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7.1 Equivalence Trials  

 

Usually, the aim of a clinical trial is to test whether a new treatment is 

better than the existing standard treatment or a placebo. Such trials 

are sometimes called Superiority Trials as their purpose is to test 

whether one treatment is superior to another. 

 

Some trials are designed to establish that two treatments are equally 

effective. A new drug may have fewer side-effects, be cheaper, or be 

more convenient than the current standard treatment. In such 

circumstances one may wish to establish that the new treatment has 

the same ability to treat the condition.  For example some pain relief 

medications have side effects such as causing gastric bleeding or 

ulceration. A replacement therapy might have fewer side effects, but 

one may want to check that the two drugs have the same ability to 

relieve pain. Studies testing this type of hypothesis are called 

Equivalence Trials.  

 

An equivalence trial design may be relevant to testing non-drug 

interventions. For example a trial to test whether say nurses were as 

effective as a general practitioner at delivering a particular type of 

care might wish to demonstrate that outcomes are the same.   
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Hypotheses for Equivalence Trials 

In a superiority trial the hypotheses used for testing for a treatment 

effect are 0 : 0H    vs. 1 : 0H   .  It is sometime suggested that 

failure to reject 0 : 0H    mean that treatments are the same.  This is 

incorrect as a small study that is underpowered would lead to this 

conclusion by default, whereas a larger trial might detect a small 

difference. The issue can be summed up by the statement “An 

Absence of Evidence is not Evidence of Absence”. Use of a statistical 

test with the hypotheses above is therefore inappropriate for 

demonstrating equivalence.  

 

This suggests the hypothesis for equivalence trials could be 

0 : 0H    vs. 1 : 0H   . 

 

Unfortunately, it is never possible to show that two treatments are 

identical. Instead, one tests whether the treatment effect falls in 

range, say  ,E E  , called the range of equivalence. This should be 

defined by considering what range could be considered clinically 

equivalent. The hypotheses are now 

0 : EH    vs. 1 : EH    

Rather than using formal significance testing, statistical analysis of 

equivalence trials is often based on the confidence interval of the 

difference between treatments. Equivalence is established by 

demonstrating that the confidence interval of the difference between 

treatment lies in the range of equivalence ,E E  .  
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7.2 Analysis of Equivalence Trials for a Continuous 

Outcome Measures 

Notation 

Suppose Tn  and Cn patients have been randomly allocated to groups 

T and C and suppose outcome measure Y  is continuous and 

normally distributed with a mean  T for the new treatment and mean 

C  for the control so that the treatment effect T C    . Let Ty and 

Cy  are the sample means and ˆ T Cy y   . As previously  

   Ĉ T CSE SE y y s   
  

where 1 1T Cn n    and  the pooled sample standard deviation s 

is estimated by 

 
   2 21 1

2

T T C C

T C

n s n s
s

n n


  

 
  

with Ts  and Cs being the sample standard deviations for the two 

treatment groups.  t   is the value of the t-distribution with 

2T Cn n     degrees of freedom having a cumulative probability 

equal  1  . 

 
Rejection of the null hypothesis that 0 : EH   vs.  1 : EH   , when 

the  1 2  confidence interval         ˆ ˆ ˆ ˆ,t SE t SE       
 
is 

within the interval  ,E E  , has a Type I error less than  .   
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Proof 

To determine the Type 1 error we needs to estimate  0Pr Reject H

under H0. This probability depends on the value of  . Since 0H is a 

range of values of    ,  0Pr Reject H  will take a range of values also. 

          0
ˆ ˆ ˆ ˆPr Reject H Pr , ,E Et SE t SE                   

The distribution of  ˆ ˆSE   has a non-central t-distribution, if  0  . 

To simplify the proof we will assume the variance is known, and equal 

to say , so ̂  has a distribution 2 2,N      , so that we can replace 

 t   with z. Hence 

   

   

   

0
ˆ ˆPr Reject H Pr , ,

ˆ ˆ                           = Pr

ˆ ˆ                          Pr

E E

E E

E E

z z

z z

z z

 

 

 

      

     

     

         

      

       

 

If E z  ,    ˆ ˆ
E Ez z            is the null set, hence 

0Pr Reject H 0    .  

If E z  , 

   0
ˆ ˆPr Reject H Pr Pr

                          

E E

E E

z z

z z

 

 

      

     

 

         

       
     

   

 

The next step is to find   that maximizes 
0Pr Reject H   under 0H .  

Differentiation with respect to  gives

 0

1 1
Pr Reject H E Ez zd

d

      
 

    

       
     

   
 

where   is the density  0,1N .  
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Since    z z    , it follows that  

E Ez z      
 

 

       
   

   
.  

Hence 

, 

which is zero when E Ez z      
 

 

      
   

   
 . 

Since E z  , it follows that 0    

Since  0Pr Reject H tend to zero as   tends to , 0   must be 

maximum.  

Hence  0Pr Reject H is monotone increasing for  < 0 and monotone 

decreasing for  > 0. Maximum of the Type 1 error are therefore the 

boundary values E   and E  .  

When E  , 

 0Pr Reject H E E E Ez z      

 

       
     

   
  

     2 Ez z        2 Ez       . 

Similarly, when E   ,   0Pr Reject H  . 

Therefore under the null hypothesis 0 : EH   ,  0Pr Reject H   as 

required ■ 

  

 0

1 1
Pr Reject H E Ez zd

d

      
 

    

      
     

   



MATH38071 98 Part 2 

Ex 7.1. An equivalence trial is carried out to test the pain relief of a 

new medication thought to have fewer side effects than the current 

standard treatment. It was felt that mean pain score should not differ 

by more than 5 to demonstrate equivalent pain relief with higher pain 

scores representing greater pain. Fifty subjects were randomized to 

receive each treatment. Mean pain for the standard treatment is 45.1 

(s.d.=20.6) and 46.3  (s.d.=19.4) for the new treatment. Test the null 

hypothesis of non-equivalence using a 5% significance level. 
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By default most computer packages give a 95% confidence intervals, 

but they can give confidence intervals with different levels of 

coverage if specified.  

 

Figure 7.1 Stata output for a two sample t-test 

(i) 95% confidence interval 

 
Two-sample t test with equal variances 

------------------------------------------------------------------------------ 

         |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

       x |      50        46.3     2.91328        20.6    40.44554    52.15446 

       y |      50        45.1    2.743574        19.4    39.58658    50.61342 

---------+-------------------------------------------------------------------- 

    diff |                 1.2      4.0018               -6.741441    9.141441 

------------------------------------------------------------------------------ 

    diff = mean(x) - mean(y)                                      t =   0.2999 

Ho: diff = 0                                     degrees of freedom =       98 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.6175         Pr(|T| > |t|) = 0.7649          Pr(T > t) = 0.3825 

 

 

(ii) 90% confidence interval 

 

Two-sample t test with equal variances 

------------------------------------------------------------------------------ 

         |     Obs        Mean    Std. Err.   Std. Dev.   [90% Conf. Interval] 

---------+-------------------------------------------------------------------- 

       x |      50        46.3     2.91328        20.6    41.41574    51.18426 

       y |      50        45.1    2.743574        19.4    40.50026    49.69974 

---------+-------------------------------------------------------------------- 

    diff |                 1.2      4.0018               -5.445193    7.845193 

------------------------------------------------------------------------------ 

    diff = mean(x) - mean(y)                                      t =   0.2999 

Ho: diff = 0                                     degrees of freedom =       98 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.6175         Pr(|T| > |t|) = 0.7649          Pr(T > t) = 0.3825 
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 7.3 Sample Size for Equivalence Trials  

 
Consider a continuous and normally distributed outcome measure Y 

with means T  and  C for the new  and control  treatment, and 

suppose the range of equivalence is  ,E E  . Assuming 0   under 

the alternative hypothesis 1 : EH   , the sample size required to 

reject 0 : EH    using a  1 2 confidence interval with power 

 1   is  
2

2

/ 22

2

E

n z z 




   per treatment group assuming two 

equal size groups. 

 

This formula assumes that sample size is sufficient such that the 

normal approximation for the t-distribution is valid.  

