
Week 8

2 Arithmetic

Part IV of PJE

2.1 Division

Definition 2.1.1 (p.140) A non-zero integer b divides integer a if there
exists an integer c such that a = bc. We write b|a. We also say that a is a
multiple of b.

This can be written as

b|a⇔ ∃c ∈ Z : a = bc.

Some books will talk of b being a factor of a.

Example 2.1.2 So 2|8 since 8 = 4 × 2. Also −2|8 since 8 = (−4) × −2.
Further 10|0 since 0 = 0× 10.

In fact, 0 is divisible by any non-zero integer.

What if b does not divide a?

Example 2.1.3 Let b = 4043 and a = 166361.

Solution By long division,

41
4043

)
166361
161720

4641
4043
598

So 166361 = 41× 4043 + 598.

That we get a remainder, 598 here, happens in general. (You have to be
quite lucky if, given two randomly chosen integers, one divides the other.)

Theorem 2.1.4 Division Theorem. Let a and b be integers with b > 0.
Then there exist unique integers q and r such that

a = bq + r and 0 ≤ r < b. (1)

Proof p.191 but I repeat it here. The proof comes in two parts, existance
and uniqueness.
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Proof of existence of q and r. A proof of two halves, a > 0 and a < 0
(nothing to prove if a = 0!).

Assume a > 0.

Define
A = {k ∈ Z : k ≥ 0 and bk ≤ a} .

The fact that b× 0 = 0 ≤ a means that 0 ∈ A, in which case A 6= ∅.

Aside Whenever we define a set we need to immediately show it
is non-empty. We don’t want to waste time proving results about
an empty set!

Next b ∈ Z and b > 0 combine to give 1 ≤ b. Thus if k ∈ A then

k ≤ bk since 1 ≤ b

≤ a since k ∈ A.

Hence all elements k ∈ A are bounded, i.e. A is a bounded non-empty
set of integers. Thus A is a finite set and it would take only a finite amount
of time to find its maximum element, q ∈ A, say. Note that q being the
maximum element in A means q + 1 /∈ A.

Let r = a − bq. Note that q ∈ A means that bq ≤ a which rearranges to
r ≥ 0. We need to show that r < b.

Assume for contradiction that r ≥ b. Then:

r ≥ b ⇒ a− bq ≥ b by definition of r,

⇒ b (q + 1) ≤ a on rearranging,

⇒ q + 1 ∈ A by definition of A.

But this contradicts the fact that q = maxA(= maxa∈A a). Hence the last
assumption is false, and so r < b as required.

Assume a < 0. Apply the above argument to the positive −a to find

−a = bq1 + r1 with 0 ≤ r1 < b.

• If r1 = 0 then a = b (−q1) and so (1) follows with q = −q1 and r = 0.
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• If 0 < r1 < b then

a = −bq1 − r1 = −b (q1 + 1) + (b− r1) ,

and so (1) follows with q = − (q1 + 1) and r = b − r1. Note that
0 < r1 < b implies that 0 < r < b as required.

The proof continues...

Proof of Uniqueness. Assume that for some integers a and b > 0 we can
find two pairs (q1, r1) and (q2, r2) for which

a = bq1 + r1 = bq2 + r2 (2)

with 0 ≤ r1, r2 < b.

Without loss of generality (w.l.o.g.), we may assume r1 ≤ r2, (so, if this
doesn’t hold, simply relabel the remainders) in which case

0 ≤ r1 = a− bq1 ≤ r2 = a− bq2 < b.

Even at their extremes of r1 = 0 and r2 = b− 1 the difference r2− r1 can
be no larger than b− 1, that is

0 ≤ (a− bq2)− (a− bq1) < b

i.e. 0 ≤ b (q1 − q2) < b.

From the first inequality 0 ≤ b (q1 − q2) with b > 0 we deduce that
q1 − q2 ≥ 0.

From the second inequality b (q1 − q2) < b and b > 0 we deduce q1−q2 < 1.
But q1 − q2 is an integer so q1 − q2 < 1 means q1 − q2 ≤ 0.

From q1 − q2 ≥ 0 and q1 − q2 ≤ 0 we conclude q1 = q2. From (2) we then
deduce r1 = r2. �

Definition 2.1.5 We call q the quotient and r the remainder.

Note that we demand that the remainder is non-negative.

