
Week 11

6 Prime Numbers

Part VI of PJE

6.1 Fundamental Results

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the
only positive divisors are 1 and n. Alternatively

D (p) = {−p,−1, 1, p} .

Otherwise n > 1 is said to be composite.

So n > 1 is composite if, and only if, there exist integers a > 1 and b > 1
such that n = ab.

The integer n = 1 is neither prime nor composite.

Example 6.2 The first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, ...

Aside It is a hard problem to prove that a given large integer (say
with 150 digits) is prime. But some very large primes are known,
such as 257,885,161 − 1 with 17, 425, 170 digits, found on January
25th, 2013, by the Great Internet Mersenne Prime Search End of
aside

Question What is the connection with the earlier definition of coprime?

Lemma 6.3 If p is prime and p - a then p and a are coprime.

Proof Because p is prime its only divisors are ±p and ±1, i.e.

D (p) = {−p,−1, 1, p} .

Since p - a the only common divisors of p and a are ±1, i.e. D (a, p) =
{−1, 1}. The greatest of these is 1, i.e. gcd (p, a) = 1 which is the definition
of coprime. �

Theorem 6.4 Every integer n > 1 is a product of primes.
(With the convention that a product can be of just one prime!)

Proof See p.278. It is by strong induction, where to prove P (n) for all n,
you assume P (j) holds for all j ≤ k and then use this assumption to prove
that P (k + 1) holds.
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Theorem 6.5 (Euclid) If p|ab then either p|a or p|b.

Proof See p.279

Aside This result motivates the definition of a prime in more
advanced work. End of aside

Euclid’s Theorem can be rewritten as saying that if p is prime and p|m
then, for all factorisations of m = ab into integers, p must divide at least one
of a or b.

Example 6.6 Trivially 6|24, yet 24 = 3× 8 and 6 - 3 and 6 - 8. Hence 6 is
not prime.

Corollary 6.7 If p|a1a2...an then p|ai for some 1 ≤ i ≤ n.

Proof p.282 but here I give an alternative proof. Write our assumption
p|a1a2...an as p|a1 (a2...an) .Then Theorem 6.5, implies that either p|a1 or
p|a2...an. If p|a1 we are finished. If p|a2...an repeat the process. This ‘algo-
rithm’ must end after at most n− 1 steps. �

Now we can prove that the product of primes guaranteed by Theorem 6.4
is unique (up to ordering).

Theorem 6.8 Fundamental Theorem of Arithmetic. Every positive
integer greater than 1 can be written as a product of primes unique up to
ordering, i.e. for all n ≥ 2

n = p1p2...pr

where each pi (i = 1, ..., r) is a prime.

Proof See p.283 for the proof by contradiction.
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Aside It must be stressed that it is a very hard problem to find
the prime decomposition of large numbers, harder than checking
if a number is prime or not. What do I mean by large? A 232
digit was factored on December 12, 2009:

1230186684530117755130494958384962720772853569

5953347921973224521517264005072636575187452021

9978646938995647494277406384592519255732630345

3731548268507917026122142913461670429214311602

221240479274737794080665351419597459856902143413

= 3347807169895689878604416984821269081770479498

37137685689124313889828837938780022876147116525

31743087737814467999489

× 367460436667995904282446337996279526322

791581643430876426760322838157396665112

79233373417143396810270092798736308917.

See http://en.wikipedia.org/wiki/RSA numbers. End of aside

Question How to find primes?

Aside In the Maths Workshop MATH10001 there was an exercise
to use MATLAB to find the primes between 1 and 100. The idea
could have been to identify the composites and discard them. You
may have found a composite a > 1 by finding a factor b > 1 of a,
i.e. b|a. So, for each a you would look at each 1 < b < a to see
if b|a. In MATLAB you might use rem(a, b) = 0 iff b divides a.
This is quite inefficient. To find a composite a it suffices to find a
prime divisor of a. Thus you would look at the primes 1 < p < a
to see if p|a. This is more efficient since there are fewer primes.
But this can be made far more efficient by the next result. If we
are looking for primes ≤ N we need only examine each a ≤ N
and look to see if there are any primes p ≤

√
N which divide a,

i.e. p|a. That is, instead of looking at primes p < a we need only
look at p <

√
N . If a is close to N this is a substantial saving.