 

The power is  0Pr Reject H  under the alternative hypothesis 1H .  

From the derivation above  

  
   

0Pr Reject H E Ez z      

 

       
     

   
 

Since 0   is assumed for the alternative hypothesis  

   1 E EPower z z             

Since    1x x    ,  it follows that the second term  

    1E Ez z          . 

Hence 

 1 2 1E z       . 
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Rearrangement gives 

 1 2 E z     . 

Since  1

21 2 z   , it follows that 2
Ez z 




  . 

Hence 2
E z z 




   

Assuming equal sample size T Cn n n  , then 
2

n
  . 

Therefore  2
2 E

n
z z 




  .  

Squaring and rearrangement gives  
2

2

/ 22

2

E

n z z 




   as required■ 

Ex 7.2 Pain relief trial continued. From the data above we have an 

estimate of   20.  Taking the range of equivalence as (-5,5) that is 

E  =5, estimate the sample size per arm required to have 80% power 

to reject the null hypothesis of non-equivalence using a 90% 

confidence interval (i.e. 5% level test) assuming two equal size 

groups. 
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7.4 Non-Inferiority Trials 
 

In the trial comparing conservative treatment with suturing for small 

lacerations of the hand (Critical Appraisal 2), the objective was to 

establish that conservative management gave as good aesthetic 

outcome after 3 months. If conservative treatment gave a better 

outcome, one would not be concerned and would want to reject the 

null hypothesis as the main concern is check that conservative 

treatment did no worse. 

 

If one is only concerned to demonstrate that a new treatment is as 

good or better, rather than equivalent to an existing treatment, only 

one bound is needed. This design is referred to as non-inferiority 

trials. Analysis of a non-inferiority trial can be based on a single-sided 

confidence interval. Note a (1-) single-sided confidence interval is 

define by one or other limits of the usual two sided confidence 

interval, but with coverage  (1-2). So the upper and lower 95% 

single-sided confidence intervals are the upper and lower limits of a 

90% confidence interval. 

 

The hypotheses for a non-inferiority trial are therefore 

0 : NH     vs. 1 : NH     

if  >0 represents benefit to the patient or 

0 : NH    vs. 1 : NH    

if   < 0 represents benefit. 
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Suppose Y  is continuous and normally distributed outcome measure 

with a mean  T for the new treatment and mean C  for the control 

treatment so the treatment effect T C    . Suppose also that Ty

and Cy  are the sample means and ˆ T Cy y   .  

(i) (Higher score for a better outcome) Rejection of the null 

hypothesis 0 : NH     vs. 1 : NH    if the  1  %single-

sided confidence interval, given by    ˆ ˆt SE   ,  is greater 

than or equal to N   will have a Type 1 error ≤ α.  

 

(ii) (Lower score for a better outcome) Rejection of the null 

hypothesis 0 : NH   vs. 1 : NH   , if the  1  % single-

sided confidence interval, given by    ˆ ˆt SE    , is less 

than or equal to N  will have a Type 1 error ≤ α. 

 

 

(i) Higher score for a better outcome 

Assuming a normal approximation to the t-distribution and a known 

standard deviation,  , the  1  % single sided lower confidence 

interval for ̂  is given by ˆ z   .  H0 will be rejected provided  

ˆ
Nz      . 

Therefore 

   0
ˆ ˆ Pr Reject H Pr PrN Nz z                  . 

Since ̂  is 2 2,N      ,  
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 
0Pr Reject H 1 N N

z z 
     


 

      
         

  
  

The maximum of this can be obtained by differentiation w.r.t.    . The 

derivative is  

 0

1
Pr Reject H | N zd

d

  
 

  

  
  

 
    (*) 

where   is the standard normal density function.  

Since   >0 for finite values, it follows that  0Pr Reject H | 
d

d



is 

positive and so  0Pr Reject H |  is monotone increasing with  . 

Hence, the type 1 error rate has a maximum when N   . 

Setting N    , in (*) 

  0Pr Reject H N Nz
z


  
 



  
         

 
 

Hence, the type 1 error must be less than or equal to  ■ 

 

Result (ii) is left as an exercise.  
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Ex 7.3 Pain relief example continued.  Assuming that higher pain 

scores represent more pain we would require the upper confidence 

interval to be less than 5.  Are we able to show non-inferiority? 
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7.5 Sample Size for Parallel Group Non-Inferiority 

Trials 

 

Suppose higher scores represent a better outcome for the patient. 

  

For a continuous and normally distributed with means T and  C for 

the new  treatment and control  groups. If one considers treatment to 

be non-inferior provided the  (1-) % one-sided confidence interval for 

ˆ
T Cy y    is greater than N ,  the sample size required to 

demonstrate non-inferiority with a power (1-) is 

 
2

2

2

2

N

n z z 




   

per treatment group assuming 0   under the alternative hypothesis. 

 

The derivation of the sample size formula for non-inferiority trials is 

similar to that for equivalence trials.  Again the derivation will assume 

that sample size is sufficient for a  normal approximation to the t-

distribution is reasonable so that ̂   2 2,N      . 

With higher score being a better outcome, one is testing 0 : NH     

vs. 1 : NH    . From above 

0Pr Reject H N z  




  
     

 
 

Under the alternative hypothesis, 0  . Therefore, the power 

1 N z 




 
   

 
 

Since  1 1 z   , by taking inverses Nz z 




  . 
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Hence N z z 




  . 

Assuming equal sample sizes T Cn n n   then 
2

n
  . 

Substitution gives the  
2 N

n
z z 




   giving  

  
2

2

2

2

N

n z z 




  as required ■  

The derivation assuming lower scores are better is left as an 

exercise. 

Ex 7.4 Pain relief trial continued. Calculate the sample size required 

to give 80% power to reject the null hypothesis of non-inferiority using 

a single-sided 95% confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.6 Limitations of Equivalence and Non-inferiority 

Trials  
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One problem with equivalence and non-inferiority trials is that poor 

design and sloppy implementation reduce the differences between 

treatment groups biasing the study towards the alternative hypothesis 

of equivalence. It is important therefore that patients adhere to their 

treatment in this type of trial.  We will return to this point when we 

consider intention to treat analyses in the next section. 

 

Equivalence trials show that two treatments may give the same 

average outcome but difference patients may benefit from a particular 

treatment.  Equivalence trials do not demonstrate bio-equivalence, 

that is patients have the same outcome which ever treatment they 

receive. 

Comparison of Sample Size Formulae for Parallel Group 
Trials and  a Continuous Outcome 

 
Sample size per group for a continuous outcome measure for 
difference hypotheses: 

Superiority    
2

2

22

2
n z z 




    – two sided 

      
2

2

2

2
n z z 




     – one sided 

Equivalence   
2

2

/ 22

2

E

n z z 




   

Non-inferiority    
2

2

2

2

N

n z z 




   
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8. Analysis with Treatment 

Protocol Deviations 
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Sometime patients in a randomised controlled trial do not receive the 

treatment allocated.   After consenting they or their care provider may 

change their mind, perhaps due to the change in the patient’s health. 

Patients may decide not to take the tablets. A patient may start a 

treatment but then default or change to another before receiving an 

adequate dose.  In these situations the patient may be said to be 

non-compliant or non-adherent. These changes from the randomly 

allocated treatment are sometimes referred to as Treatment Protocol 

Deviations.  

If patients do not adhere to their randomly allocated treatment, should 

they be included in the statistical analyses, and if so how?  

 

Analysis Strategies Where There is Non-Compliance 

 Intention-To-Treat analysis (ITT):  Patients are analysed 

according to the group to which they were randomized, irrespective 

of whether they received the intended intervention. Also called As-

Randomized 

 Per-Protocol (PP): Patients are analysed within the intervention 

group to which they were randomized after exclusion of non-

compliant patients. 

