
Week 9

2.3 Diophantine Equations

Finding all solutions

Question If a solution exists then one can be found by Euclid’s Algorithm.
But could there be more than one?

Answer Yes. A method to find all solutions is best illustrated by examples.

Example 2.3.1 Not given Find all integer solutions to 93x + 56y = 2.

Solution We have shown that gcd (93, 56) = 1 and since 1|2 the equation
has integer solutions.

We have already found one such solution (x0, y0) = (−6, 10). If (x, y) is
another solution then we have both

93x0 + 56y0 = 2

93x + 56y = 2.

On subtracting,

93 (x0 − x) = 56 (y − y0) . (1)

Then 93 divides the left hand side so 93 divides the right hand side, i.e.

93|56 (y − y0) .

Recall the result that if a|bc but gcd (a, b) = 1 then a|c. Here 93|56 (y − y0)
but gcd (93, 56) = 1 and so 93| (y − y0). Thus y−y0 = 93t, that is y = y0+93t
for some t ∈ Z. Substitute back into (1) to see

93 (x0 − x) = 56× 93t

or x = x0 − 56t. Hence all the solutions are given by

(x0 − 56t, y0 + 93t) = (−6− 56t, 10 + 93t)

for all t ∈ Z. �

To get a solution with a positive x choose t = −1 to get (50,−83).
CHECK this is a solution!
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Example 2.3.2 Find all integer solutions to 166361x + 4043y = 26.

Solution We have already found one solution (x0, y0) = (284,−11686) .

If (x, y) is another solution then we have both

166361x0 + 4043y0 = 26,

166361x + 4043y = 26.

Subtracting, we get 166361 (x0 − x) + 4043 (y0 − y) = 0 or

166361 (x0 − x) = 4043 (y − y0) . (2)

Divide through by the 13 (the gcd of 166361 and 4043) to get

12797 (x0 − x) = 311 (y − y0) . (3)

Now 12797 divides the LHS so it divides the RHS, i.e.

12797|311 (y − y0) . (4)

Recall the result that if gcd (a, b) = d then gcd (a/d, b/d) = 1. Here this
means that gcd (12797, 311) = 1.

Further, recall again the result that if a|bc but gcd (a, b) = 1 then a|c.
Here this means that 12797| (y − y0) , i.e. y − y0 = 12797t for some t ∈ Z.
Substitute back in (5) to get

12797 (x0 − x) = 311× 12797t

i.e. x0 − x = 311t. Thus all the solutions are given by

(x, y) = (x0 − 311t, y0 + 12797t)

= (284− 311t,−11686 + 12797t)

with t ∈ Z. �

When t = 1 we get (−27, 1111), which you should check is a solution.
This shows that Euclid’s Algorithm, which gave (284,−11686) , doesn’t nec-
essarily find the “smallest” solution to a linear Diophantine equation.
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Be careful. Equation (2) above stated that 166361 (x0 − x) = 4043 (y − y0).
You could now say that

166361|4043 (y − y0) ,

but you would be wrong to go on and deduce that 166361| (y − y0). This is
because gcd (166361, 4043) = 13 6= 1 and so you cannot apply Corollary ??.
You must remember to divide through by the gcd, 13, to get (3).

You should be able to formalize the method of solution of the last example
and prove

Theorem 2.3.3 If am + bn = c is soluble and (m0, n0) is a solution, then
all solutions are given by(

m0 −
b

gcd (a, b)
t, n0 +

a

gcd (a, b)
t

)
with t ∈ Z.

Proof See appendix.
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3 Congruences

Part V of PJE

3.1 Definitions and properties

Definition 3.1.1 (p.232) Let m > 0 be an integer.

Two integers a and b are congruent modulo m if m divides a− b. We
write a ≡ bmodm.

If m does not divides a−b we say that a is not congruent or incongruent
to b, and write a 6≡ bmodm.

The integer m is called the modulus (and is non-zero).