End of aside.
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Theorem 6.9 If m is composite then m has a prime divisor not exceeding√
m. That is,

∀ composite m > 1,∃p : p|m and p ≤
√
m.

Proof The proof found on page p.280 is direct. Here we give an alternative
proof by contradiction.

Assume for contradiction the negation of what you want to prove. In
symbols,

∃ composite m > 1,∀p, p|m⇒ p >
√
m, (1)

whilst in words, there exists a composite integer m whose prime divisors are
are strictly greater than

√
m.

(We have seen before that the negation of ‘p ⇒ q’ is ‘p and not q’, and
so the negation of ‘s and r’ is ‘s⇒ not r’. This is applied here with s ≡ p|m
and r ≡ p ≤

√
m.)

Since m is composite it can be factored as m = ab with 1 < a, b < m.

From a > 1 we have, by Theorem 6.4, that a is a product of primes. If p
is one of the primes in the product than p|a, which implies p ≤ a.

Similarly, because b > 1 we can again find a prime q which divides b,
which implies q ≤ b.

Thus pq ≤ ab = m.

But p|a and a|m combine to give p|m in which case p >
√
m, by (1) .

Similarly, q|b and b|m implies q|m in which case q >
√
m, again by (1) .

Hence pq > (
√
m)

2
= m.

Therefore we have both pq ≤ m and pq > m, a contradiction.

Thus our assumption is false, and so all composite numbers m > 1 have
at least one prime divisor ≤

√
m. �

Application Sieve of Eratosthenes,

• Write out the list of natural numbers from 2 up to N .

• Strike out all multiples of 2, except for 2.

• Strike out all multiples of the next remaining number except that num-
ber itself (this will be 3).

• Continue, at each step striking out all multiples of the next remaining
number except that number itself.
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• Stop when the next remaining number is >
√
N.

Since we are striking out multiples we are only striking out composite
numbers. Since every composite number m ≤ N has, by the previous result,
a (prime) divisor ≤

√
m ≤

√
N, we will strike out every composite number

≤ N . Thus what will remain will be the non-composite numbers, i.e. the
primes, between 2 and N .

So, for example, if we look for primes up to 100 we need only check for
divisibility by primes up to

√
100 = 10, i.e. 2, 3, 5 and 7. See Appendix 7-i

where this is carried out for N = 100.

Question How many primes are there?

Theorem 6.10 There are infinitely many primes.

Proof (due to Euler) p.285 is by assuming there are only finitely many
primes, labelled p1, ..., pr and looking at N = p1p2...pr + 1. �

Note It needs to be stressed that this N may well not be prime. The first
few N are

N = 2 + 1 = 3, prime

N = 2× 3 + 1 = 7, prime,

N = 2× 3× 5 + 1 = 31, prime

N = 2× 3× 5× 7 + 1 = 211, prime

N = 2× 3× 5× 7× 11 + 1 = 2311, prime

N = 2× 3× 5× 7× 11× 13 + 1 = 30031 = 59× 509, composite.

The point of the proof is that the prime divisors of N will be previously
unseen primes.
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6.2 Interesting problems concerning primes.

Not given in lectures.

The following are conjectures and are all examples of problems that can
be simply stated yet for which the answers are as yet unknown.

1) Goldbach’s Conjecture, Is every even integer n ≥ 4 the sum of two
primes?

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 12 = 5 + 7,

14 = 3 + 11, 16 = 3 + 13, 18 = 5 + 13, 20 = 7 + 13, ...

Has been checked for all even numbers up to 12 × 107 by Oliveira e
Silva (July 14, 2008).

Goldbach’s Conjecture is a difficult problem because primes are mul-
tiplicative objects, defined in terms of divisibility, and yet this is an
additive question.

