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Further Reading 
 

Recommended Course Text 

John N.S. Matthews An Introduction to Randomised Controlled 

Trials.  Taylor & Francis London  (2
nd 

Ed. 2006 / 1
st
  Ed. 2001) 

An introductory text on clinical trials oriented towards 

mathematics and statistics students. Both editions in JRL are 

appropriate. 

Background Reading 

Books 

Michael Campbell, David Machin, Stephen Walters  Medical 

Statistics. John Wiley  London (4
th
 Ed. 2010)  

Introductory text oriented towards Medical Students. Provides 

overview of topics and covers a wider range than those 

considered in this course.  Multiple copies available in JRL. 
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Applications of Medical Statistics  
 

 Medical research is a major field of application of statistical 

methods. 

 Statisticians are involved with the design, conduct and analysis 

of medical research projects. 

Examples of medical research in which statistical methods are 

applied include: 

 Epidemiological Studies (Determining the cause of disease 

and ill health) 

 Clinical Trials (Evaluation of the effectiveness of treatments) 

 Laboratory Experimental Studies. 

 Development of Diagnostic Methods 

 Surveys of Patients and the Public  

The problems raised by medical research data have led to 

important developments of statistical methodology. 

 

Statistical Methods in Medical Research 

 

Data Analysis 

 

Design 

- Choosing the study design. 

- Determining the number of subjects that need to be included. 

- Developing reliable and valid measures. 
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1.1 Types of Medical Research Study 

 

Observational Studies in Epidemiology 

(i) Case control studies. 

Two sample of subjects are identified (i) Cases with the disease 

and (ii) Controls without. The level of exposure to the risk factor of 

interest is determined for each sample. 

Example Doll & Hill (1954) carried out a case-control study to 

investigate whether smoking caused cancer.  Patients admitted to 

hospital with lung-cancer were the cases. For each case, a control 

patients was selected of similar age and sex from patients admitted 

to the same hospital with a diagnosis other than cancer. Past 

smoking history was determined for each patient. 

 

Table 1.1 Numbers of smokers and non-smokers among lung 

cancer patients and age-matched controls  

 Status Non-smokers Total 

  Number (%) Sample 

Male 
Lung Cancer 2 (0.3%) 649 

Controls 27 (4.2%) 649 

Female 
Lung Cancer 19 (31.7%) 60 

Controls 32 (53.3%) 60 

 

Ex 1.1  What are the limitations of this study and its design? 
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(ii) Cohort studies. 

A cohort of subjects is identified and the exposure to the risk factor 

measured. Subjects then followed up and outcome determined. The 

outcome is compared between those who are expose and non-

exposed to the risk factor. 

Example  As part of the National Health and Nutrition Examination 

Survey in the USA (NHANES 1) , 7188 women age 25 to 75 were 

asked questions about alcohol consumption. After 10 years 

subjects were traced and cases of breast cancer identified. Breast 

cancer was 50% higher in drinkers than non-drinkers.  The effect 

was still present after adjustment for obesity, smoking and 

menopausal status. 

Ex 1.2  What are the limitations of this design? 

 

 

 

Experimental studies  

a) Randomised controlled trials. 

b) Laboratory experiments. 

Diagnostic and measurement studies 

a) Testing the validity of diagnostic tests and outcome measures. 

b) Testing the repeatability of a method of measurement. 

c) Comparison of different measurement methods. 

Systematic Reviews  

a) Meta-analysis based on summary statistics. 

b) Meta-analysis using individual patients data.



 

MATH 38071 8 Part 1 

Some Terminology 

Bias is a factor that tends to deviate the result of a study 

systematically away from its true value.   

 Statistical: Related to properties of the estimator. 

 Experimental: Due to the design of the study.  

Bias is a major concern in medical research as it may occur in 

many different ways due to the complexity of clinical research. 

Types of Variable in Medical Studies 

Outcome Variable: This is the dependent variable of interest in a 

medical study. 

Exposure Variable:  This could be a treatment or a risk factor for 

disease and is an independent variable. 

Intermediate Variable:  A variable on the causal pathway from 

exposure to outcome. 