If a ≡ bmodm, then b is a residue of a modulo m. When 0 ≤ b ≤ m−1,
then b is called the least non-negative residue of a modulo m.

Example 3.1.2 5 ≡ 25 mod 10 since 10| (5− 25).

Note The definition of congruence reinterpreted as

a ≡ bmodm ⇔ m| (a− b)

⇔ a− b = mt for some t ∈ Z,

⇔ a = b + mt for some t ∈ Z,

Theorem 3.1.3 Congruences modulo m satisfy

i) Reflexive, For all integers a, a ≡ amodm, i.e.

∀a ∈ Z, a ≡ amodm.

ii) Symmetric, For all integers a, b, if a ≡ bmodm then b ≡ amodm,
i.e.

∀a, b ∈ Z, a ≡ bmodm⇒ b ≡ amodm.

iii) Transitive, For all integers a, b, c, if a ≡ bmodm and b ≡ cmodm,
then a ≡ cmodm, i.e.

∀a, b, c ∈ Z, a ≡ bmodm and b ≡ cmodm⇒ a ≡ cmodm.

Proof p.233
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Theorem 3.1.4 Modular arithmetic.

Suppose that a1, a2, b1 and b2 are integers such that a1 ≡ a2 modm and
b1 ≡ b2 modm. Then

i) a1 + b1 ≡ a2 + b2 modm

ii) a1 − b1 ≡ a2 − b2 modm

iii) a1b1 ≡ a2b2 modm.

Proof p.233.

The next result is just a reinterpretation of the following facts about
division,

m|ac and a|m ⇒ m

a
|c,

and
m|ac and gcd (a,m) = 1⇒ m|c.

Theorem 3.1.5 (i) If a divides m then

ab1 ≡ ab2 modm if, and only if, b1 ≡ b2 mod
m

a
.

(ii) If gcd (a,m) = 1 then

ab1 ≡ ab2 modm if, and only if, b1 ≡ b2 modm.

Proof p.241 but I’ll give the proof of Part ii here.

(⇐) Assume b1 ≡ b2 modm. This means that b1 − b2 = mt for some t ∈ Z.
Multiply through by a to get a (b1 − b2) = amt, i.e. ab1−ab2 = m (at) . Thus
ab1 ≡ ab2 modm.

(⇒) Assume ab1 ≡ ab2 modm. This means that m| (ab1 − ab2), i.e. m|a (b1 − b2).
Recall the Corollary that if a|bc and gcd (a, b) = 1 then a|c. In the present
situation we are assuming gcd (m, a) = 1 which, with m|a (b1 − b2) implies
m| (b1 − b2). This is no more than the definition of b1 ≡ b2 modm. �
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3.2 Solving linear congruences

Solving equations of the form ax ≡ b (modm), where x is an unknown integer.

Example 3.2.1 Find an integer x for which 56x ≡ 1 mod 93.

Solution We have already solved this in the previous Chapter. Starting with
a = 93 and b = 56 we used Euclid’s Algorithm to show that

93× (−3) + 56× 5 = 1

Modulo 93 this gives 56× 5 ≡ 1 mod 93. Hence x = 5 is a solution. �

Advice for exam Don’t forget to CHECK your answer.

We can attempt to solve all such linear congruences by using Euclid’s
Algorithm. Further, if a congruence has an integer solution we can then find
all its integer solutions.

Example 3.2.2 (Not given in lectures) Find all integers x for which

5x ≡ 12 mod 19.

Solution If x is an integer solution, then 5x = 12 + 19t for some t ∈ Z,
which rearranges as 5x− 19t = 12.

Such pairs of solutions (x, t) ∈ Z2 can be found by Euclid’s Algorithm.
Since gcd (5, 19) = 1 which divides 12, this method will give solutions.

Start with

19 = 3× 5 + 4

5 = 1× 4 + 1,

Work back up to get

1 = 5− 1× 4

= 5− 1× (19− 3× 5)

Thus 1 = 4× 5− 1× 19.