 As-Treated (AT): Patients are analysed according to the treatment 

they actually received irrespective of the random allocation. 
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Table 8.1 Comparison of intention-to-treat with as treated and per-

protocol analysis 

Survival at 2 

years 

Randomization 

Medical treatment Surgery 

Received 

medicine 

Switch 

 to 

surgery 

Received 

Surgery 

Switched 

to 

medicine 

 [1] [2] [3] [4] 

Died 27 2 15 6 

Alive 296 48 354 20 

Total 323 50 369 26 

Two-year mortality in the coronary bypass surgery trial published by the 

European Coronary Study Group (1979) from E Marubini M.G. Valsecchi 

Analysing survival Data from Clinical Trials and Observational Studies, p22 

Wiley 1996. 

 

 

Table 8.2 Summary of Mortality Rates for each Analysis Method 

Analysis  
Medical 

PM 

Surgical 
PS 

Treat. 
Effect 
PM- PS 

Intention-to-
treat 

 
 
 

  

Per-protocol 
 
 
 

  

As-treated 
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Table 8.3 Summary of Inferential Analysis using a z-test for 

Proportions  

Analysis  

Treat. 

Effect 

PM- PS 

95% c.i. p-value 

Signif. 

In a 5% 

level 

test 

Intention-to-

treat 
2.45% 

-1.05% to 

5.96% 
0.168 

 

Per-protocol 
4.29% 

 
0.66% to 7.92% 0.018 

 

As-treated 
5.40% 

 
1.79% to 9.00% 0.003 

 

   

In this trial the patients that changed from medical treatment to 

surgery appear to be different from those patients who changed from 

surgery to medical treatment. Only 2/50 (4%) of those that switched 

from medicine to surgery died, whereas 6/26 (23%) of those that 

switched from surgery to medicine died, a difference in mortality of 

19%. This suggests that the prognosis of these two patient sub-

groups were very different.  
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8.1 Comparison of  ITT, PP And AT Analyses 
 

When testing H0: = 0 vs H1: 0 , where there is non-compliance the 

Intention-to-Treat estimate ˆITT  is biased toward Ho whereas the Per-

Protocol estimate ˆPP  and the As-Treated estimate ˆAT  may be 

biased either towards or away from Ho. 

 
A simple mathematical model can be constructed to illustrate the 

difference between the three estimates of treatment effect.  We 

suppose that the patient population can be divided into three sub-

groups as follows: 

 

 Group A - who comply with the allocated treatment (Compliers –

Always as randomised) 

Group B - who will always receive control treatment regardless of 

allocation (Always Control Treatment) 

Group C-  who will receive the new treatment regardless of 

allocation. (Always New Treatment) 

It is assumed that there are no defyers, that is patients who will 

always receive the opposite of the treatment to which they are 

randomly allocated. 

 

As patients enter the trial the sub-group membership of a patient is 

not known or “latent”. Patients in each of the three compliance sub-

groups or “latent classes” are likely to have a different prognosis. 

Considering example 7.1 if surgery was the New Treatment and 

medical was the Control, group B is patient that would always receive 
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medical treatment. We saw that those patients appear to have a 

worse prognosis. 

  

As the patients are randomly allocated the expected proportions of 

patients in each of the three latent classes is the same in each arm of 

the trial. For simplicity of presentation it will be assumed that the 

treatment effect compared to the control treatment is  ,  in all three 

“latent classes”. The quantity   is the causal effect of treatment, 

sometimes called by the Compliance Average  Causal Effect (CACE), 

which  is the average treatment effect in patients that comply with the 

New treatment. 

Table 8.4 Model of expected mean outcome for each treatment and 
latent sub-group 
 

 
Latent 
Class 

Control 
Treatment 

Group 

New 
Treatment 

Group 

Probability in 
Latent Class 

As Randomized A   +  A 

Always Control B  + B  + B B 

Always New 
Treatment 

C   + C +    + C +  
C 

(=1 - A - B) 

Assumptions of Model 

 No defyers, that is patients who always receive the opposite of the 

allocated treatment. 

 Proportion and characteristics of the three latent classes compliers, 

always control, always new treatment is the same in both arms. 

This is justified by randomization. 

 Randomization only effects outcome through treatment. 
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From the table of expected means the Intention-to-Treat estimate is 

     ITT A B B C C                    

      A B B C C A                    

as second and third terms in each bracket cancel.  

Hence ITT  which means ITT is biased towards zero if A <1 i.e. if 

some patients do not comply with treatment.  Hence  ÎTTE    

 

The Per-Protocol estimate is  

     A C C A B B

pp

A C A B

           


   

        
    

    

 

     

1 1

1 1

A C C C A C A B B B

A C A B

C C B B

A C A B

C C B B

B C C B C B

C C B B

B C

            

   

   
  

   

   


     

   


 

        
    

    

   
       

   

   
     

        

  
     

    

 

PP   is biased by terms involving B  and C . Since B  and C  can be 

either positive or negative ˆPP may  be biased either towards or away 

from  zero.   

 

A similar expression can be derived for the As-Treated estimate that 

also shows that it can also be biased towards or away from zero 

depending on the magnitude of B  and C . 
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Advantages of Intention-to-Treat  
 
The Intention-to-Treat analysis is always biased towards zero so that 

the efficacy of the treatment is being under-estimated. In a superiority 

trial, use of intention-to-treat biases the statistical analysis towards 

the null hypothesis. If one rejects the null hypothesis Ho:  =0 based 

on an intention-to-treat analysis, one can feel confident that the 

treatment effect is larger in patients that actually take the treatment.  

An analysis based on intention-to-treat is therefore said to be 

conservative. This is not true for per-protocol and as-treated analyses 

as both can be biased either towards or away from the null 

hypothesis.  

 

Another advantage of intention-to treat analysis is that randomization 

clearly defines the groups being compared so there is no ambiguity 

as to how the patients should be included in the analysis. In contrast, 

the groups being compared in per-protocol or as-treated analyses 

may be less well defined. Whether a particular patient completes 

treatment is often difficult to obtain. Even if one is able to collect 

reliable data on the treatment, the researchers needs to agree how 

many tablets or therapy sessions a patient has to receive before they 

can be considered to have complied with treatment, which is an issue 

for which there may be no consensus. For this reason an ITT analysis 

may therefore be easier to implement than Per-protocol or As-

treatment analyses.  

It is important that all patients are followed-up, not just those that 

receive treatment, for ITT analysis to be carried out. 
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8.2 Efficacy  and  Effectiveness  
 
Efficacy and Effectiveness are two terms used to describe the ability 

to produce an effect such cure a specific illness. In clinical trials a 

distinction is drawn between efficacy (also known as ideal use) and 

effectiveness (also known as typical use).  We have already seen that 

where there is non-compliance, Intention-to-treat underestimates the 

efficacy of a treatment. 

 

Intention to Treat Analyses and Effectiveness 

 

Researchers may not be just interested in whether treatment works in 

patients who receive a treatment. They may want to know the overall 

effect of offering a treatment. This is particularly true for health policy 

makers. For example in a trial of exercise for the treatment of back-

pain some patients may not comply. If only a small proportion of 

patient take the treatment, the average benefit of offering the 

treatment may be small, even if it is beneficial in patients that comply. 

It may be important to know the effectiveness, which is the effect 

taking account of non-compliance, as there are likely to be “costs” 

associated with offering the treatment to patients that do not comply. 

It can be argued that the intention-to-treat (ITT) analysis gives an 

estimate of treatment effect taking account of non-compliance. For 

this reason ITT is sometimes said to give an estimate of the 

effectiveness of treatments. This interpretation of ITT assumes that 

the proportion of patients that comply in the trial is the same as in 

normal care, which may not be true. 
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8.3 Estimating Efficacy and the CACE estimate 
 
Suppose instead the researcher is interested in efficacy. Provided the 

assumptions below table 7.5 hold, the compliance average causal 

effect  (CACE) estimate can be obtained. 

 

From above the ITT estimate ITT A  . Hence, the Compliance 

Average Causal Effect is  

  ITT A   . 

ÎTT T Cy y     for continuous data  and  

ÎTT T Cp p    for binary data. 

One needs an estimator of A  ,  the proportion of patients who  

comply with randomization. This can be obtained as follows:  

 Suppose the observed proportions who receive the new treatment 

in the treatment and control groups are respectively qT and qC. 