Exposure 

Variable

Intermediate

Variable

Outcome 

Variable

 

Confounding Variable:  A variable that can cause or prevent the 

outcome of interest, independently of exposure, that is also 

associated with the factor under investigation. 

Exposure 

Variable

Confounding 

Variable

Outcome 

Variable

?

 

Confounding variables may cause bias.  
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1.2 Clinical Trials Terminology 

 

Treatment or Intervention: therapeutic drugs, prophylactics 

(preventative treatment), diagnostic tests (e.g. blood pressure),  

devices (e.g. replacement hip joint), procedures (e.g. surgery) or 

activities by the patient or therapist  (e.g. physiotherapy). 

Clinical Trial: A prospective study involving human subjects, 

designed to determine the potentially beneficial effect of therapies 

or preventative measures, where the investigator has control over 

who receives the treatment. 

Prognostic Factor: A prognostic variable is a variable that 

influences outcome where the patient receives no treatment or the 

current standard treatment.  

Ex 1.3 Given an example of a prognostic factor in the treatment of 

Cancer? 

 

Type of Clinical Trial in Drug Development 

Phase I   

 to establish safe/tolerable levels of a  new drug often  using 

healthy volunteers.  

Phase II  

 to provide evidence of potential efficacy. 

 to develop dosage regimes. 

 

Phase III  

 to compare efficacy and effectiveness with a control therapy.  
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The Importance of a Control Group 

 

The simplest of clinical trial is a case series evaluation in which a 

group of patients who receive a new treatment are followed up and 

the outcome of treatment recorded. 

 

The problem with case series evaluations of treatments is that it is 

impossible to know whether the observed outcome is  

(i) the  consequence of the treatment or  

(ii) the natural course  of the disease,  

as some conditions can resolve without treatment. e.g. acute viral 

infections such as the common cold.  

 

It is important therefore to have a control treatment against which a 

new treatment may be compared.  In most circumstances the 

control should be the current standard treatment if there is one. The 

effect of a new treatment is then measured relative to the control. 

 

Treatment Effect 

 

In the controlled trials literature the term treatment effect means the 

relative effect of one treatment on the outcome compared to 

another.   
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Clinical Trials Protocol  

 

Every well-designed clinical trial has a protocol. This documents the 

purpose and procedures of the trial including: 

1. The trial objectives. 

2. Description of treatments being compared. 

3. The study population 

a. Inclusion criteria.  

b. Exclusion criteria.  

4. Sample size assumptions and estimate 

5. Procedure for enrolment of participants. 

6. Method used to allocate treatment to participants. 

7. Ascertainment of outcome 

a. Description and timing of assessments. 

b. Data collection method. 

8. Data analysis 

a. Final analyses. 

b. Interim analyses 

9. Trial termination policy. 

Published reports of clinical trial should present all this 

information in detail.
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An Early Controlled Clinical Trial - Treatment of Scurvy 

 (James Lind 1753 -www.jameslindlibrary.org ) 
 
“On 20 May 1747, I took 12 patients in the scurvy on board the 

‘Salisbury’. The cases were as similar as I could have them. They 

all … had … putrid gums, the spots and lassitude … 

 

“They laid together … and had one diet common to all … two cider, 

two others Elixir Vitril [H2SO4],  two vinegar  , two sea water, two 

oranges and lemons , the two remaining Nutmeg.” 

 

“One of the two receiving oranges and lemons recovered quickly 

and was fit for duty after 6 days. The second was the best 

recovered of the rest and assigned the role of nurse to the 

remaining 10 patients.” 

 
 
 
Ex1.4 What are the limitations of this study? 

 
 
 
 
 
 
 
 
 
 

http://www.jameslindlibrary.org/
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1.3 Bias in Controlled Trials 
 
When interpreting the results of a controlled trial one needs to 

consider potential sources of bias. 

 

SAMPLING bias - Unrepresentative nature of study sample. Patient 

included may not be typical of the usual clinical population. 

 

ALLOCATION bias – The prognosis of patients receiving each 

treatment may differ. 

 

PERFORMANCE bias - Delivery of other aspects of treatment to 

each treatment group may differ e.g. In a clinical trial comparing 

surgical procedures the post-operative care could differ between 

treatments. 