Multiply by 12 to get

5× 48− 19× 12 = 12, (5)

so a solution to 5x− 19t = 12 is (x0, t0) = (48, 12) .
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Looking at (5) modulo 19 all multiples of 19 disappear and we get 5×48 ≡
12 mod 19. Hence a particular answer to 5x ≡ 12 mod 19 is x = 48.

For the general solution a different method is to start with the trivial

5× 19− 19× 5 = 0.

Then multiplying by `, so

5× 19`− 19× 5` = 0

for all ` ∈ Z. Add this to (5) to get

5(48 + 19`)− 19 (12 + 5`) = 12

for any ` ∈ Z. Thus all solutions to 5x ≡ 12 mod 19 are given by x = 48+19`,
` ∈ Z, which is the same as x ≡ 48 mod 19, itself the same as x ≡ 10 mod 19.�

Example 3.2.3 Solve 4043x ≡ 25 mod 166361.

Solution We have seen this in the previous Chapter. Assume for contra-
diction that the congruence has solutions in which case the Diophantine
equation

166361× (−t) + 4043x = 25

has solutions in integers x and t. Yet since gcd (166361, 4043) = 13 and
13 - 25, this Diophantine equation has no integer solutions. Contradiction.
Hence the congruence has no integer solutions. �

Example 3.2.4 Find all solutions in integers x to 15x ≡ 12 mod 57.

Solution

First, check there are solutions. To solve 15x ≡ 12 mod 57 we will solve
15x = 12 + 57t, i.e.

15x− 57t = 12

for x, t ∈ Z. Apply Euclid’s Algorithm,

57 = 3× 15 + 12

15 = 1× 12 + 3

12 = 4× 3 + 0

to see that gcd (57, 15) = 3. Since 3|12 the equation 15x− 57t = 12 and thus
the congruence will have solutions.
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Second, find a particular solution. Working back up Euclid’s Algorithm
we see that

3 = 15− 1× 12

= 15− (57− 3× 15)

= 15× 4− 57.

Multiply by 4 to get

15× 16− 57× 4 = 12. (6)

So (x0, t0) = (16, 4) is a particular solution of 15x−57t = 12. Looking at (6)
modulo 57 we see that 15× 16 = 12 mod 57 so a solution of 15x ≡ 12 mod 57
is x0 = 16.

Thirdly, find the general solution If (x0, t0) is a particular solution and
(x, t) ∈ Z2 is a general solution, then

15x0 − 57t0 = 12

15x− 57t = 12.

Subtract to get
15 (x0 − x)− 57 (t0 − t) = 0, (7)

or 15 (x0 − x) = 57 (t0 − t).

Since 15|LHS we deduce that 15|57 (t0 − t). But we cannot go on to
deduce that 15| (t0 − t) because gcd (15, 57) 6= 1.

Instead divide all terms in (7) by gcd (15, 57) = 3 to get

5 (x0 − x) = 19 (t0 − t) . (8)

This time
5|LHS ⇒ 5|19 (t0 − t)⇒ 5| (t0 − t) ,

allowable since gcd (5, 19) = 1. Thus t0 − t = 5` for ` ∈ Z.

Substitute back into (8) to get 5 (x0 − x) = 19 × 5`, i.e. x0 − x = 19`.
Hence the general solution to (6) is

(x, t) = (x0 − 19`, t0 − 5`) = (16− 19`, 4− 5`)

for ` ∈ Z. So all the solutions to 15x ≡ 12 mod 57 are given by x = 16 −
19`, ` ∈ Z.
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Finally express your answer as a congruence with the original mod-
ulus. The solution x = 16 − 19`, ` ∈ Z, could be written as x ≡ 16 mod 19.
But it is more usual to express the answer in the same modulus, 57, as the
question. Varying `(= 0,−1,−2,−3, ...) we find solutions ..., 16, 35, 54, 73, ...
. But 73 ≡ 16 mod 57 and so after 16, 35 and 54 we get no new solutions,
mod 57. Whereas 16, 35 and 54 are not congruent (i.e. they are incongruent)
mod 57. So we give the solutions to 15x ≡ 12 mod 57 as

x ≡ 16, 35, 54 mod 57.