 Considering the control group, ˆ
c Cq    

 Considering the new treatment group, ˆ ˆ
T A Cq      

 Hence A  can be estimated by ˆA T Cq q   . 

Hence the Compliance Average Causal Effect can be estimated by 

ˆ
ˆ ITT

T Cq q


 


. 

It should be noted that this estimate assumes that there are only two 

treatments that patients can switch between. This method does not 

work where one is comparing two active treatments and some 

patients default to a third option such as no treatment. 
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Ex 8.2 For the bypass surgery example above the Intention-to-Treat 

estimate of the treatment was 2.45%  , 4.29%  for a Per-Protocol 

analysis and 5.40% for an As-treated analysis.  Estimate the 

Compliance Average Causal Effect , . 

Tq   

Cq   

Hence̂   

 

 

The causal effect of treatment is 3.1% , which is smaller than the Per-

Protocol (4.3%) and As-Treat estimates (5.4%). Under the 

assumption we have made, one can see that the Per-Protocol and 

As-Treat estimates are both biased away from the null. 

 
The test that the compliance average causal effect (CACE) is zero is 

equivalence to the test that the intention to treat effect (ITT) is zero, 

that is 0 : 0H   is equivalent to 0 : 0ITTH   . 

 
Intention-to-Treat and Equivalence and Non-inferiority Trials 

 
Application of the intention-to-treat (ITT) analysis in an equivalence 

trial has problems, as it is biased towards the alternative hypothesis 

of no difference between treatments. An ITT analysis may therefore 

increase the probability of accepting the alternative hypothesis. Good 

compliance with treatment is therefore very important in both 

equivalence and non-inferiority trials. 
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9. Crossover Trials 
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9.1 Motivation for Crossover Trials  

 

When we first consider statistical methods for clinical trial the notion 

of potential outcome was introduced (See section 2.1) A patient had 

two potential outcomes, say  
iY T  and  iY C . For the i

th
 patient the 

treatment effect was defined as    i i iY Y CT   . The expected 

treatment effect is therefore,       i i iE E Y Y CT    . For many 

conditions a single course of treatment may cure some if not all 

patients, so they would no longer be eligible for the comparator 

treatments. This applies to most treatments for acute (short-term) 

conditions such as antibiotic treatment for an infection, trauma, or 

surgery.  For these conditions, it is only possible to measure one of 

the two potential outcomes in the same patient - one outcome is said 

to be counter factual. As previously discussed, the expected 

treatment effect is therefore estimated as the difference in average 

outcome between patients receiving the intervention (T) and those 

receiving the control treatment (C).  The treatment effect is estimated 

between groups and so the precision of the estimate of the average 

treatment effects depends on in the variance of the outcome  iVar Y  .  

 

In some for chronic (long-term) diseases such as arthritis, asthma, 

diabetes, or high blood pressure, the condition is not cured by 

treatment. Instead symptoms may be reduced or the disease 

progression slowed by continuing treatment. It may be possible to 

measure both potential outcomes in the same patient, and so the 
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treatment effect i  can be estimated in each patient. The average 

treatment effect could then be estimated with greater precision for a 

given sample size of patients. Trial size would then be reduced 

making clinical trials easier to conduct.  

 

Suppose one is able to compare two treatments, say  A and B, in the 

same patient. One option would be to give treatment A followed by 

treatment B. Such a design is potentially biased, because the 

patient’s condition may deteriorate or improve over time irrespective 

of treatment. To overcome this, patients should be randomly allocated 

to receive treatments in either order.  This trial design is the called the 

AB-BA Crossover Design. In such a design: 

 The trial is divided into two periods with one treatment given during 

each. 

 Patients are randomly allocated to two groups, one receiving 

treatment sequence A then B and the other receiving B then A.  

 

Random allocation is important for two reasons: 

 To prevent bias due to possible change in the patient over time. 

 To maintain concealment prior to treatment allocation and post 

treatment allocation where the trial is double blind. 

 
  



MATH38071 123 Part 2 

Use of a Crossover design 

 
A crossover trial designs may be suitable where: 
 

 The condition being treated is a chronic disease (e.g. chronic 

diabetes). 

 The condition is stable and so unlikely to change greatly from one 

period to the next. 

 The intervention has a rapid effect. 

 
A crossover designs are not suitable where: 
 

 The conditions may resolve quickly, that is an acute condition, 

making the second period treatment unnecessary. (e.g. infections, 

trauma, and rehabilitation). 

 Patients are likely to withdraw from treatment or be lost to follow-

up. 

 The effect of the first treatment could plausibly contaminate the 

effect of second. Note for some treatments contamination can be 

prevented by having a “wash-out” period between treatments. 
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9.2 Analysis of an AB-BA Crossover Design 

 

Suppose patients are randomly allocated to either treatment A, 

followed by treatment B (Sequence AB) or treatment B then treatment 

A (Sequence BA). Suppose that there are ABn and BAn  patients in 

each sequence with total sample size AB BAN n n  . Even though we 

have stated that patients should be stable, a statistical model for a 

crossover design needs to include parameters called a period effect, 

which is the difference between period 2 and period 1 irrespective of 

treatment order as patients health will change over time. Two sources 

of variation can be identified, variation between-patients, and 

variation within-patient.   

If ijY  is the response for the i
th
 subject during period  1,2j  , a 

model for an AB-BA crossover trial can be define as follows: 

ij i ijy         Sequence AB Period 1 

ij i ijy            Sequence AB Period 2 

ij i ijy          Sequence BA Period 1 

ij i ijy          Sequence BA Period 2 

  = mean in period 1 for the Sequence AB.  

   = treatment effects of B compared to A. 

  = period effect. 

i = random variable for patient i with   0iE   and variance
2

B .  

ij  = random variable for patient i  in period j with 0ijE      and 

variance 
2

 assumed to be normally distributed, 20,N    . 
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2

B  is called the between-patient variance and 
2

 is called the within-

patient variance. 

 

Using a Single Sample t-Test to Analyse Crossover Trials 

 
Sometime crossover trials are analysed by using a single sample t-

test applied to the difference between the two treatments, also called 

the paired t-test. 

 

Define 2 1i i ic y y   for i AB  and  1 2i i ic y y   for i BA , which are 

the difference in outcome between when a patient receives treatment 

B and treatment A.  The treatment effect is then estimated by 

ˆ i

C

c
c

N
  


 with AB BAN n n  . The hypothesis  0 : 0H    is then 

tested using  
 C

c
T

SE c
  , where  

2

CsSE c
N

  with 
2

Cs  being the 

sample standard deviation of the differences, ic . If ic  can be assumed 

to be normally distributed, the test statistic CT has a t-distribution with  

1N    degrees of freedom.  

 

Unfortunately,  ˆC   can give a biased estimate of  . 
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Suppose the data generation model for an AB-BA crossover trial 

defined above applies. For the treatment effect estimator Ĉ c    

 
 

ˆ AB BA

C

n n
E

N


 


   where AB BAN n n  . If the period effect 

0  and AB BAn n , ˆC will be a biased estimator of the treatment 

effect,  . 

 
Substitution from the model above gives 

    i i ij i ijE c i AB E                     
 . 

       ij ijE        
 

. 

Since  0ijE     , 
iE c i AB        . 

Similarly,    1 2i i iE c i BA E                 . 

Now     
 

ˆ i i

C

c E c
E E c E

N N


 
   

 

 
. 

Hence, 

   
     

ˆ AB BA AB BA

C

n n n n
E

N N

    
 

   
    ● 

It is rarely possible to rule-out a period effect    completely. Even  

where ABn  and ABn  are planned to be equal, the may differ due to 

imbalance arising from randomisation, such as incomplete blocks in 

block randomisation, or patients dropout from the trial. The treatment 

effect estimate ˆC  may therefore be biased and is therefore not 

recommended. 
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An Unbiased Estimator of the Treatment Effect  
 
Notation 

For subject i , define 2 1i i id y y  , that is the difference between 

period 2 and period 1 irrespective of treatment order. Let 

i

i AB
AB

AB

d

d
n




 and 
i

i BA
BA

BA

d

d
n




 be the sample means for sequences  

AB and BA respectively.   