Aside concerning the proof : In the proof we claim ‘If A is
a finite set then it would take only a finite amount of time to
find its maximum element’. An algorithm for such a search would
be: take any two elements, compare and keep the largest, pick
another element and compare these two. Continue.
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This argument would not work for an infinite set. For example{
0,

1

2
,
2

3
,
3

4
,
4

5
, ...,

n− 1

n
, ...

}
is an infinite set bounded above (by 1) but which has no maximal
element.

Example 2.1.6 What is the quotient and remainder on dividing = −166361
by b = 4043?

Solution From the first part of this example we have, on multiplying by −1,

−166361 = (−41)× 4043− 598

= (−42)× 4043 + 4043− 598

= (−42)× 4043 + 3445,

all because the remainder has to be non-negative. Thus q = −42 and r =
3445. �

Definition 2.1.7 (p.140) Let a and b be integers, at least one of which is
non-zero. Then the greatest common divisor of a and b is the unique
positive integer d such that

i) d|a and d|b , i.e. d is a common divisor,

ii) if c|a and c|b then c ≤ d, so d is the greatest of all such common
divisors.

Notation We write gcd (a, b), or even just (a, b), for the greatest common
divisor. (In lectures I will write (a, b), while in the notes I will keep to
gcd (a, b)).

Note In some books you will find hcf (representing highest common fac-
tor) in place of gcd.

Example 2.1.8 Calculate gcd (12, 30).

Solution The set of common divisors is

D (12, 30) = {−6,−3,−2,−1, 1, 2, 3, 6} .

The greatest of all these divisors is 6. Hence gcd (12, 30) = 6. �

Question Does the gcd of two integers always exist?
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Definition 2.1.9 For a ∈ Z, let D (a) be the set of divisors of a, so

D (a) = {d ∈ Z : d|a} .

Note that 1 ∈ D (a) so D (a) 6= ∅.

If a = 0 then D (0) = Z \ {0} since every non-zero integer divides 0.

If a 6= 0 then the largest divisor of a is |a| so maxD (a) = |a|.

Definition 2.1.10 For a, b ∈ Z let

D (a, b) = D (a) ∩D (b)

be the set of common divisors of a and b.

Note that 1 ∈ D (a, b) so D (a, b) 6= ∅. Thus, if maxD (a, b) exists then
gcd (a, b) = maxD (a, b) .

Special cases.

• If a = b = 0 then D (0, 0) = D (0) = Z \ {0}. This has no maximal
element so in this case we define gcd (0, 0) = 0.

• If a = 0 and b 6= 0 then D (0) = Z \ {0} and so we must have D (b) ⊆
D (0). Thus

D (0, b) = D (0) ∩D (b) = D (b) ,

a set with a maximal element |b|. Therefore

gcd (0, b) = maxD (0, b) = maxD (b) = |b| .

• If a 6= 0 and b|a then D (b) ⊆ D (a) since every divisor of b is a divisor
of a. Thus

D (a, b) = D (a) ∩D (b) = D (b) .

Also, a 6= 0 and b|a imply that b 6= 0. Therefore

gcd (a, b) = maxD (a, b) = maxD (b) = |b| .
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Theorem 2.1.11 For all a, b ∈ Z, at least one of which is non-zero, the
gcd (a, b) exists.

Proof p.140 but I give it here.

Assume without loss of generality, (w.l.o.g.) that a is non-zero.

If f ∈ D (a) then by definition f |a which means that fq = a for some
q ∈ Z \ {0}.

Yet q ∈ Z \ {0} implies |q| ≥ 1.

Thus
|a| = |fq| = |f | |q| ≥ |f | .

Turn this around and look upon this as bound on |f | to see that all elements
f ∈ D (a) are bounded in modulus by |a| . Hence D (a) is a bounded set.
Since 1 ∈ D (a) it is non-empty. Therefore D (a) is a non-empty, bounded
set of integers and is thus finite.

Since D (a, b) = D (a)∩D (b) ⊆ D (a), we have that D (a, b) is also a finite
set. Again, you can find the maximal element of a finite set in finite time so
we have that maxD (a, b) exists. Yet by definition gcd (a, b) = maxD (a, b)
and so the gcd exists. �

Note that D (−a) = D (a) so D (−a, b) = D (a, b) and thus

gcd (−a, b) = gcd (a, b) .

Similarly for gcd (a,−b) and gcd (−a,−b).

Question How do we find the greatest common divisor?