�

Advice for exam

1) Follow the structure above,

First, check there are solutions.

Second, find a particular solution.

Thirdly, find the general solution

Finally express your answer as a congruence with the original
modulus.

2) When finding the general solution to ax ≡ cmodm you will
come across an equality of the form

a (x− x0) = m (t0 − t) .

At this point always divide through by gcd (a,m). For it a =
a′ × gcd (a,m) and m = m′ × gcd (a,m) then gcd (a′,m′) = 1
which, with

a′ (x− x0) = m′ (t0 − t) ,

implies a′| (t0 − t) and the solution continues....

3) When expressing your answer as a congruence give your answer

a) as a positive number, so the solution to 3x ≡ 1 mod 11 should
not be given as x ≡ −7 mod 11 and

b) Give your answer as an integer smaller than the modulus, so the
solution to 3x ≡ 1 mod 13 should not be given as x ≡ 22 mod 13.

The reason for these last two comments is that you want to min-
imise correct answers in the exam being marked incorrect simply
because they look different to the model solutions.
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Note that the number of incongruent solutions here equals 3, which is the
same as gcd (57, 19). This is not a coincidence, as can be seen in the following.

Theorem 3.2.5 The congruence ax ≡ c (modm) is soluble in integers if,
and only if, gcd (a,m) |c. The number of incongruent solutions modulo m is
gcd (a,m).

Proof The ideas for this proof can be found around p.244 and are not given
here.

3.3 Multiplicative inverses.

Definition 3.3.1 If a′ is a solution of the congruence ax ≡ 1 (modm) then
a′ is called a (multiplicative) inverse of a modulo m and we say that a is
invertible modulo m.

Note The congruence ax ≡ 1 (modm) has solutions if, and only if, gcd (a,m) |1,
i.e. gcd (a,m) = 1. Thus a has an inverse modulo m iff a and m are coprime.
Since the inverse is a solution of a congruence they can be found using Eu-
clid’s Algorithm.

Example 3.3.2 Find the inverse of 56 mod 93.

Solution Above we solved 56x ≡ 1 mod 93, finding x = 5. Hence 5 is an
inverse of 56 modulo 93.

If we can find a multiplicative inverse a′ to amodm we can then solve
ax ≡ bmodm by multiplying both sides by a′ to get

x ≡ (a′a)x ≡ a′ (ax) ≡ a′bmodm.

Example 3.3.3 Solve 56x ≡ 23 mod 93.

Solution Multiply both sides of the equation by the inverse of 56 mod 93,
i.e. 5, to get 280x ≡ 115 mod 93, i.e.

x ≡ 115 ≡ 22 mod 93.

�

The advantage of finding the inverse of 56 modulo 93 is that once found
we can solve each of 56x ≡ bmod 93, for any b ∈ Z.

And of course, if 5 is the inverse of 56 mod 93 then 56 is the inverse of
5 mod 93. This fact can be used in:
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Example 3.3.4 Solve 5x ≡ 23 mod 93.

Solution Multiply both sides of the equation by the inverse of 5 mod 93, i.e.
56, to get 280x ≡ 1288 mod 93, that is,.

x ≡ 1288 ≡ 79 mod 93.

�

3.4 Solving Simultaneous Pairs of Linear Congruences

Consider the two linear congruences

x ≡ 2 mod 5 and x ≡ 1 mod 3.

Integers satisfying the first congruence include

...− 8,−5, 2, 7, 12, 17, 22, 27, 32, .. .

Those satisfying the second include

..− 8,−5,−3, 1, 4, 7, 10, 13, 16, 19, 22, .. .