 

Suppose the data generating model for an AB-BA crossover trial 

defined above applies, then ˆ
2

AB BAd d



  is an unbiased estimator of 

 , that is   ˆ
2

AB BAd d
E E 

 
  

 
.  

 

Substitution from the model above gives 

    i i ij i ijE d i AB E                     
  

The terms i  on the RHS cancel so 

    i ij ijE d i AB E             
. 

Since 0ijE     , 
iE d i AB        . 

Hence 
i AB i

i AB
AB

AB
AB

d n E d i AB
E d E

nn
 

           
 
 


. 

Similarly    i ij ijE d i BA E                 
. 
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and
i

i BA
BA

BA

d

E d E
n

 

 
        
  


. 

Hence 
   

2 2 2

AB BAAB BA
E d E dd d

E
   


              

 
●  

 

Being the difference of two sample means of the two sequences, 

statistical inference on the estimator ˆ
2

AB BAd d



  can be based on a 

two sample t-test provided the assumptions of the test are satisfied. 

Since the patients in sequences AB and BA are independent, this 

assumption it follows that this assumption is satisfied by the design. 

 

The Variance of the Difference id  

Define  2

ABi dVar d i AB     and 2

BAi dVar d i BA     . 

From the model for a cross-over trial (in 9.1), for sequence AB  

       2

2 1 2 1ABd i i i i i i iVar d Var y y Var                    
 

           2

2 1 1 2 2i i i iVar Var Var           , since  1 2cov , 0i i   .  

Similarly, for sequence BA, 
2 22

BAd   . 

 

Hence, the variances of the two sequences are the same for this 

model, that is 
2 2 2 22

AB BAd d d       . 
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Analysis of an AB-BA Crossover Trial using a Two Sample t-test 
 
 

Hypothesis Testing 

 

The hypothesis 0 : 0H   vs 1 : 0H    can be tested using a two-

sample t-test of the means of the differences. The test statistic T is 

defined as 

 
ˆ

AB BA

AB BA

d d
T

SE d d




  

 where
1 1ˆ

AB BA d

AB BA

SE d d s
n n

       and 

   2 21 1

2

AB BAAB d BA d

d

AB BA

n s n s
s

n n

  


 
with 

2 2,
AB BAd ds s  be the sample 

variances of the differences for the two sequences. Under 

assumptions of normality and equality of variance  2 2 2

AB BAd d d    , 

the test statistic T will have a t-distribution with 2AB BAn n   degrees 

of freedom. 

 

 

Confidence Interval of the Treatment Effect 

A  1  size confidence interval for the treatment effect  is defined 

by 

    22

1 1 ˆ
2 2

n nAB BA AB BAAB BA
d d t SE d d        . 
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Example Bronchodilators Crossover Trial. The data in the table 

below is from a two-period AB-BA randomised crossover trial in which 

patients are treated with two bronchodilators, salbutamol (S) and 

formoterol (F). The outcome is the peak expiratory flow (PEF). 

Patients were randomised to receive F then S or S then F. Increased 

PEF is a benefit to patients. 

Patient 
PEF period 1 PEF period 2 Y2-Y1 

F then S Drug F Drug S  

1 310 270 -40 

4 310 260 -50 

6 370 300 -70 

7 410 390 -20 

9 250 210 -40 

10 380 350 -30 

13 330 365 35 

NFS 7 
FSd  -30.7 

  
FSds  33.0 

S then F Drug S Drug F  

2 370 385 15 

3 310 400 90 

5 380 410 30 

8 290 320 30 

11 260 340 80 

12 90 220 130 

NSF 6 
SFd  62.5 

  
SFds  44.7 
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Ex 9.1  Test the null hypothesis 0 : 0H   vs 1 : 0H    

FS SFd d  =               

   2 21 1

2

FS SFFS d SF d

d

FS SF

n s n s
s

n n

  


 
=    

 
1 1ˆ

FS SF d

FS SF

SE d d s
n n

      = 

ˆ
FS SF

FS SF

d d
T

SE d d




  

=   

Degrees of freedom = 2FS SFn n    

For a 5% level test   22 n n
FS SF

t   = 

 

 

Ex 9.2 Calculate the point estimate and 95% confidence interval of 

the treatment effect. 

  

The point estimate of the treatment effect of salbutamol (S) compared 

to formoterol (F) is    

 

The  95% confidence interval of   is

   20.025 1 2

1 1 ˆ
2 2

n nFS SF FS SFd d t SE d d        

 

 

 

 
 
 
 
 
 
 
 



MATH38071 132 Part 2 

Figure 9.1 Stata Output for Bronchodilators Crossover Trial  
Summary statistics: mean, sd, N 

  by categories of: Sequence  

 

Sequence |      PEF1      PEF2 

---------+-------------------- 

F then S |  337.1429  306.4286 

         |  53.76315  64.72469 

         |         7         7 

---------+-------------------- 

S then F |  283.3333  345.8333 

         |  105.3882  70.88136 

         |         6         6 

---------+-------------------- 

 

Two Sample t-test Analysis Applied to the Differences between 

Period ( id ) 
 
Two-sample t test with equal variances 

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

F then S |       7   -30.71429    12.46082    32.96824   -61.20482   -.2237503 

S then F |       6        62.5      18.246     44.6934    15.59715    109.4028 

---------+-------------------------------------------------------------------- 

    diff |           -93.21429    21.55312               -140.6524   -45.77619 

------------------------------------------------------------------------------ 

    diff = mean(F then S) - mean(S then F)                        t =  -4.3249 

Ho: diff = 0                                     degrees of freedom =       11 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.0006         Pr(|T| > |t|) = 0.0012          Pr(T > t) = 0.9994 

 

The treatment effect and its confidence interval are obtained by 

halving the values in the printout.  From the print-out  

diff equals mean(F then S) - mean(S then F)  

The treatment effect for  salbutamol compared to formoterol is 

̂   

 

Conclusion  There is evidence that formoterol  gives improved 

outcome compared to salbutamol with an increase in PEF equal to  

46.6 (95% c.i.22.9 to 70.3 , p=0.0012).   

 

Note that the p-values should NOT be halved!!!  
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Figure 9.2 Stata Output for the Single Sample t-test Applied to the 

Differences between treatments ( ic ) 
 

One-sample t test 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

SALB-FORM|      13   -45.38462    11.25835    40.59257   -69.91446   -20.85477 

------------------------------------------------------------------------------ 

    mean = mean(SALB-FORM)                                        t =  -4.0312 

Ho: mean = 0                                     degrees of freedom =       12 

 

    Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0 

 Pr(T < t) = 0.0008         Pr(|T| > |t|) = 0.0017          Pr(T > t) = 0.9992 

 

By this method effect for salbutamol compared to formoterol  

Ĉ   

 

This has a slight bias compared to the unbiased method (̂  -46.6).  

 

It is worth noting also that the standard error for the single sample 

method is slightly larger.  For then unbiased analysis 

 
21.55312

ˆ 10.77656
2 2

FS SFd d
SE SE

 
   

 
 

whereas   ˆ 11.25835CSE    , so the unbiased method is also 

appears to be more precise.  

 

It can be shown that the period effect increases the standard error of 

the single sample methods compared to the two-sample method. 
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9.3 Sample Size for AB-BA Cross-over Trials 
 

Given that the analysis of an AB-BA crossover trial should be based 

on a two sample t-test of the differences, we can estimate sample 

size for a crossover trial using the formula previously derived in the 

notes for sample size for a parallel group trial for a continuous 

outcome (see section 4.3). Consider the variance of the difference, 

2

d .  

For an AB-BA crossover trial with equal numbers randomised to each 

sequence, the total sample size N required to have power  1  to 

detect a treatment effect   using a two-sided  -size test of  the 

hypothesis of superiority, 0 : 0H   vs 1 : 0H    is  
2 2

2
2

dN z z 




   

, where 
2

d  is the variance of the differences.   

If analysis of an AB-BA crossover trial is based on a two sample t-

test, the total sample size assuming two equal size groups can be 

estimated from the formula in section 4.3 for sample size per group. 