Theorem 2.1.12 For a, b ∈ Z, at least one of which is non-zero, write

a = bq + r

for some q, r ∈ Z. Then gcd (a, b) = gcd (b, r) .

Proof p.202 but I give the proof here. It suffices to show that D (a, b) =
D (b, r), for then

gcd (a, b) = maxD (a, b) = maxD (b, r) = gcd (b, r) .

To show set equality D (a, b) = D (b, r) we need to show both

D (a, b) ⊆ D (b, r) and D (a, b) ⊇ D (b, r) .
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Case 1. To show that D (a, b) ⊆ D (b, r) .

Assume that s ∈ D (a, b) is given, so s|a and s|b. This means that a = ms
and b = ns for some m, n ∈ Z. But then

r = a− bq = ms− nsq = (m− nq) s.

Yet m− nq ∈ Z and so s|r. Thus we have both s|b and s|r, i.e. s ∈ D (b, r).
Hence D (a, b) ⊆ D (b, r) .

Case 2 To show that D (a, b) ⊇ D (b, r) . I leave this to the student.

Therefore D (a, b) = D (b, r) as required. �

Example 2.1.13 Apply Theorem 2.1.12 to 1561 and 217.

Solution 1561 = 7× 217 + 42. Thus, by Theorem 2.1.12,

gcd (1561, 217) = gcd (217, 42) .

�

Important observation The sizes of the numbers have been reduced. In
particular the largest integer, a say, has been replaced by one strictly smaller
than the other original integer, b.

Important idea A strictly decreasing sequence of non-negative numbers
must reach 0 at some point. when the process terminates.

Conclusion If we repeatedly apply Theorem 2.1.12 the process will end.

Example 2.1.14 2.1.13 continued. Calculate gcd (1561, 217) .

Solution From 217 = 5× 42 + 7 we deduce that

gcd (217, 42) = gcd (42, 7) .

Continuing, 42 = 6× 7 + 0, which is when the process terminates. We could
then quote Theorem 2.1.12, that gcd (a, 0) = |a|, which here gives

gcd (42, 7) = gcd (7, 0) = 7.

Alternatively, Theorem 2.1.12 also says that if a 6= 0 and b|a then gcd (a, b) =
|b|. And since 7|42 this immediately gives gcd (42, 7) = 7. �

Example 2.1.15 Calculate gcd (166363, 4043) .
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We have seen earlier that 166361 = 41× 4043 + 598 thus

gcd (166361, 4043) = gcd (4043, 598) .

Continuing,

4043 = 6× 598 + 455, so gcd (4043, 598) = gcd (598, 455) ,

598 = 455 + 143, so gcd (598, 455) = gcd (455, 143) ,

455 = 3× 143 + 26 so gcd (455, 143) = gcd (143, 26) ,

143 = 5× 26 + 13. Thus gcd (143, 26) = gcd (26, 13) .

Finally, gcd (26, 13) = 13 since 13|26. Hence gcd (166363, 4043) = 13. �

The algorithm used in the above examples can be written in general as

Theorem 2.1.16 Euclid’s Algorithm. Given integers a and b > 0, make
repeated application of the Division Theorem to obtain a series of equations

a = bq1 + r1, 0 < r1 < b,

b = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

r2 = r3q4 + r4, 0 < r4 < r3,
...

Here we have a strictly decreasing sequence of non-negative integers
b > r1 > r2 > .... ≥ 0. Thus one of these integers must be zero. Stop the
applications of the Division Theorem when we reach the zero remainder and
label this zero remainder rj+1. Thus j is defined as the label of the last
non-zero remainder. So the last two lines look like

...

rj−2 = rj−1qj + rj, 0 < rj < rj−1,

rj−1 = rjqj+1.

Then gcd (a, b) = rj, the last non-zero remainder.

Aside an algorithm is a step-by-step procedure for calculations
and according to Wikipedia ‘a prototypical example of an algo-
rithm is Euclid’s algorithm’. An important aspect of an algorithm
is that you know it will stop. A process that could go on forever
looking for something is of no practical use.
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Proof p.202 and p.206. Start by defining r0 = b.

Let P (i) be the statement

“ gcd (ri−1, ri) = gcd (a, b) ”.

We will prove by induction that P (i) is true for all 1 ≤ i ≤ j.

Base case i = 1. Consider

gcd (r0, r1) = gcd (b, r1) by definition of r0 = b,

= gcd (a, b)

by previous Theorem, using a = bq1 + r1, the first line in Euclid’s Algorithm.
Hence P (1) is true.