 

FOLLOWUP bias -Type and number of patients lost to follow-up 

may differ between treatment groups. 

 

ASSESSMENT  bias – The researcher may record the outcome 

more or less favourably for one treatment group than another due to 

their prejudice. 

 

STATISTICAL ANALYSIS bias – carry out multiple inferential 

analyses before choosing the one most favourable to the desired 

conclusion. 
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Methods for Preventing Bias 

Concealment  is considered to be the most effective way of 

preventing bias. It refers to the practice of withholding details of the 

allocated treatment from the participants in a trial (patients, care 

providers, researchers or statistician).  

Randomisation , that is the process of randomly choosing the 

treatment a patient receives, is also important.  

 

Bias Due to Lack of Concealment Prior to 

Treatment Allocation 

 

Knowledge of the next treatment allocation may influence  

(i) Patient’s willingness to participate.  

(ii) Clinician’s determination to recruit a particular patient into 

trial leading to sampling and allocation bias.  

These may both vary due to the characteristic or prognosis of the 

patient. It is important therefore that the next treatment allocation is 

concealed from both the patient and clinician prior to the decision to 

join the trial being made.  

 

After a patient has been allocated treatment it may be possible to 

continue to conceal the allocation from both the patient and the 

clinician.   
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Bias Due to Lack of Concealment after Treatment 

Allocation 

Patients 

 Default from treatment. 

 Seek alternative treatments.  

 Modify health related behaviour such as diet or lifestyle. 

Treating health professionals  

 Change expectation of treatment which might affect the patient’s 

response. 

 Influence choice of secondary treatments. 

Outcome Assessor 

 Outcome assessor’s awareness of the patient’s treatment may 

influence the measured outcome. 

 Knowledge of treatment may influence the patient’s self-

assessment of outcome. 

Double Blind Clinical Trial Neither the patient nor the 

treating/assessing clinician knows which treatment a patient is 

receiving. This should reduce bias in performance of other aspects 

of treatment, follow-up and assessment of outcome. 

Single Blind Clinical Trial Treatment allocation is concealed from 

the patient but not the clinician. 

An Open / Unconcealed Clinical Trial 

Patients and treating health professional both know which treatment 

the patient is receiving. 
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Placebo Treatments 

A placebo drug is an inactive substance designed to appear exactly 

like a comparison treatment, but devoid of the active component. 

 

 A placebo should match the active treatment in appearance, 

labelling and taste.  The appearance of drug and placebo should 

be tested before the trial to make sure patients cannot identify 

the placebo. 

 

 The term placebo may also be used to describe a treatment that 

has been shown to have no or minimal effect, which is to be used 

as a control treatment. For example a patient information leaflet 

has been shown to have no effect on outcome for some 

conditions so it may be considered to be a placebo (although it 

may differ in appearance from the active treatment). 

 

 Use of placebo treatment will be unethical if an established active 

treatment exists that is known to be effective. In such cases an 

active control group, such as best standard treatment, should be 

used in place of a placebo. 

 

Ex 1.5 Given an examples of a treatments that could/ could not be 

tested in both a double blind trial. 
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Problems of Implementing Concealment 

 

 The patient may guess which of the drug  treatments being 

tested they are receiving from taste. 

 The patient, clinician or researcher may guess from appearance 

or side effects. 

Example: Trial of Aspirin for Myocardial Infarction Prevention 

380 trial participants asked which drug they received.  

50% correct, 25 % incorrect, 25% refused or selected a drug not 

being tested.  

 

Example: Staining of teeth in trials of fluoride toothpastes. 

 

 The drugs may have different dosage or frequency or delivery 

systems.  

Example: In the treatment of asthma different drugs may have 

different frequencies. It may therefore be necessary to include 

placebo drugs to give each treatment the same dosage regime. 

 

Matching active drug and placebo may be difficult and costly. 

Double-blind trials can become much more complex for chronic 

diseases where the patients are on long-term medication that might 

require adjustment of dosage. Procedures also need to be in place 

should a patient lose their tablets.  This complexity may make it 

impossible for trials of some drug to be double blind. 
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1.4 The Importance of Randomisation  

 

 It enables concealment of allocation from participants prior to 

randomisation thereby preventing allocation bias. 