2) Do there exist infinitely many Twin Primes, i.e. pairs of primes
p and p′ such that p− p′ = 2? The first few examples are

(3, 5) , (5, 7) , (11, 13) , (17, 19) , (29, 31) , (41, 43) , (59, 61) , (71, 73) ,

(101, 103) , (107, 109) , (137, 139) , (149, 151) , (179, 181) , (191, 193) ,

(197, 199) , (227, 229) , (239, 241) , ... .

A large prime pair is 65516468355 × 2333333 ± 1 with 100355 digits
discovered by Kaiser1 & Klahn in 2009.

It has recently been proved (2014) that there are infinitely many pairs
of primes p < p′ (not necessarily consecutive) with p′ − p < 246.

3) Is n2 + 1 prime infinitely often?

22+1 = 5, 42+1 = 17, 62+1 = 37, 102+1 = 101, 142+1 = 197, ...

It has been shown that n2 + 1 is either a prime or the product of two
primes infinitely often.
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4) For all m ≥ 1 does there exists a prime p : m2 ≤ p ≤ (m+ 1)2?

What is known is Theorem Bertrand’s postulate: For all N ≥ 1
there exists a prime p : N ≤ p ≤ 2N.

Proof not given in course.

6.3 Fermat’s Little Theorem

Theorem 6.11 If p is prime then p divides
(
p
r

)
, i.e.

p

∣∣∣∣(pr
)
,

for 1 ≤ r ≤ p− 1.

Proof Recall that the Binomial Number can be written in a form involving
factorials. (

p

r

)
=

p!

r! (p− r)!
.

Multiply up as

p! = r! (p− r)!
(
p

r

)
. (2)

Since p! = p (p− 1)! we see that p|p!. Thus p|LHS (2) and so p|RHS (2) ,
i.e.

p|r! (p− r)!
(
p

r

)
.

Yet p is prime so by the corollary to Euclid’s Theorem above p must divide
at least one of

r!, (p− r)! or

(
p

r

)
.

If p|r! = r (r − 1) ....2.1 then again by the corollary to Euclid’s Theorem
we have that p divides one of the factors, i.e. p|j for some 1 ≤ j ≤ r. Yet
p|j implies p ≤ j while we are told, in the assumptions of the Theorem, that
r ≤ p − 1. Combined together we get p ≤ j ≤ r ≤ p − 1, i.e. p ≤ p − 1,
impossible.

Similarly, if p| (p− r)! then p|j for some 1 ≤ j ≤ p − r. Then p ≤ j ≤
p− r ≤ p− 1, since r ≥ 1. Again impossible.
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As Sherlock Holmes said, “when you have eliminated the impossible,
whatever remains, however improbable, must be the truth”. Hence

p

∣∣∣∣(pr
)
.

�

On Problem Sheet 1 you were asked to show that n5 ≡ nmod 5 for all
n ≥ 1. The hint was to use induction and the Binomial Theorem on (k + 1)5

which gives

(k + 1)5 = k5 + 5k4 + 10k3 + 10k2 + 5k + 1 ≡ k + 1 mod 5. (3)

The following result generalises this.

Theorem 6.12 For all a, b ∈ Z and all primes p we have

(a+ b)p ≡ ap + bp mod p. (4)

Proof in lectures. Follows immediately from the Binomial Theorem and
previous result. �

Then, just as (3) can be used to prove n5 ≡ nmod 5 for all n ≥ 1, (4) can
be used to prove the following general result.

Corollary 6.13 (Fermat’s Little Theorem) For all n ≥ 1, and all primes
p,

np ≡ nmod p.

If gcd (p, n) = 1 then
np−1 ≡ 1 mod p.

Proof in lectures. By induction based on (n+ 1)p ≡ np + 1 mod p which
follows from (4). �

6.4 Application: finding and using inverses.

Fermat’s Little Theorem has numerous applications, including simplifying
the calculation of powers in modular arithmetic. From the theorem we see
that if p is prime and p - a then ap−1 ≡ 1 mod p, or equivalently ap−2 × a ≡
1 mod p. This means that ap−2 is the inverse of a modulo p or, in the language
of congruence classes,

[a]−1p =
[
ap−2

]
p

in Z∗p.
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Aside An interesting question is with which method is it quickest
to calculate the modular inverse an integer modulo a prime. Is it
by Euclid’s Algorithm or by calculating ap−2 using, for example,
the method of successive squaring?