So −8, 7 and 22 satisfy both congruences simultaneously. What other
integers satisfy both simultaneously?

Example 3.4.1 Not given Solve the system

x ≡ 2 mod 5 and x ≡ 1 mod 3.

Solution Write x ≡ 2 mod 5 as x = 2 + 5k for some k ∈ Z and write
x ≡ 1 mod 3 as x = 1 + 3` for some ` ∈ Z. Equate to get 2 + 5k = 1 + 3`, or
3`− 5k = 1.

We could solve this using Euclid’s Algorithm, though here it is as easy to
stare and see that ` = 2, k = 1, is a solution, while

(k, `) = (1 + 3t, 2 + 5t) , t ∈ Z

is the general solution. Thus the x that satisfy both congruences are

x = 2 + 5k = 2 + 5 (1 + 3t) = 7 + 15t, for all t ∈ Z,

i.e. x ≡ 7 mod 15. �
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Example 3.4.2 Solve

7x ≡ 16 mod 17 and 2x ≡ 7 mod 13.

Solution First, solve each congruence separately. For the first congruence
Euclid’s Algorithm gives

17 = 2× 7 + 3

7 = 2× 3 + 1.

Work back up so

1 = 7− 2× 3

= 7− 2 (17− 2× 7)

= 5× 7− 2× 17.

Multiply through by 16

16 = 80× 7− 32× 17.

The first congruence becomes x ≡ 80 mod 17 ≡ 12 mod 17.

For the second congruence use the trick of 2x ≡ 7 ≡ 20 mod 13. Dividing
through by 2 gives x ≡ 10 mod 13.

Secondly, solve the system

x ≡ 12 mod 17 and x ≡ 10 mod 13.

Rewrite as x = 12+17s and x = 10+13t and equate as 12+17s = 10+13t,
or 13t− 17s = 2.

Euclid’s Algorithm

17 = 13 + 4

13 = 3× 4 + 1.

Working back up

1 = 13− 3× 4

= 13− 3 (17− 13)

= 4× 13− 3× 17.

Multiply by 2 to get
13 (8)− 17 (6) = 2.
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Thus a particular solution is (s0, t0) = (6, 8).

It is not hard to see that the general solution of 17s− 13t = 2 is

(s, t) = (6 + 13k, 8 + 17k) , k ∈ Z.

Substitute back into x = 12 + 17s so

x = 12 + 17 (6 + 13k) = 114 + 221k.

Finally write the answer as a congruence x ≡ 114 mod 221. �

Remember to check your answer by substituting it back into the original
system of congruences.

Be Careful Only give if time

Example 3.4.3 Solve

x ≡ 2 mod 6 and x ≡ 1 mod 4.

Solution Integers satisfying the first congruence include

..., 2, 8, 14, 20, 26, ...

while
..., 1, 5, 9, 13, 17, 21, ...

satisfy the second. These lists have nothing in common, the first contains
even integers the second odd integers. Thus there appears to be no simulta-
neous solutions to the two congruences.

By the method above x ≡ 2 mod 6 becomes x = 2 + 6k while x ≡ 1 mod 4
becomes x = 1 + 4`. Equate to get 2 + 6k = 1 + 4`, i.e.

4` + 6k = 1.

This has no solutions because the left hand side of this is even, the right
hand side odd. �

We exclude this second example by demanding that the moduli of the
two congruences are coprime. If we do that it is possible to prove that the
system always has a solution:
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Theorem 3.4.4 Theorem Chinese Remainder Theorem

Let m1 and m2 be coprime integers, and a1, a2 integers. Then the simul-
taneous congruences

x ≡ a1 modm1 and x ≡ a2 modm2

have exactly one solution with 0 ≤ x0 ≤ m1m2 − 1 and the general solution
is x ≡ x0 modm1m2.

Proof Not given in this course.

3.5 Solving Simultaneous Triplets of Linear Congru-
ences

Example 3.5.1 Solve the system

2x ≡ 3 mod 5,

3x ≡ 4 mod 7,

5x ≡ 7 mod 11.

