k = n1/N − 1

perhaps you can look back at the proof of limn→∞ n
1/n = 1 and prove

k <

(
3!

n

N(N − 1)(N − 2)

)1/3

.

Choosing N to be the nearest integer to
√
n might give the answer to the original

question.

Example 11.2.6. Determine the radius of convergence of

∞∑
n=1

xn

n
√
n
.

Proof. ∣∣∣∣ xnn√n
∣∣∣∣1/n =

|x|
n1/
√
n
→ |x|

as n→∞. Thus the series converges absolutely for |x| < 1 and diverges for |x| > 1. Hence

the radius of convergence is 1. It also converges at both ends of interval of convergence

so the interval of convergence is [−1, 1].

�
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Chapter 12

Further Results on Power Series

12.1 More General Taylor Series.

First, we have only been discussing power series of the form
∑∞

n=0 anx
n. However when

working with Taylor series one often wants to work with expansions around values α

other than zero, in which case one would get an expression like
∑∞

n=0 an(x− α)n. Using

a substitution y = (x − α) allows one to reduce to the case we have been considering

and so essentially all the same theorems will hold. For example, one gets the following

variant of Theorem 11.1.2:

Theorem 12.1.1. Consider the series
∑∞

n=0 an(x−α)n, for some fixed number α. Then

there are three possibilities concerning convergence.

Case (i):
∑∞

n=0 an(x− α)n converges only for x = α.

Case (ii):
∑∞

n=0 an(x− α)n converges for all x ∈ R.

Case(iii): There exists a unique positive real number R such that

(a)
∑∞

n=0 an(x− α)n converges absolutely for all x with |x− α| < R, and

(b)
∑∞

n=0 an(x− α)n diverges for all x with |x− α| > R.

Proof. Set y = x−α. Then our series becomes
∑∞

n=0 any
n. So, now apply Theorem 11.1.2

to that series and you will find the conclusion you get is exactly the present theorem. For

example, if
∑∞

n=0 any
n has radius of convergence R then

∑∞
n=0 any

n converges if |y| < R,
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which is the same as saying that

∞∑
n=0

an(x− α)n =
∞∑
n=0

any
n

converges if |x− α| < R. Similarly it diverges if |x− α| > R. �

12.2 Rearranging Series

Let us begin with the following remarkable example. Given a series
∑∞

n=1 an, then a

rearrangement of this series means a series of the form
∑∞

n=1 bn which is got by rear-

ranging the terms of the first one. More formally, there exists a bijection φ : N→ N such

that bn = aφ(n) for each n.

Here is a famous example.

Example 12.2.1. Recall from Example 10.1.3 that

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
n=1

(−1)n+1

n
= ln(2).

Here is a rearrangement with sum ln(2)/2. To do this we use the rearrangement where

we always have two negative terms in succession but only one positive one:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− · · ·

=

(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
· · ·

=

(
1

2
− 1

4

)
+

(
1

6
− 1

8

)
+

(
1

10
− 1

12

)
· · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
· · ·
)

=
ln(2)

2
.

In fact we can get any number we want in this way.

Proposition 12.2.2. Suppose that
∑

n≥1 an is a conditionally convergent series, and let

α be any real number. Then there exists some rearrangement
∑

n≥1 bn of this series for

which
∑

n≥1 bn = α.

Proof. (Outline) We start with some notation essentially coming from Question 3 on

the Exercise sheet for Week 11:
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Notation 12.2.3. Given a series
∑

n≥1 an, write

a+n =

an if an ≥ 0

0 if an ≤ 0
and a−n =

0 if an ≥ 0

an if an ≤ 0

By that exercise sheet, the series a+n and a−n are divergent. Hence
∑
a+n = ∞, since

all the terms are positive and, similarly,
∑
a−n = −∞.

Now, we construct the sequence {bn}: Since
∑
a+n = ∞ we can therefore take the

first few positive numbers ak1 , ak2 . . . , akr so that X1 = ak1 + ak2 + · · · + akr > α. (More

precisely we choose the smallest possible r with this property.) Then, as
∑
a−n = −∞,

we can add to this the first few negative numbers akr+1 , akr+2 . . . , aks so that

X2 = (ak1 + ak2 + · · ·+ akr) +
(
akr+1 + akr+2 + · · ·+ aks

)
< α.

(Again we take s minimal with this property.) Now keep going; adding positive terms

aj to get bigger than α then immediately adding more negative ones so that the sum

becomes less than α, then immediately adding more positive terms et cetera.

Finally, we must check that the sum actually converges to α. This is the same idea

as in the proof of the Alternating Series test, but the notation is messy. More formally,

we have constructed the numbers X1 > α, then X2 < α, and X3 > α, etc. Let a`u be the

last number added to make Xu; thus in the last paragraph a`1 = akr while a`2 = aks . The

key point to notice is that, as each a`j is chosen minimally, |Xj − α| ≤ |a`j | in each case.