 It creates treatment groups with similar distribution of patient 

characteristics (both recorded and unrecorded) thereby 

supporting causal inference. 

 It provides a logical basis for statistical inference.   

 

Note that Randomisation is not the same as Random Sampling . 

 

Problems of Randomisation 

 Lack of equipoise. May be unethical if there is already evidence 

that one treatment is better or that patients may incur harm due 

to one treatment. 

 Sampling bias. Patients that agree to participate in a randomised 

trial may be atypical, for example the elderly and frail are known 

to be less likely to participate. 

 

Even with randomisation it is still possible for allocation bias to 

occur due to the play of chance leading to differences in treatment 

groups. This is called chance bias.  

  



 

MATH 38071 19 Part 1 

Summary: Biases in Controlled Clinical Trials 

SAMPLING bias - Unrepresentative nature of study sample.  

Solution: Modify patient recruitment – change inclusion and 

exclusion criteria. 

  

ALLOCATION bias - Prognosis of patients receiving each 

treatment may differ.   

Solution: Randomisation + making sure it is carried out correctly. 

 

PERFORMANCE bias - Delivery of other aspects of treatment to 

each group may differ  

Solution: Concealment after randomisation, Standardisation of 

additional treatments and other care procedures. 

 

FOLLOWUP bias -Type and number of patients lost to follow-up 

may differ between treatment groups. 

Solution: Rigorous follow-up of all patients in both treatment groups. 

  

ASSESSMENT or MEASUREMENT  bias – The researcher may 

record the outcome more or less favourably for one group. 

Solutions: Conceal treatment allocation from outcome assessor. 

 

ANALYSIS bias –Different statistical analyses may give different 

results.  

Solutions: Use of a predefined statistical analysis plan, Statistical 

analysis carried out with the treatment allocation anonymized. 
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Figure 1.1 Schematic Diagram of a Randomised Controlled Trial 

 

  

Contact potential patient 
requiring treatment 

Check eligibility 
(Inclusion  and Exclusion Criteria) 

Randomise 
Randomly allocate to either  
New treatment  or Control 

New Treatment Control Treatment  

Patients followed up 

Statistical analysis to compare Average 
Outcomes for Each Treatment 

 

Outcome measured in patients 

Consent 
refused 

Patient 
ineligible 

Obtain informed consent 

Patient agrees to enter trial 
 



 

MATH 38071 21 Part 1 

1.5 Ethical Issues Related to Randomised Trials 

Ethical dilemmas  

 Is it ethical to withhold a new treatment that is thought to be 

better? 

 Is routine practice based on inadequately tested treatments with 

no proven efficacy ethical? 

 How much should the patient be told about the two treatments 

being compared? 

Ethical Principles 

 Patients must never be given a treatment that is known to be 

inferior. Treatments should be in equipoise, that is there needs to 

be uncertainty regarding which treatment is better. 

 Prior to recruitment patients must be fully informed about 

possible adverse reactions and side-effects they may experience.  

 Once informed, they, or their representative in the case of non-

competent patients, must give consent, preferably in writing.  

 Withholding consent must not compromise the patient’s future 

treatment. 

 Patients who have entered a trial must be able to withdraw at any 

time. 

Mechanism to protection the interest of the patients 

 Ethics committee approval of research proposals. 

 Individual Informed consent by the patient. 

 A data monitoring and ethical committee to monitor progress of 

the trial.  
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1.6 Some Important Randomised Controlled Trials 

Streptomycin in the treatment of pulmonary tuberculosis (UK 

Medical Research Council, 1948) 

- Streptomycin and bed rest vs. bed rest alone. 

Important features: 

- Randomisation using sealed envelopes. 

- Blinded, replicated and standardised assessment of x-rays. 

- Significantly better survival and radiological outcome in the 

streptomycin group. 

 

Antihistaminic drugs for the treatment of the common cold (UK 

Medical Research Council, 1950) - Sample size of 1550 cases. 