Solution Do this in steps.

First solve each congruence individually. For congruences such as these with
small coefficients I would solve by observation, i.e. try x = 0, 1, 2, ... etc.
until you find a solution. In this way you get the system

x ≡ 4 mod 5,

x ≡ 6 mod 7,

x ≡ 8 mod 11.

Second, take any pair and solve. For example choose the pair

x ≡ 4 mod 5 and x ≡ 6 mod 7,

which has the solution x ≡ 34 mod 35.

Third, introduce the unused congruence. In our example this gives the the
pair

x ≡ 34 mod 35 and x ≡ 8 mod 11.

The solution of this is left to students. �
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Advice for exams You should never get such questions wrong,
since you can substitute your answer back into the original con-
gruences to see it works.

Four or more linear congruences Simply repeat the third step above
until there are no more unused congruences.
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3.6 Method of Successive Squaring

The Theorem on Modular Arithmetic stated that if a1 ≡ a2 modm and
b1 ≡ b2 modm then a1b1 ≡ a2b2 modm. A special case of this, when a1 = b1
and a2 = b2, states that if a1 ≡ a2 modm then a21 ≡ a22 modm.

Application If given a modulus m and an integer a and you wish to calculate
a2 modm you might first calculate a2 and then find the least non-negative
residue modm.

Alternative you could first find the least non-negative residue r1 ≡ amodm
and then square r1 and find its least non-negative residue modm.

The special case of the Theorem on Modular Arithmetic gives r21 ≡
a2 modm and so we get the same answer whichever method we use. The
advantage of finding r1 first is that 0 ≤ r1 < m and so we need only square
a number no larger than m whereas the original a may have been far larger
than m.

This idea can be repeated and the resulting method is best illustrated by
an example.

Example 3.6.1 Calculate the least non-negative residue of 4100 mod 13.

Solution The Method of Successive Squaring.

42 ≡ 3 mod 13,

44 ≡ 32 ≡ 9 ≡ −4 mod 13,

48 ≡ (−4)2 ≡ 3 mod 13,

416 ≡ 32 ≡ 9 ≡ −4 mod 13,

432 ≡ (−4)2 ≡ 3 mod 13,

464 ≡ 32 ≡ 9 ≡ −4 mod 13.

Then

4100 = 464+32+4 (9)

= 464 × 432 × 44

≡ (−4)× 3×−4

≡ 9 mod 13.

�
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Note What becomes important in this method is how to write the exponent
as a sum of powers of 2. This is the same as writing the exponent in binary
notation. So, in this example

10010 = 11001002

= 1× 26 + 1× 25 + 1× 22

= 1× 64 + 1× 32 + 1× 4

and 64, 32 and 4 are the exponents seen in (9) above.

Example 3.6.2 Find the last 2 digits of 1399.

Solution An integer with r ≥ 2 digits, arar−1...a2a1a0 (r ≥ 2) in decimal
notation, represents

ar10r + ar−110r−1 + ... + a2102 + a110 + a0

=
(
ar10r−2 + ar−110r−3 + ... + a2

)
100 + (a110 + a0)

≡ (a110 + a0) mod 100.

So the two digits of 1399 mod 100 will be the last two digits of 1399.

mod 100

132 ≡ 69

134 ≡ 692 ≡ 61

138 ≡ 612 ≡ 21

1316 ≡ 212 ≡ 41

1332 ≡ 412 ≡ 81

1364 ≡ 812 ≡ 61.

Then, because 99 = 64 + 32 + 2 + 1 when written as a sum of powers of
2, we find that

1399 = 1364 × 1332 × 132 × 13

≡ 61× 81× 69× 13 mod 100

≡ 77 mod 100.

So the last two digits of 1399 are 7 and 7. �

Questions for students. What are the last three digits of 1399. What are
the last two digits of 131010?
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