Total sample size is  
2 2

2
2

4
N z z 




  .   

If 
2 is replaced 

2

d  in the above formula,   should be replace by 2 , 

because  AB BAd d  estimates 2 . 
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9.4 Analysis of the Period Effect  
 

A question of secondary interest is ‘ Is there a period effect?’  

How does one test 0 : 0H    vs 1 : 0H   ? 

Consider the differences between treatment B and A for each subject 

define by 2 1i i ic y y   for i AB and 1 2i i ic y y   for i BA . These are 

the difference used in the biased single sample method. It can be 

shown that 
2

AB BAc c
E 

 
 

 
 where  

i

i AB
AB AB

AB

c

c d
n

 


 and 

i

i BA
BA BA

BA

c

c d
n

  


, suggesting ˆ
2

AB BAc c



 . The details are an 

exercise. A test of the hypothesis 0 : 0H    vs 1 : 0H    can be 

carried out as a two sample t-test between the two sequences. 

 

Figure 8.3 Stata Output for Bronchodilators Crossover Trial  

Two Sample t-test Analysis Applied to the Differences between 

treatments ( ic )  

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

F then S |       7   -30.71429    12.46082    32.96824   -61.20482   -.2237503 

S then F |       6       -62.5      18.246     44.6934   -109.4028   -15.59715 

---------+-------------------------------------------------------------------- 

    diff |            31.78571    21.55312               -15.65238    79.22381 

------------------------------------------------------------------------------ 

    diff = mean(F then S) - mean(S then F)                        t =   1.4748 

Ho: diff = 0                                     degrees of freedom =       11 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.9158         Pr(|T| > |t|) = 0.1683          Pr(T > t) = 0.0842 

 

Ex 9.3 Estimate the period effect from the print-out 

The period effect    
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9.5 The Carry-Over Effect 
 
Above, we considered how to test for a period effect. This assumed 

the same change  for each sequence. There is the possibility that 

the change, after accounting for the treatment effect, differ between 

the two sequences AB and BA.  This can occur if one treatment has 

greater persistent into the second period than the other and is called 

the carry-over effect.  One can incorporate such a differential effect 

into the model of an AB-BA trial by adding a term   to represent the 

difference in the period effect for the two sequences, BA and AB.  For 

each group and period the models are now: 

ij i ijy           Sequence AB Period 1 

ij i ijy             Sequence AB Period 2 

ij i ijy           Sequence BA Period 1 

ij i ijy            Sequence BA Period 2 

 

With 2 1i i id y y  ,  it follows that 

i

AB

AB

d
E d E

n
 

 
      

 


   for AB and 

i

BA

BA

d
E d E

n
  

 
       

 


  for  BA.  

Hence   ˆ
2 2

AB BAd d
E


 

 
   
 

 instead of  .  

We have shown that the treatment effect will be biased, if there is a 

carry-over effect.
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A Flawed Statistical Analysis involving Carry-Over Effect  

 
To deal with carry-over effect in crossover trials the following analysis 

procedure has been suggested. 

1. Test whether there is a carry-over effect i.e. 0 : 0H   vs 1 : 0H    

2. If 0 : 0H    is not rejected, the analysis proceeds as described 

above. 

3. If 0 : 0H    is rejected, the analysis should just be based on the 

period 1 data reducing the study to a parallel group trial and the 

period 2 data is then discarded. 

 

The following test of for a carry-over effect has been proposed. 

Define 2 1i i ia y y  so that 

 2 12 2i i i ia                i AB  

 2 12 2i i i ia                 i BA   

Defining the sample mean for each sequence as ABa  and BAa , with 

corresponding  population means 
a

AB and 
a

BA  

  2ABE a        and   2BAE a         

Therefore  BA ABE a a   .   

This suggests the hypothesis H0: =0 is equivalent to H0: 
a a

AB BA  , 

which could be tested by 
 ˆ
BA AB

a

BA AB

a a
T

SE a a





 using a two sample  t-

test.  
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Consider now

          2 2

2 1 2 12 4 4 2i i i i i i i BVar a Var Var Var Var               

Therefore  
2 24 2B

AB

AB

Var a
n

 
  and  

2 24 2B
BA

BA

Var a
n

 
 . 

Hence    2 2 1 1
4 2BA AB B

BA AB

Var a a
n n

 
 

    
 

 ,  

giving    2 2 1 1
4 2BA AB B

BA AB

SE a a
n n

 
 

    
 

.  

This contains both within-patient and between-patient variation. We 

can therefore draw the following conclusion: 

Unless 
2

B  is small relative to 
2

   the test statistic Ta will have low 

power to reject the hypothesis of no carry-over effect 0 : 0H  

compared to a test of the treatment effect .  

 
The advantage of crossover trials is that they remove between-patient 

variance 
2

B , and so there is only going to be power to detect a carry-

over effect where there is little benefit in using a crossover design. To 

increase the sample size so that a carry-over effect could be detected 

would remove the main advantage of the crossover design. Note, 

also that the inferential reasoning of the test is faulty as in practice 

one would want to show that   is zero to justify the crossover 

analysis. As with an equivalence trial one would need to have 

0 : 0H    and 1 : 0H   . For these reasons the procedure for testing 

for carry-over effect in a crossover trial is no longer recommended.  
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Implications of Carry-Over Effect and Crossover Trials 
 

When planning a crossover trial, it is important to consider whether a 

carry-over effect may occur, as estimation is only unbiased where it is 

absent. This assumption has to be based on scientific arguments 

regarding the way treatments work rather than statistical tests.  For 

example, in a particular situation carry-over may not be plausible so it 

can be safely ignored. Alternatively, it may be eliminated by a 

washout period between the two treatments. In such circumstances a 

crossover trial may be legitimately conducted and the advantages of 

crossover trial exploited.   

 

 Unfortunately, in many situations a carry-over effect may be plausible 

and lengthy washouts periods may not be feasible as it would be 

unethical for a patients to go without treatment. There are therefore 

many circumstances where a crossover trial is not feasible, when 

testing treatments for chronic conditions. 

  

This is an example of where clinical science is important for 

determining the choice of design. In summary, if there are good 

scientific reasons to believe a carry-over effect may occur, the 

crossover design is not recommended and a parallel group design 

should be used instead. 
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9.6 Summary: Comparison of Parallel and 

Crossover Trials 

 

Parallel Group Design 

 Comparison of treatments is between groups of patients. 

 Power and sample size depends on between-subject variation. 

Crossover Design 

 Comparison of treatments is within patients so that each patient 

acts as their own control. 

 

Advantage of a Crossover Design compared to a Parallel Group 

Design 

 Within patient estimation of treatment effects means that variation 

between patients is removed from the analysis, hence sample size 

may be substantially smaller. 

 

Disadvantages of a Crossover Design compared to a Parallel 

Group Design 

 Only applicable to certain types of condition such as stable 

diseases. 

 More complicated to organize. 

 Patients withdrawing during the second period mean that their data 

cannot be included in the statistical analysis. 

 Requires the assumption of no Carry-over effect to give unbiased 

estimates of the treatment effect.  
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10. Systematic Review and 

Meta-Analysis  
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10.1 Systematic Review 

If a clinical trial has been properly conducted, it should provide 

information regarding the efficacy or effectiveness of a new therapy.  

Once a trial has been published, it might be thought that it would be 

unethical to undertake another trial making the same comparison.  In 

practice, the decision is rarely so simple. Trial results generally need 

to be replicated before new treatment can be widely adopted. Clinical 

trials of new treatments are often repeated within different global 

regions (e.g. Europe, Americas, or Asia) to assess their 

generalisability. Modifications to the trial design may be made to 

remove perceived biases in the design of earlier studies or test the 

effect of treatment on other outcome measures. 