Important features: 

- Use of a placebo to make the trial double blind. 

- Important as patients asked to evaluate their own outcome. 

The end result showed no difference (40% antihistamine, 39% 

placebo) 

 

Salk Polio Vaccine Trial (USA 1954) 

- Observational study - school grade 2 pupils vaccinated and  

compared with unvaccinated grade 1 and 3. 

- Randomised controlled double blind trial – 400,000 children. 

Important features: 

- Large  population based trial of preventative intervention. 

- Demonstrated bias of non-randomised studies. 

- Used a saline as a placebo vaccine. 
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2. Basic Analyses 
for Continuous 
Measures   
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2.1 Randomization and Causal Inference 

 

One of the advantages of randomization is that it justifies causal 

inference from statistical analysis rather than just association.  

Consider a randomized controlled trial in which patients have been 

randomized to either a new treatment (T) or a control treatment (C). 

For the i
th
 patient an outcome measure, 

iY  , has been determined. 

A patient has two potential outcomes, say  
iY T  and  iY C . The 

ideal way to estimate the effect of treatment would be to give both 

treatments to each patient, and calculate the benefit of treatment as 

the difference between the two potential outcomes. The treatment 

effect for the i
th 

patient would therefore be    i i iY Y CT   . The 

expected treatment effect is therefore,

      

           

        
        

  .Pr .Pr

  .Pr .Pr

                .Pr .Pr

   

             

           

           

i i i

i i i i

i i

i i

E E Y Y CT

E Y Y i T E Y Y i CC i T C i CT T

E Y i T E Y i Ti T C i TT

E Y i C E Y i Ci C C i CT

 

In most trials a patient can only receive one treatment. If a patient 

receives treatment T, the outcome  iY C  cannot be observed. 

 iY C  is called a counter-factual outcome for patients that 

treatment. Similarly,  
iY T  is the counter-factual outcome for 

patients receiving treatment C. Randomization allows us to assert:   

    i iE Y i T E Y i CC C           and    
i iE Y i C E Y i TT T          . 
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Define  
T iE Y i TT       and  C iE Y i CC      . 

Hence  

 
         .Pr .Pr.Pr .Pr

  

   

 

     

 

C CT T

T C

i T i Ci T i C
 

The expected values, 
T and

C , can be estimated by the sample 

means for each group, say
Ty and 

Cy . Hence, the expected 

treatment effect can be estimated by 

ˆ
T Cy y    . 

If Y is a continuous normally distributed outcome measure, a 

statistical test of the null hypothesis 
0 : 0H    can be carried out  

using a two independent samples t-test.  

 

In observational studies there is no randomization. Other methods 

have to be used  to  allow one to assert that

            i iE Y i C E Y i TT T and             i iE Y i T E Y i CC C  

Design methods  

Matching of cases with controls in case-control studies. 

 

Stratification or matching exposed and unexposed subjects in 

cohort studies. 

 

Data analysis 

Using statistical modelling to adjust for confounding variables. 
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2.2 Glossary: Statistical Inference Terminology 

 
Hypothesis test: A general term for the procedure of assessing 
whether “data”  is consistent or otherwise with statements made 
about a “population”. 
 
Null Hypothesis: Represented by H0 meaning “no effect”, “no 
difference” or   “no association” . 
 
Alternative hypothesis: Represented by H1 that usually postulates 
non-zero “effect”, “difference” or “association”. 
 
Significance test: A statistical procedure that when applied to a set 
of observations results in a p-value relative to a null hypothesis.  
A common misinterpretation of significant test is that failure to reject 
the null hypothesis justifies acceptance of the null hypothesis.  
 
 
p-value: Probability of obtaining a test statistic at least as extreme 
as the one that was actually observed, assuming that the null 
hypothesis is true.  
A common misinterpretation of a p-value is to say it is the 
“probability of the null hypothesis”. 
 

Significance level () : The probability at which the null hypothesis 
(H0) is rejected when the null hypothesis is actually true. Typical 
chosen to be 5%, 1%, or 0.1%. It is also referred to as the test size. 
 
Critical value: This is the value of the test statistic corresponding to 
a given significance level.  
 