But, by the nth term test Theorem 8.1.4, limj→∞ |a`j | → 0 as j →∞. Therefore, by the

Sandwich Theorem 3.1.4, |Xj − α| → 0 as j →∞. Which is exactly what we wanted to

prove. �

Strangely enough, for absolutely convergent series, taking rearrangements does not

change the sum.

Theorem 12.2.4. Let
∑∞

n=1 an be an absolutely convergent series, say with
∑∞

n=1 an = `.

Then for any rearrangement
∑∞

n=1 bn of
∑∞

n=1 an we have
∑∞

n=1 bn = `, as well.

Proof. Define the a+n , a
−
n and similarly b+n , b

−
n as in Notation 12.2.3. By Question 3(a)

of the Exercise sheet for Week 11,
∑∞

n=1 a
+
n is convergent, say with A =

∑∞
n=1 a

+
n . Also,

obviously the partial sums {u` =
∑`

n=1 a
+
n } form an increasing sequence. Now, for any t,

the terms b+1 , . . . , b
+
t appear in {a+1 , . . . , a+` } for some ` and hence the partial sums

vt =
t∑

n=1

b+n ≤
∑̀
n=1

a+n ≤
∞∑
n=1

a+n .
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Hence {vt}t≥1 is an ascending and bounded sequence. Thus, by the Monotone Conver-

gence Theorem, it has a limit, say B. Notice also that B ≤ A by Lemma 4.2.5. In

particular this also shows that
∑
bn is absolutely convergent (if not then Question 3 of

the Exercise sheet for Week 11 would imply that
∑
b+n = ∞). So we can reverse this

argument and see that each u` ≤ B and hence that A ≤ B.

In other words A = B.

Now repeat this argument for the a−n (with decreasing sequences of partial sums) to

show that
∑

n≥1 a
−
n =

∑
n≥1 b

−
n . Now

∑
n≥1 an =

∑
n≥1 a

+
n +

∑
n≥1 a

−
n (use Question 3(a)

of the Exercise sheet for Week 11, again), and similarly
∑

n≥1 bn =
∑

n≥1 b
+
n +

∑
n≥1 b

−
n .

Therefore we conclude that∑
n≥1

an =
∑
n≥1

a+n +
∑
n≥1

a−n =
∑
n≥1

b+n +
∑
n≥1

b−n =
∑
n≥1

bn.

�

One significant application of this result is that it tells us what happens when we

multiply power series. To set this up, recall the equation ex ·ey = ex+y. In terms of power

series this should mean that(∑
n≥0

xn

n!

)(∑
n≥0

yn

n!

)
=

(∑
n≥0

(x+ y)n

n!

)
.

(“should” because when you construct exponentials formally in next year’s Real Analysis

course you will proceed in the opposite direction: you define the exponential ex as the

power series
∑∞

n=0 x
n/n!. This for example solves the problem of what exactly e is, but

it does mean that rules like exey = ex+y are no longer “obvious”.)

Anyway, this displayed equation is true and actually works much more generally. To

prove this, we start with an analogous result for series. Here it is more natural to start

summing our power series at n = 0 rather than n = 1 and so the next few results will be

phrased in that way.

Theorem 12.2.5. Let
∑∞

n=0 an and
∑∞

n=0 bn be absolutely convergent series, say with∑∞
n=0 an = A and

∑∞
n=0 bn = B.

Write
∑

i,j≥0 aibj for the infinite sum consisting of the product, in any order, of every

term of the first series multiplied by every term of the second series. Then
∑

i,j≥0 aibj

is absolutely convergent (in the sense that the sum
∑

i,j≥1 |aibj| is also convergent) and∑
i,j≥0 aibj = AB.

Remark: One use of this theorem is when we need to make sense of a summation with
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two indices in an expression like
∑

i,j≥0 aibj. The problem is that one does not want

to take something like
∑∞

j=0 (
∑∞

i=0 aibj), since now one has an infinite sum of infinite

sums—which causes a whole new set of problems! We get around this by making it into

a single infinite sum
∑

m≥0 cm. But then one runs into the problem that there are many

different ways of choosing the sum. The theorem says this does not matter since whatever

way you do it you get the same answer.

Proof. Recall from the Foundations of Pure Mathematics course that Z≥0 × Z≥0 is

countable, so pick your favourite bijection φ : Z≥0 → Z≥0 × Z≥0, and write it as φ(m) =

(φ1(m), φ2(m)). Now set cm = aφ1(m)bφ2(m); thus the definition of
∑

i,j≥0 aibj in the

statement of the theorem just means
∑

m≥0 cm. Then, by considering the partial sums as

in the previous theorem, we see that the partial sums γt =
∑t

n=0 |cm| form an increasing

sequence of non-negative terms and certainly

γt ≤ X =

(
∞∑
n=0

|an|

)(
∞∑
n=0

|bn|

)
for t ∈ N.