  

Where several trials have been carried out to compare the same 

treatments, the traditional method for assessing the evidence 

involved selecting from the readily available trial reports, appraising 

each, before drawing conclusions in a narrative discussion. This type 

of review can be highly subjective and open to selection bias. An 

alternative is a systematic review, in which studies are identified 

systematically in attempt to find all before combining the results by an 

overall statistical summary. Systematic review is now an important 

component of the evaluation of new treatments and diagnostic test 

procedures, and is also used to combine evidence from 

epidemiological studies.  Meta-analysis is the statistical methodology 

for combining data from several studies of the same question to 

produce an overall summary. 
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A systematic review followed by a meta-analysis can bring together 

the results from several inconclusive or conflicting studies to give a 

single conclusive result. It also gives greater power and precision to 

answer more refined research questions. For example, individual 

trials are usually designed to answer the question “does a treatment 

work on average”. They rarely have sufficient power to investigate 

differences in the treatment effect for specific types of patient, but this 

may be possible by combining data from several studies in a meta-

analysis. A systematic review may also enable one to investigate 

rarer outcomes, such as serious adverse events, that may not be 

possible in a single trial. For example by combining trials of 

treatments for depression it has been possible to show that some 

drug treatments increased the risk of suicidal behaviour, a result that 

could not be demonstrated in individual trials due to lack of power for 

this outcome measure. 

 

Steps in a Systematic Review 

A systematic review is similar to a clinical trial. It involves several 

steps. 

1. Define precise objectives for the review. 

2. Set inclusion and exclusion criteria for trials. 

3. Search for trials satisfying the inclusion criteria. 

4. Assess methodological quality of studies identified, possibly 

discarding methodologically poor studies. 

5. Extract statistical summary data or obtain raw data for each study. 

6. Estimate the overall treatment effect by a meta-analysis. 
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10.2 Meta-analysis  

Meta-analysis of generally address the following questions 

1. Are the effects in the studies homogeneous? This is needed to 

justify estimating an overall treatment effect. 

2. What is the overall treatment effect? 

3. Do study size, study characteristics or methodological quality 

correlate with the magnitude of the treatment effect? 

 
The best way to carry out a meta-analysis is to combine the raw data 

from individual studies into a single large dataset, and then carry out 

an analysis of all the data to estimate the overall effect. This is 

method called individual patient data meta-analysis. Whilst this is 

similar to analysing a single large study, analysis should take account 

of data coming from several studies.  

 

Individual patient data meta-analysis is often not possible, because 

the original raw data are no longer available for all studies, 

particularly where some may be many years old.  For this reason, 

most meta-analyses use summary statistics extracted from published 

reports. This method is called summary measures meta-analysis and 

is a special set of methods. 
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Fixed or Random Effect Meta-analysis 

 

Suppose there are k studies and the treatment effect estimate for the 

i
th 

study is ˆi . Suppose the overall treatment effect is  . There are 

two main approaches to estimation of  .  

 

In the first, we assume that ˆi  each trial is estimating the a common 

effect of treatment .  Any departure of ˆi  from   is assumed to be 

simply due to sampling variation. This is called Fixed Effects 

estimation. 

 

The second approach is called Random Effects estimation. This 

assumes that the studies are sampled from a larger population of 

studies. The treatment effect i  is then a random variable with mean 

equal to the overall effect   and variance v.  

 

If ̂  is the overall estimate, ˆVar  
 

will be larger if estimated by 

random effect estimation than fixed effect estimation due to the 

additional variance term v. 

 

In this module we will just describe methods of analysis for fixed 

effects estimation.  
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10.3 Summary Measures Estimation of the Overall 

Effect 
 

Suppose there are k trials comparing two treatments. Let ˆi  be the 

estimate of the treatment effect for the j
th
 trial and let ˆ

i iv Var  
 

.  

For a continuous outcome measure y , define ijy , 
2

ijs  and ijn

 1,..., ; 1,2i k j   to be sample mean and variance, and the sample 

size respectively of the j
th
 treatment in the i

th
 trial. The treatment effect 

of the i
th
 trial can be the mean difference,  2 1

ˆ
i i iy y    with  

 1 2

1 2

ˆˆˆ
2 2

i i
i i

i i

s s
v Var

n n
   
 

. 

If Y is binary, one could use the rate difference (RD), as the summary 

statistic for each trial. If the observed number of events is ijr ,  the 

observed  proportions  ij ij ijp r n  1,..., ; 1,2i k j  . One can define 

 2 1
ˆ
i i iP P    with 

   1 1 2 2

1 2

1 1ˆˆ ˆi i i i

i i

i i

p p p p
Var v

n n


 
    
 

 . 

Alternatively, one might want to estimate an overall odds ratio (OR) or 

rate ratio (RR). These are generally estimated by taking ˆi  equal to 

the loge OR 
 

or loge RR 
 

.  

For loge OR 
 

, 
1 1 1 2 2 2

1 1 1 1
î

i i i i i i

v
r n r r n r

   
 

 demonstrated in section 

4. 

For loge RR 
 

, 
1 1 2 2

1 1 1 1
ˆ

i i

i

i i

v
r n r n

     . 
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The overall estimate for odd ratio and rate ratio are obtained by 

taking the exponent of the overall  loge OR and  loge RR estimates. 

 
Summary Measures Estimate of the Overall Effect 
 
Whichever type of summary measure is used (mean difference, RD,  

log [OR] or log[RR]), an overall estimate of   can be estimated by a 

weighted mean defined as 

 
1 1

ˆ ˆ
k k

i i i

i i

w w 
 

  . 

Consider now the variance of the estimate for ̂ . 

 
2

1

1

1ˆ ˆ.
k

i i
k

i

i

i

Var Var w

w

 




 
     

  
 
 




 

Since the studies are independent, ˆ ˆ, 0i jCov    
 

 

Therefore, 

2

1

2

1

ˆ

ˆ

k

i i

i

k

i

i

w Var

Var

w



 



 
 

  
 

 
 
 





. 

 

Choice of Weights and the Minimum Variance Estimate 

 

Different weights will give different estimates of   Band ˆVar  
 

. We 

could weight studies equally by setting 1, 1,...,iw i k  , but this is 

rarely done as the size of studies generally varies greatly. It can be 
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shown that taking 
1

ˆi

i

w
Var 


 
 

 for each i gives an estimator with 

minimum variance, that is with greater precision. For this reason, 

inverse variance weights are often used in meta-analysis.  

The weighted variance 

2

1

2

1

ˆ.
ˆ

k

i i

i

k

i

i

w Var

Var

w



 



 
 

  
 

 
 
 





will have a minimum 

when if wi  1/Var[i] .  

 
The proof uses the Lagrange Multiplier method for obtaining maxima 

or minima subject to a constraint. 

Let  

2

1
1 2 2

1

ˆ.
ˆ , ,...,

k

i i

i
k

k

i

i

w Var

Var F w w w

w



 



 
 

   
 

 
 
 





 

Without loss of generality one can apply the constraint 
1

1
k

i

i

w


 . 

Define  1 2

1

, ,..., 1
k

k i

i

G w w w w


  .  

Applying the Lagrange Multiplier Method one defines  

     1 2 1 2 1 2, ,..., , , ,..., , ,...,k k kH w w w F w w w G w w w    

The minimum of F subject to the constraint G is found by equating the 

partial derivatives of  1 2, ,..., ,kH w w w  with respect to each wi  to  

zero. Considering the j
th
 study 
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  2

1 2

1 1

ˆ, ,..., , . 1
k k

k i i i

i ij j j

H
w w w w Var w

w w w
  

 

    
         

   

Hence 

 1 2
ˆ, ,..., 2 0k j j

j

H
w w w w Var

w
 


   
 

giving  ˆ2i iw Var   
 

 

The second derivatives of H are positive so this must be a minimum. 

Hence ˆ1i iw Var  
 

 gives the estimate with minimum variance● 

 

If  ˆMV  is the minimum variance estimate then  

 

1 1

1 1ˆ
1

ˆ

MV k k

i

i ii

Var

w
Var



 

   
 

 
 

 
 

 

Substitutes 
1

ˆ
iVar  

 

for wi , into  

2

1

2

1

ˆ

ˆ

k

i i

i

k

i

i

w Var

Var

w



 



 
 

  
 

 
 
 





   

gives 

2

1
1

2 2

1 1
1

1

1
ˆ. ˆ

1 1ˆ
1

1
ˆ

ˆ

k
k

i i i i
i

MV k k
k

k
i

i
i iii

i i

w Var Var
Var

ww
Var

Var

 








 




           
 

   
          

  



  

as required ● 
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Summary Measures Inference 

 

Confidence Intervals 

 

Even if the source data are not normally distributed, it is plausible that 

the individual study level estimates ˆi  are by the central limit theorem. 