Inductive step Assume P (k) is true for some 1 ≤ k ≤ j−1, so gcd (rk−1, rk) =
gcd (a, b). We wish to show that P (k + 1) is true.

Consider

gcd
(
r(k+1)−1, rk+1

)
= gcd (rk, rk+1)

= gcd (rk−1, rk)

by previous Theorem, using rk−1 = rkqk+1+ rk+1, the k+2-th line in Euclid’s
Algorithm. Next use the inductive hypothesis that P (k) is true, namely
gcd (rk−1, rk) = gcd (a, b). Use this in the last line above to get

gcd
(
r(k+1)−1, rk+1

)
= gcd (a, b) ,

and so P (k + 1) is true.

Thus, by induction, P (i) is true for all 1 ≤ i ≤ j. End of induction

Choose i = j, the last line in Euclid’s Algorithm, when P (j) says

gcd (a, b) = gcd (rj−1, rj) = rj,

since rj−1 = rjqj+1, i.e. rj|rj−1. �

Theorem 2.1.17 Bezout’s Lemma. Let a and b ∈ Z. Then there exist
m,n ∈ Z such that

gcd (a, b) = ma + nb.
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Proof p.207. But I will give here a slightly different proof.

Idea. Looking back at Euclid’s Algorithm we see that a general step is of the
form rk−1 = rkqk+1 + rk+1. This can be rewritten as

rk+1 = rk−1 − rkqk+1.

To use induction we need information on both rk−1 and rk to say some-
thing about rk+1. This is a form of Strong Induction, see p.48 PJE for more
details. In particular, to say something about r2 we need to know something
of both r0 and r1. Thus we need two base cases. End of idea.

We will look separately at the cases a, b > 0 and then at least one of a or
b non-positive.

Assume first that a, b > 0. Let ri, for 0 ≤ i ≤ j, be the remainder terms
occurring in Euclid’s Algorithm (as before r0 = b.)

Let P (i) be the proposition,

“∃mi, ni ∈ Z such that ri = mia + nib.”

We will show by induction that P (i) is true for all 0 ≤ i ≤ j.

Base cases:

• When i = 0 recall r0 = b = 0× a + 1× b so choose m0 = 0, n0 = 1.

• When i = 1 then, from the first line of Euclid’s Algorithm we have,

r1 = a− bq1 = 1× a + (−q1) b,

so choose m1 = 1 and n1 = −q1.

Thus both base cases P (0) and P (1) are true.

Inductive Step: Assume both P (k − 1) and P (k) are true for some 1 ≤
k ≤ j − 1. This means ∃mk−1, nk−1, mk, nk ∈ Z for which

rk−1 = mk−1a + nk−1b and rk = mka + nkb. (3)

We wish to show that P (k + 1) is true.

From Euclid’s Algorithm we have rk−1 = rkqk+1 + rk+1 which can be
rewritten as

rk+1 = rk−1 − rkqk+1.
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Substitute in (3) from the inductive hypothesis to get

rk+1 = (mk−1a + nk−1b)− (mka + nkb) qk+1

= (mk−1 −mkqk+1) a + (nk−1 − nkqk+1) b.

So if we choose mk+1 = mk−1 −mkqk+1 and nk = nk−1 − nkqk+1 we see that
P (k + 1) is true.

Hence by induction, P (i) is true for all 0 ≤ i ≤ j. (End of Induction.)

Choose i = j, the last line in Euclid’s Algorithm, when P (j) says that
there exists m,n ∈ Z for which

ma + nb = rj

Yet the conclusion of Euclid’s Algorithm is that rj = gcd (a, b). Hence ma+
nb = gcd (a, b), when a, b > 0.

The proof continues....

Assume that at least one of a or b is non-positive.

1. If a < 0 and b > 0 then as seen earlier

gcd (a, b) = gcd (−a, b) .

But−a > 0 and so, by the result just proven, gcd (−a, b) = m (−a)+nb.
Thus

gcd (a, b) = gcd (−a, b) = m (−a) + nb = (−m) a + nb

as required.

2. If a > 0, b < 0, then there exist m,n ∈ Z with

gcd (a, b) = gcd (a,−b) = ma + n (−b) = ma + (−n) b.

3. If a < 0, b < 0, then there exist m,n ∈ Z with

gcd (a, b) = gcd (−a,−b) = m (−a) + n (−b) = (−m) a + (−n) b.