In fact, both methods have running time proportional to the num-
ber of decimal digits of a. For Euclid’s algorithm this result on
the running time is the content of Lame’s Theorem, PJE p.226.
End of aside

We have seen before that a use of inverses is to solve linear congruences.

Example 6.14 Find the integer solutions of 5x ≡ 6 mod 19.

Solution 19 is prime so Fermat’s Little theorem implies 518 ≡ 1 mod 19. So
5× 517 ≡ 1 mod 19, i.e. 517 is the inverse of 5 mod 19. Thus multiplying both
sides of the equation by 517 gives

518x ≡ 6× 517 mod 19, i.e. x ≡ 6× 517 mod 19.

Though this is an answer to the question we normally give x as the least
positive residue. Successive squaring gives

52 ≡ 6, 54 ≡ 17, 58 ≡ 4 and 516 ≡ 16 mod 19.

Thus
x ≡ 6× 5× 516 ≡ 6× 5× 16 ≡ 5 mod 19,

which agrees with the answer found in Chapter 3, but which should still be
checked by substitution. �

6.5 Application: Calculating powers

With p = 13 and a = 4 we see that 412 ≡ 1 mod 13. Thus

4100 = 48×12+4 ≡
(
412
)8 (

42
)2 ≡ 112 (−3)2 ≡ 9 mod 13,

as we have seen before in Chapter 3, using the method of successive squaring.

Aside Fermat’s Little Theorem may appear wonderful in that it
helps us solve congruences and simplifies substantially the calcu-
lation of large powers modulo p. But the result has one weakness,
you need to know that the modulus is prime. As already stressed,
it is a difficult problem showing that a large number is prime. The
largest known prime (as of September 2008) is 243,112,609−1. (See
http://primes.utm.edu/largest.html for further details). End of
aside.
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6.6 Bijections from Z∗n to Z∗n; Euler’s Theorem.

Recall from the previous chapter that Z∗n is the set of invertible classes in Zn
and that it can be written as

{[r]n : 1 ≤ r ≤ n, gcd (r, n) = 1} ,

which, because we can take different labels for the classes, is the same as

{[r]n : 0 ≤ r ≤ n− 1, gcd (r, n) = 1} .

Definition 6.15 Euler’s phi-function is, for all n ≥ 1, given by

φ (n) = |Z∗n|
= |{1 ≤ r ≤ n : gcd (r, n) = 1}|
= |{0 ≤ r ≤ n− 1 : gcd (r, n) = 1}|

Examples

• Simply by checking we see that φ (5) = 4 and φ (7) = 6.

• In general φ (p) = p − 1 for all primes p since all integers strictly less
than p are coprime to p.

• Also by checking, we find that φ (8) = 4 and φ (16) = 8. In general
φ (2n) = 2n−1 for all n ≥ 1, since in these cases we are counting the
integers coprime to 2n, i.e. the odd integers. And half of the integers
up to 2n are odd.

• And you can easily check by hand that φ (6) = 2, φ (9) = 6 and φ (10) =
4.

Theorem 6.16 a) If gcd (m,n) = 1 then

φ (mn) = φ (m)φ (n) .

b) If p is prime then
φ (pr) = pr−1 (p− 1) ,

for all r ≥ 1.
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Proof not given in this course, though you should be able to prove part b
. �

Example φ (100) = 40.

Solution See appendix for a counting argument. Starting from the Theorem
we have

φ (100) = φ
(
52 × 4

)
= φ

(
52
)
φ (4)

= 5× (5− 1)× 2 = 40.

�

Theorem 6.17 If gcd (a, n) = 1 then the function

ρa : Z∗n → Z∗n, [r]n 7→ [ar]n

is a bijection.

Proof The idea for the proof can be seen on p.259 and p.290.