Since ˆMV is a linear function of ˆi s that are plausibly normally 

distributed, we can assume that ˆMV  is also normal. A  1   level 

confidence interval of ˆMV can therefore be given by  

  2

1

1ˆ
MV

k

i

i

z

w









 

 

Hypothesize Tests 

 

To test the null hypothesis 0 : 0H    , the following test statistic can 

be used 

  
1

ˆ
ˆ

ˆ

k
MV

MV i

iMV

T w
SE




 

 
 
 

 ,  

which can be assumed to have a standardised normal distribution 

under the null hypothesis. 
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Ex 10.1 Systematic review of the effect of maternal steroid therapy on 

neonatal mortality. 

 

The table over-page summarizes the results for 12 trial identified by  

a systematic review of  trials testing maternal steroid therapy. The 

outcome measure is the number of neonatal deaths, which is death 

within the first 28 days of life. Note that in one study, there are no 

deaths in both arms and so this study cannot contribute to the meta-

analysis and has to be excluded from the analysis. 

 

(i) Estimate the minimum variance estimate and its 95% confidence 

interval. 

 

(ii) Test the null hypothesis of no overall treatment effect. 

 

Some of the computation is carried out on the table above 

summarizing the raw data. 

 

(iii) Display the data graphically.  

 

The standard method of graphical display of a meta-analysis is a 

forest plot illustrated below. 
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Fixed Effects Meta-Analysis of the Effect of Maternal Steroid Therapy on Neonatal 
Mortality (Crowley et al,1990) 
 

Trial Steroid Therapy Control     

No. 

 S

Died

r
 

SP  Sn  

 C

Died

r
 

CP  Cn  

ˆ
i

S CP P

 


 

 
i

S C

v

Var P P




 

1i iw v  

 

ˆ
i iw  

Liggins 36 0.068 532 60 0.112 538 -0.044 0.000303   

Block 1 0.014 69 5 0.082 61 -0.067 0.001441   

Scliutte 3 0.047 64 12 0.207 58 -0.160 0.003527 283.5 -45.37 

Taeush 5 0.089 56 7 0.099 71 -0.009 0.002704 369.9 -3.44 

Doran 2 0.025 81 10 0.159 63 -0.134 0.002417 413.8 -55.46 

Teranin 0 0.000 38 0 0.000 42 0.000 - - - 

Gamsu 14 0.107 131 20 0.146 137 -0.039 0.001639 610.3 -23.87 

Collab. Grp. 36 0.097 371 37 0.099 372 -0.002 0.000477 2096.7 -5.09 

Morales 7 0.058 121 13 0.105 124 -0.047 0.001207 828.3 -38.92 

Papagecrgio 1 0.014 71 5 0.067 75 -0.053 0.001025 975.4 -51.29 

Morrison 2 0.030 67 7 0.119 59 -0.089 0.002205 453.6 -40.28 

Schmidt 5 0.147 34 5 0.161 31 -0.014 0.008053 124.2 -1.77 

         10152.6 -457.2 
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(i) Estimate the minimum variance fixed effect estimate and its 

95% confidence interval. 

 

The fixed effect estimate 

1

1

ˆ

ˆ

k

i i

i
MV k

i

i

w

w



 



 



  

 

1

1ˆ
MV k

i

i

SE

w





 


 

 

95% C.I.  is  2
ˆ ˆ
MV MVz SE   ,  

 
 
 
 
 
 

(ii) Test the null hypothesis of no overall treatment effect 
 

ˆ

ˆ
MV

MV

T
SE




 

 
 
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(iii) Graphical Display of Meta-Analyses 
 

Forest Plot of Data from Crowley et al. 

 

The treatment effect in each study is represented by a square with 

bars represent the 95% confidence interval of the treatment effect. 

The combined treatment effect and its confidence interval are shown 

at the bottom of the figure as a diamond. The area of the block 

representing the point estimate for each study has been made 

inversely proportional to the variance. Since larger studies will have 

smaller variance, larger studies will be represented by a large block. 

This is added otherwise the eye would tend to be attracted towards 

the studies that have wider confidence intervals which are smaller. 
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10.4 Investigation of Biases  

 
It is well known that studies that fail to find a statistically significant 

treatment effect are less likely to be published than those that do. 

This mean that a meta-analysis based only on published studies may 

be biased. The term used for this phenomenon is Publication Bias.  

 

Possible Causes of Publication Bias 

 Selective publications: Studies in which an intervention is found to 

be ineffective are sometimes never published. Sponsors of 

research, such as pharmaceutical companies or the innovator of 

the treatment, have been known to discourage or prevent 

publication of unfavourable results. If the results are negative, a 

clinical researcher may be less motivated to get a trial published as 

they are conscious that they may be considered less interesting to 

journal editors and so much more difficult to get accepted 

published. 

 

 Identification: Studies in which results are statistically significant 

are likely to be published in more prestigious, and hence easily 

accessible, journals.  As an illustration of this, it has been shown 

that trials carried out in non-English speaking countries are more 

likely to be published in English where the study result is 

statistically significant. Hence, a meta-analysis restricted to English 

language journals may overestimate the treatment effect as studies 

in other languages will tend to have a smaller effect. 
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 Selective reporting: Where studies have multiple outcomes 

measured, statistically significant results may be emphasized in 

reports whereas non-significant results may be given less 

prominence or even left out.  Glaring examples of this are trial 

reports that fail to give the primary outcome measure previously 

specified in the trial protocol, but publish other measures that have 

been found to be statistically significant.   
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The Funnel Plots 

One way to investigate publication bias is a funnel plot. This plots  

 
 
1

ˆPrecison =
ˆSE




  

against the treatment effect for each trial ̂ .  Assuming all studies in 

the meta-analysis are a random sample of all possible studies of the 

same treatment, the distribution of points should resemble an inverted 

funnel shape widening as the precision decreases. This is because 

studies with larger standard errors (i.e. less precision) will have wider 

confidence intervals and so estimates of the treatment effect will be 

more widely dispersed. 

 
Figure 10.2 A Funnel Plots 

 
Funnel plots can also constructed by plotting total sample size 

against the treatment effect and give a similar shaped figure, as 

precision is related to the square root of the sample size.  
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Funnel Plots Asymmetry 

Studies with greater precision have larger sample size and so tend to 

get published irrespective of statistically significance.  In contrast, 

studies with less precision are less likely to be published, if they are 

not statistically significant. Hence, smaller studies showing a smaller 

treatment are more likely to be missed by a systematic review and so 

left out of a meta-analysis. This is illustrated in figure 10.3. 

Figure 10.3 Illustration of publication bias 

Publication Bias Less Likely Publication Bias More Likely 

  

As well as publication bias, lack of symmetry in funnel plots may 

indicate: 

 True Heterogeneity – the treatment in smaller studies may be more 

intensive than in larger studies or patients in smaller studies may 

differ systematically from those in larger studies. 

 Outcome may be measured in different ways depending on trial 

size. 

 Smaller trials may be more poorly conducted than larger studies 

and so more likely to be biased. 
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The possibility of publication bias means that it is particularly 

important that meta-analyses are based on all relevant studies and 

not just those that are conveniently available. Researchers carrying 

out systematic reviews are encouraged to identify trials that have not 

been published or are reported in more obscure journals. To aid this, 

an international directory of clinical trials (ISRCTN) has been 

established with which all new randomised trials should registers. 

Figure 10.4 Funnel Plot of Crowley et al. 

  
 
There is some evidence in the funnel plot above that smaller studies 

showed a larger effect. This could be due to publication bias.  

 

If there is concern that there may be publication bias, one option 

would be to carry out a sensitivity analysis excluding smaller studies. 
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