Therefore, by the Monotone Convergence Theorem again, the sequence {γt} has a limit

bounded above by X. In other words

γ =
∞∑
m=0

|cm| ≤ X =

(
∞∑
n=0

|an|

)(
∞∑
n=0

|bn|

)
.

But we can now apply Theorem 12.2.4 to conclude that, however we ordered the

terms,
∑

i,j≥1 aibj must give the same number γ. Now, one way of constructing the

doubly infinite sum is for the (N + 1)2 term to be
(∑N

n=0 an

)(∑N
n=0 bn

)
. Since

(
N∑
n=0

an

)(
N∑
n=0

bn

)
→ AB as N →∞,

it follows that in fact our sum
∑

i,j≥0 aibj equals AB, as well.

Notice that since we only get one possible sum, Proposition 12.2.2 says the series must

be absolutely convergent. �

As a special case of the theorem we get:

Corollary 12.2.6. (Cauchy Product) Let
∑∞

n=0 an and
∑∞

n=0 bn be absolutely convergent

series, say with
∑∞

n=0 an = A and
∑∞

n=0 bn = B. Set cn =
∑n

r=0 arbn−r for each n.

Then
∑∞

n=0 cn converges absolutely with
∑∞

n=0 cn = AB.
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Proof. Once again, the given sequence of partial sums
∑t

n=0 cn is a subsequence of some

sequence of partial sums constructed from
∑

i,j≥0 aibj. Therefore, by Theorem 6.1.3, it

also converges to AB. Once again, as we only get one possible sum, Proposition 12.2.2

says the series must be absolutely convergent. �

Finally we get the result on exponentials that we wanted:

Corollary 12.2.7. Let

E(x) =
∞∑
n=0

xn

n!
.

Then E(x) is absolutely convergent for all x. Moreover for any x, y ∈ R one has

E(x)E(y) = E(x+ y).

Proof. Of course E(x) is absolutely convergent for all x, by Example 11.1.8. The second

sentence follows from the Corollary 12.2.6 once one notices that (by using the Binomial

Theorem)

(x+ y)n

n!
=

1

n!

n∑
r=0

n!

r!(n− r)!
xryn−r =

n∑
r=0

(
xr

r!

)(
yn−r

(n− r)!

)
.

�

As you might imagine, the Cauchy Product Theorem 12.2.6 and its variants can be

used to prove lots of other product formulas.

12.3 Analytic Functions

This section gives an indication of where you will go with power series and related topics

in future courses.

Let R be a positive real number or ∞ and suppose that the series
∑∞

n=0 anx
n has

radius of convergence R. Then for each x in the interval (−R,R) the series
∑∞

n=0 anx
n

converges. Let us call its sum f(x). Then f : (−R,R)→ R and

f(x) =
∞∑
n=0

anx
n.

Functions that can be obtained this way are called analytic (on (−R,R)).

One can now show that this analytic function f can be differentiated and that f ′(x)
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is given by the result of differentiating the series term by term:

f ′(x) =
∞∑
n=0

nanx
n−1.

A fundamental fact is that the differentiated series has the same radius of convergence

as the original series, namely R. So we may differentiate again:

f ′′(x) =
∞∑
n=0

n(n− 1)anx
n−2

and repeat this for any k ∈ N to obtain

f (k)(x) =
∞∑
n=0

n(n− 1)(n− 2) · · · (n− k + 1)anx
n−k.

Now the negative exponents of x do not actually appear (as their coefficients contain

a 0, so vanish) and we usually rewrite this series (by changing the variable of summation

from n to n+ k) as

f (k)(x) =
∞∑
n=0

an+k(n+ k)(n+ k − 1)(n+ k − 2) · · · (n+ 1)xn.

Now if we put x = 0 in this expression then all the terms except the first vanish, and

we obtain the following formula for the coefficients of the original series in terms of the

function f :

f (k)(0) = k!ak

or

ak =
f (k)(0)

k!
.

So, to summarise, analytic functions behave very nicely with respect to differentiation

(and integration and almost all other operations) and the coefficients an can easily be

determined. These functions therefore are very convenient to work with.

In the other direction suppose now that, rather than a power series, we are given a

function f : (−R,R)→ R which can be differentiated as many times as we please. Does

it follow that it is an analytic function? Certainly we know what its power series must
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be, by the formula above, namely

∞∑
n=0

f (n)(0)

n!
xn.

This power series is called the Taylor series of the function f and one might guess

that it converges to f(x) for all x ∈ (−R,R). If you have calculated examples of Taylor

series before, like for ex, sinx or ln(1 + x), then this has always been the case. And,

indeed, it is true with any “reasonable” function.

However, one can easily write down functions for which the Taylor series does not

converge (except at x = 0) and, rather more shockingly, there are also examples of

functions f : R→ R whose Taylor series converges for all x (i.e. the radius of convergence

is ∞) but do not converge to f(x) ...
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