Is the function well-defined, i.e. does the image lie in Z∗n? Assume
[r]n ∈ Z∗n so gcd (r, n) = 1 by definition of Z∗n. By the assumption in the

theorem we have gcd (a, n) = 1. Combine to get gcd (ar, n) = 1 in which
case [ar]n ∈ Z∗n. Hence for every [r]n ∈ Z∗n the image ρa ([r]n) is in Z∗n and so

the function is well-defined.

Is the function a bijection? Recall that a function f : A→ A where A is
a finite set is a bijection if, and only if, it is an injection. Thus to show that
ρa is a bijection it suffices to show that ρa is an injection.

To show that ρa is injective (i.e. 1-1) assume ρa ([r1]n) = ρa ([r2]n) . Then

ρa ([r1]n) = ρa ([r2]n) ⇒ [ar1]n = [ar2]n , by definition of ρa,

⇒ ar1 ≡ ar2 modn,

⇒ r1 ≡ r2 modn, since gcd (a, n) = 1,

⇒ [r1]n = [r2]n .

Thus ρa is injective, and therefore a bijection on Z∗n. �

Example On Z∗8 = {1, 3, 5, 7}, consider ρ3.

ρ3 ([1]8) = [3]8 ,

ρ3 ([3]8) = [9]8 = [1]8 ,

ρ3 ([5]3) = [15]8 = [7]8 ,

ρ3 ([7]8) = [21]8 = [5]8 .
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The following is a generalization of Fermat’s Little Theorem to composite
moduli.

Theorem 6.18 Euler’s Theorem If gcd (a, n) = 1 then

aφ(n) ≡ 1 modn.

Proof is not in PJE’s book, but the idea is to be found on p.290.

Since ρa is a bijection from Z∗n to Z∗n then the image of ρa is simply Z∗n in

some different order. Since order is immaterial in sets we have Z∗n = Im ρa,
i.e.

{[r]n : 1 ≤ r ≤ n, gcd (r, n) = 1} = {[ar]n : 1 ≤ r ≤ n, gcd (r, n) = 1} .

Taking products of everything in each set we get∏
1≤r≤n

gcd(r,n)=1

[r]n =
∏

1≤r≤n
gcd(r,n)=1

[ar]n =
∏

1≤r≤n
gcd(r,n)=1

([a]n [r]n)

by definition of multiplication in Zn

= [a]φ(n)n

∏
1≤r≤n

gcd(r,n)=1

[r]n ,

since there are φ (n) terms in the product. Now cancel the product from
both sides to get

[1]n = [a]φ(n)n =
[
aφ(n)

]
n
,

again by the definition of the multiplication of classes. But this final result
merely means aφ(n) ≡ 1 modn, as required. �

Example of the method of proof of Euler’s Theorem.

Not given.

Z∗8 = {[1]8 , [3]8 , [5]8 , [7]8}, and so φ (8) = 4 (though this was seen ear-
lier)..

Take a = 5, in which case the map ρ5 is

[1]8 7→ [5× 1]8 = [5]8 ,

[3]8 7→ [5× 3]8 = [7]8 ,

[5]8 7→ [5× 5]8 = [1]8 ,

[7]8 7→ [5× 7]8 = [3]8 .
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Then

[1]8 [3]8 [5]8 [7]8 = [5× 1]8 [5× 3]8 [5× 5]8 [5× 7]8

= [5]48 [1]8 [3]8 [5]8 [7]8

Cancelling the product [1]8 [3]8 [5]8 [7]8 from both sides leaves [5]48 = [1]8 .
Thus

54 ≡ 1 mod 8

as expected. �

Taking n = p, prime, in the Theorem we recover

Theorem 6.19 Fermat’s Little Theorem If p is prime and a an integer
with p - a then

ap−1 ≡ 1 mod p. (5)

Proof See p.290.

Corollary 6.20 If p is prime and a an integer then ap ≡ amod p.

Proof Either p - a or p|a.

If p - a then Fermat’s Little Theorem implies ap−1 ≡ 1 mod p. Multiply
by a to get ap ≡ amod p.