Confidence interval: A range of values calculated from a sample 
of observations that are believed with a particular probability to 
contain the true population parameter value. A 95% confidence 
interval implies that if the process was repeated again and again 
95% of intervals would contain the true value in the population.  
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2.3 The Two Samples t-test  
 

If the outcome measure Y  is normally distributed, a test statistic 

can be defined as 
 ˆ
T C

T C

y y
T

SE y y





where 

 ˆ .T CSE y y s   , 1 1T Cn n   , 
   2 21 1

2

T T C C

T C

S
n s n s

n n


  

 
with 

Ts  

and 
Cs being the sample standard deviations for the two treatment 

groups.  

 

A two-sided test of the null hypothesis 0 : T CH    against the 

alternative hypothesis 1 : T CH   compares |T| with a critical value,  

 2 t , where  is the significance level and  2T Cn n     is the 

degrees of freedom. If  2T t  , the null hypothesis  0H is 

rejected. 

 

 t/2() is the percentage point of the central t-distribution with   

degrees of freedom such that upper tail probability  Pr t t      .  

Assumptions of the two-sample t-test  

(i) Subjects are independent. 

(ii) The variances of the two populations being compared are equal

 2 2 2

T C    . 

(iii) Data in each population are normally distributed. 
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One-sided and Two-sided Hypothesis Tests 

A one-sided test restricts the alternative hypothesis to be either 

larger, that is  1 : T CH    or smaller 1 : T CH   . For a two-sided 

test the alternative hypothesis is 1 : T CH   . A two-sided test is in 

essence two one-sided tests each with significance level α/2. Based 

on rejection of the null with a two-sided test one can conclude that 

T C   or T C  . 

 

It is recommended that two-sided tests be used unless there is a 

strong a-priori reason to believe rejection in one direction is of 

absolutely no interest. In medical studies this is rarely the case, so 

two-sided tests are recommended and generally used. The decision 

to use a one-sided test in preference to a two-sided test should be 

made prior to analysing the data to prevent statistical analysis bias. 

 

Confidence Intervals for the Difference of Means 

If the outcome measure Y  is normally distributed satisfying the 

assumptions for the t-test , a (1-) confidence interval for the 

treatment effect  is given by    / 2
ˆ

T C T Cy y t SE y y     where 

 ˆ 1 1T C T CSE y y s n n    
   2 21 1

2

T T C C

T C

n s n s
s

n n


  

 
and 

2T Cn n    . 
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Example 2.1: Ventilation Trial. A trial of two ventilation methods 

during cardiac bypass surgery. Seventeen patients undergoing 

cardiac bypass surgery were randomized to one of two ventilation 

schedules using 50% nitrous oxide 50% oxygen. 

New  For 24 hrs 

Control  Only during operation 

The outcome measure for the trial was red cell folate level  at 24 hrs 

post-surgery. 

Table 1.1 Red Cell Folate Level Data and Summary Statistics 
 

Treatment Group New Control 

Red 
Cell 

Folate 
Level 

(g/l) 

251 
275 
291 
293 
332 
347 
354 
360 

206 
210 
226 
249 
255 
273 
285 
295 
309 

Mean    
Ty 312.9 Cy 256.4 

Standard deviation (s.d.) 
Ts 40.7 

Cs 37.1 

Treatment group size 
Tn 8 Cn 9 

 
Figure 1.1 Dotplot of 
data 
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Ex 2.1 Calculate the point estimate of the treatment effect of the 
New treatment compared to the Control treatment. 
Point estimate of the treatment effect is 

312.9ˆ 256.4 56.5T C gy y l        

 

Ex 2.2 Using a two-sample t-test, test whether there is a significant 

treatment effect using a 5% two-sided significance level. 