4. Finally

gcd (a, 0) = |a| =

{
1× a + 0× b if a > 0,

−1× a + 0× b if a < 0.

Similarly for gcd (0, b) , while gcd (0, 0) = 0× 0 + 0× 0.
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�

Definition 2.1.18 Given integers a and b, we say that an integer c is an
integral linear combination of a and b if there exist m,n ∈ Z such that
c = ma + nb.

Question Bezout’s Lemma states that for the greatest common divisor of a
and b there exists m,n ∈ Z such that gcd (a, b) = ma + nb. (An existence
result). How can we find m and n?

Example 2.1.19 2.1.13 revisited Write gcd (1561, 217) as a linear combi-
nation of 1561 and 217.

Solution Recall

1561 = 7× 217 + 42

217 = 5× 42 + 7

42 = 6× 7,

so gcd (1561, 217) = 7. Working back up we see

7 = 217− 5× 42

= 217− 5× (1561− 7× 217)

= 36× 217− 5× 1561.

Hence
gcd (1561, 217) = 36× 217− 5× 1561.

�

Aside Be careful with double negatives. In this example, the final
coefficient of 36 arose from 1 + (−5)× (−7).

Example 2.1.20 2.1.15 revisited Write gcd (166361, 4043) as a linear com-
bination of 166361 and 4043.

Solution Recall

166361 = 41× 4043 + 598,

4043 = 6× 598 + 455,

598 = 1× 455 + 143,

455 = 3× 143 + 26,

143 = 5× 26 + 13,

26 = 2× 13,

12



Week 8

so gcd (166361, 4043) = 13. Hence, working back up,

13 = 143− 5× 26

= 143− 5× (455− 3× 143) = −5× 455 + 16× 143

= −5× 455 + 16× (598− 1× 455) = 16× 598− 21× 455

= 16× 598− 21× (4043− 6× 598) = −21× 4043 + 142× 598

= −21× 4043 + 142× (166361− 41× 4043)

= 142× 166361− 5843× 4043.

Thus
gcd (166361, 4043) = 142× 166361− 5843× 4043.

�

Always, always check your answers by multiplying out your final answer.

Aside In PJE, p.204, there is a discussion of a concise way of writ-
ing Euclid’s Algorithm and on p.209 of finding the corresponding
linear combination.

Definition 2.1.21 Two integers a and b, not both zero, are coprime when

gcd (a, b) = 1.

Example 3 Let a = 93 and b = 56. Then

93 = 1× 56 + 37

56 = 1× 37 + 19

37 = 1× 19 + 18

19 = 1× 18 + 1

18 = 18× 1 + 0.

Hence gcd (93, 56) = 1 and thus 93 and 56 are coprime.

Theorem 2.1.22 Two integers a and b are coprime if, and only if, there
exist m,n ∈ Z such that

1 = ma + nb.

Proof (⇒) Assume a and b are coprime so gcd (a, b) = 1. But from previous
result there exist m,n ∈ Z such that ma + nb = gcd (a, b). Combine to get
required result.
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(⇐) p.213, but I will give here a slightly different proof.

Assume there exist m,n ∈ Z such that 1 = ma + nb.

First, trivially 1 divides both a and b, so 1 is a common divisor of both
a and b.

Secondly, let c be any common divisor of both a and b. Then ∃s, t ∈ Z
such that a = cs and b = ct. Substitute to get

1 = ma + nb = mcs + nct

= c (ms + nt) .

Here ms+ nt ∈ Z and thus c|1, which means c = +1 or −1. Hence c ≤ 1 or,
in other words, 1 is greater than any common divisor.

Thus we have verified the definition that 1 is the greatest of all common
divisors of a and b, i.e. 1 = gcd (a, b) as required. �

Example 3 revisited Working back up the previous example we see that

1 = 19− 1× 18

= 19− 1× (37− 1× 19) = 2× 19− 1× 37

= 2× (56− 1× 37)− 1× 37 = 2× 56− 3× 37

= 2× 56− 3× (93− 1× 56) .

Thus
1 = 5× 56 + (−3)× 93.

We now give a simple result that has many applications both below and
in our later study of prime numbers.

Corollary 2.1.23 If a, b and c are integers with not both a and b zero, we
have

1. If a|bc and gcd (a, b) = 1 then a|c.

2. If d = gcd (a, b) then

gcd

(
a

d
,
b

d

)
= 1.

Proof p.214
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