If p|a then a ≡ 0 mod p. But then ap−1 ≡ 0 mod p and so ap−1 ≡ 0 ≡
amod p.

In both cases we have ap ≡ amod p. �

Note that this version of Fermat’s Last Theorem holds for both positive and
negative a whereas the earlier version, proved by induction, held only for
positive a.

Example 6.21 Given φ (100) = 40 from above, find the last two digits in
the decimal expansion of 1399.

Solution We have to calculate 1399 mod 100.

Euler’s Theorem tells us that 13φ(100) = 1340 ≡ 1 mod 100. Thus

1399 =
(
1340

)2
1319 ≡ 121319 ≡ 1319 mod 100.
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Now use successive squaring

132 ≡ 69, (6)

134 ≡ 61,

138 ≡ 21,

1316 ≡ 41 mod 100.

Hence

1399 ≡ 1319 = 1316 × 132 × 13

≡ 41× 69× 13

≡ 77 mod 100.

So the last two digits of 1399 are 77, as already found in Chapter 3. �

Aside you may now think that Euler’s Theorem has none of the
problems of Fermat’s Little Theorem as we do not need to know
that the modulus m is prime; Euler’s Theorem holds for all inte-
gers m. But unfortunately it has another problem, how to calcu-
late φ (m)? In general this is very difficult for large m. Together,
φ (st) = φ (s)φ (t) if gcd (s, t) = 1 and φ (pr) = pr−1 (p− 1) if
p is prime, allow you to calculate φ (m) for any m provided you
can factor m. Unfortunately, as noted previously, this is a very
difficult problem for large m.

6.7 Applications of Euler’s and Fermat’s Theorem.

Not given

Example 6.22 Find a solution to x12 ≡ 3 mod 11.

Solution Any solution of this must satisfy gcd (x, 11) = 1 so Fermat’s Little
Theorem gives x10 ≡ 1 mod 11. Thus our equation becomes

3 ≡ x12 ≡ x2x10 ≡ x2 mod 11.

Now check.
x x2 mod 11
1 1
2 4
3 9
4 5
5 3
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Note that if x ≥ 6 then 11 − x ≤ 5 and x2 ≡ (11− x)2 mod 11 so all
possible values of x2 mod 11 will be seen in the table.

From the table we see an answer is x ≡ 5 mod 11. �

Example 6.23 Show that x5 ≡ 3 mod 11 has no solutions.

Solution by contradiction. Assume x5 ≡ 3 mod 11 has solutions. Any so-
lution of this must satisfy gcd (x, 11) = 1 so Fermat’s Little Theorem gives
x10 ≡ 1 mod 11. Since 5|10 we square both sides of the original congruence
to get

1 ≡ x10 ≡
(
x5
)2 ≡ 32 ≡ 9 mod 11.

This is false and so the assumption is false and thus the congruence has no
solution. �

Example 6.24 Find a solution to x7 ≡ 3 mod 11.

Solution Again x10 ≡ 1 mod 11 by Fermat’s Little Theorem but this time
7 - 10, in fact gcd (7, 10) = 1. From Euclid’s Algorithm we get

3× 7− 2× 10 = 1. (7)

Raise both sides of the original congruence to the third power to get

33 ≡
(
x7
)3 ≡ x3×7 ≡ x1+2×10 by (7) ,

≡ x
(
x10
)2 ≡ xmod 11.

Hence a solution is x ≡ 33 ≡ 5 mod 11.

Don’t forget to check your answer (by successive squaring of 5). �

iv) Is 235 + 1 divisible by 11? Here we look at 235 + 1 mod 11. Because 11 is
prime we could use Fermat’s Little Theorem to say 210 ≡ 1 mod 11. Thus

235 + 1 ≡ 25 + 1 ≡ 32 + 1 = 33 ≡ 0 mod 11,

i.e. 235 + 1 is divisible by 11. �

Question for students. Show that 21194 + 1 is divisible by 65.
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7 Permutations

Very little of this section comes from PJE.

7.1 Definitions

Definition 7.1 A permutation (p.147) of a set A is a bijection ρ : A→ A.

Notation If A = {a, b, c, ...} and ρ is a permutation on A we can express
the action of ρ on A using a two row notation due to Cauchy:

ρ =

(
a b c . . .

ρ (a) ρ (b) ρ (c) . . .

)
.

Note The identity map, 1A, which satisfies 1A (α) = α for all α ∈ A, is
therefore given by

1A =

(
a b c . . .
a b c . . .

)
.

Definition 7.2 • The collection of all permutations on a set A, denoted
by SA, is called the symmetric group on A.

• When A = {1, 2, 3, ..., n}, SA is usually denoted by Sn, and is called the
symmetric group on n letters.

• Let 1n denote the identity map in Sn.

Aside One of the goals of this part of the course is to understand
the words ‘symmetric’ and ‘group’.

Example 7.3 S3 consists of(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
2 3 1

)
.

Recall a result from earlier in the course.

Theorem 7.4 If A is a finite set then f : A→ A is a bijection if, and only
if, it is an injection.
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Proof p.138 but covered in the first half of the course.

Corollary 7.5 If |A| = n ≥ 1 then the number of permutations ρ : A → A
is n!.

Proof Since A is a finite set, to count bijections it suffices to count injections.
Hence

|SA| = |Inj (A,A)| = n!

�

In particular, |S3| = 3! = 6. Since we found 6 different permutations
above in S3 we, in fact, found all the permutations in S3.

7.2 Compositions

Recall, if ρ and π are functions A → A, then the composite function is
defined by

ρ ◦ π (a) = ρ (π (a))

for all a ∈ A. Further, if ρ and π are bijections then ρ◦π is a bijection. Hence
the composition of permutations is a permutation.

Example 7.6 Let ρ, π ∈ S5 be given by

ρ =

(
1 2 3 4 5
4 2 1 3 5

)
and π =

(
1 2 3 4 5
2 3 4 5 1

)
.

Calculate ρ ◦ π.

Solution To write ρ ◦ π in the same way we have to see first what π does to
a given element of A and then secondly what ρ does to this image. In this
example,

π (1) = 2, ρ (2) = 2 so ρ ◦ π (1) = 2,

π (2) = 3, ρ (3) = 1 so ρ ◦ π (2) = 1,

π (3) = 4, ρ (4) = 3 so ρ ◦ π (3) = 3,

π (4) = 5, ρ (5) = 5 so ρ ◦ π (4) = 5,

π (5) = 1, ρ (1) = 4 so ρ ◦ π (5) = 4.
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Thus

ρ ◦ π =

(
1 2 3 4 5
4 2 1 3 5

)
◦
(

1 2 3 4 5
2 3 4 5 1

)
=

(
1 2 3 4 5
2 1 3 5 4

)
.

�

Note we first looked at π then at ρ, so read ρ ◦ π from the right.

Note also that

π ◦ ρ =

(
1 2 3 4 5
5 3 2 4 1

)
,

so that, for instance, ρ ◦ π (1) = 2 but π ◦ ρ (1) = 5. Thus

ρ ◦ π 6= π ◦ ρ,

and hence, composition of permutations is not commutative.

Inverses Recall, a bijection always has an inverse. The inverse of a per-
mutation written in the two row manner can easily be found by exchanging
upper and lower rows, and then reordering the columns so the entries on the
upper row appear in the same order as in the original permutation.

Example 7.7 In S5 find the inverse of(
1 2 3 4 5
4 2 1 3 5

)
Solution (

4 2 1 3 5
1 2 3 4 5

)
=

(
1 2 3 4 5
3 2 4 1 5

)
.

�

You should check that your answer satisfies the definition of inverse,
namely that f ◦ f−1 = f−1 ◦ f = 1. Thus

(
1 2 3 4 5
4 2 1 3 5

)
◦
(

1 2 3 4 5
3 2 4 1 5

)
=

(
1 2 3 4 5
3 2 4 1 5

)
◦
(

1 2 3 4 5
4 2 1 3 5

)
= 15
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