 

(i) Calculate the pooled standard deviation 

    2 2
2 2

7 40.7 8 37.1
38.8

1 1
2

152

n s n s
T T C C

s
n n
T C

  
 

  


 
 

 

 

(ii) Calculate the standard error of the difference between means 

 ˆ 1
1 1

38.82 18.86
8

1
9

      T C T CSE y y s n n  

 

(iii) Calculate the test statistic 

 

312.9 256.4 56.5
2.995

18ˆ .86 18.86


 





T C

T C

y y
T

SE y y
 

 

T is assumed to have a t-distribution with degrees of freedom 

2T Cn n    . Hence 9 8 2 15    .  
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Using Statistical Tables 

A copy of the School of Mathematics Statistical Tables is available 

on the module page. These give the cumulative distribution for the 

t-distribution  tv,q where q is the cumulative probability for q= 

0.95,0.975, 0.99 and 0.995. For a two-sided test of size= 0.05, the 

critical values is the value of t that give a right tail probability equal 

to 0.025 (/2), which corresponds to q=1-/2=0.975 in the table. 

The critical value for a two-sided 0.05 size test is  therefore 

t15 , 0.975=t0.025(15)=2.1314.   

The null hypothesis of no treatment effect would therefore be 

rejected at a 5% level, because 2.1314T  . The test statistic T is 

also larger than  t15,0.995=t0.005(15)=2.9467. Hence, the null 

hypothesis would also be rejected with a two-sided 1% significance 

level. The p-value is therefore less than 0.01.  Using statistical 

software on can calculate the p-value for 2.995T   to be 0.009. 

Ex 2.3 Calculate the 95% confidence interval of the treatment effect  

A (1-) confidence interval for the treatment effect  is given by 

   / 2
ˆ

T C T Cy y t SE y y     where  ˆ 1 1T C T CSE y y s n n    

   0.02556.5               2.1314      18.86ˆ
T C T Cy y t SE y y      

 

The confidence interval is therefore  

 

 

 

Figure 2.1 STATA Output for Two-Sample t-test and CI for  

http://personalpages.manchester.ac.uk/staff/Chris.Roberts/MATH38071/Statistical%20Tables.pdf
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Ventilation Trial  

 
 

Two-sample t test with equal variances 

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

 Control |       9    256.4444    12.37393     37.1218    227.9101    284.9788 

     New |       8     312.875    14.37935    40.67094    278.8732    346.8768 

---------+-------------------------------------------------------------------- 

    diff |           -56.43056    18.86238               -96.63477   -16.22634 

------------------------------------------------------------------------------ 

    diff = mean(Control) - mean(New)                              t =  -2.9917 

 

Ho: diff = 0                                     degrees of freedom =       15 

 

    

   Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.0046         Pr(|T| > |t|) = 0.0091          Pr(T > t) = 0.9954 

 
 
 

Ex 2.4 Briefly comment on the results of the ventilation trial. 

“For patients receiving bypass surgery there was evidence that 

ventilation for 24 hrs significantly  increased post-operative red 

folate levels by ____ gl  (95% c.i. ______to ______ gl , p<______) 

compared to ventilations restricted to the duration of the operation.” 
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2.4 Assumptions of the two sample t-test and 

confidence interval 

 

The two-sample t-test makes three assumptions: 

I. Subjects are independent. 

Independence relates to the design - are patients’ outcomes 

independent or could patients be interacting in some way? In most 

but not all trials this is plausible. 

 

II. The variance of the two populations being compared are 

equal 2 2 2

T C    . 

 

It is sometimes suggested that one should carry out a test 

comparing variances  2 2

0 : T CH    , such as Levene's test for 

equality of variances, to choose between using the t-test or tests 

such as the Satterthwaite or Welch test that do not assume 2 2

T C  . 

Unfortunately, this procedure has problems. First, the adverse 

effect of unequal variance on the results of a t-test is greatest when 

sample size is small, but in this circumstance the Levene’s test will 

have low power to reject 2 2

0 : T CH   .  Secondly, this is a misuse of 

statistical test, as one cannot use a test to establish the null 

hypothesis  2 2

0 : T CH    only the alternative  2 2

1 : T CH   .   
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III. Data in each population are normally distributed. 

Sometimes tests of normality, such as the Kolmogorov-Smirnov 

test, are suggested to check the distributional assumptions. These 

have the same problem as the Levene’s test as the assumptions of 

normality  is most critical where sample size is small.  A better 

alternative is to check the distributional assumption graphically. 

Alternatively one might consider external evidence from other 

studies using the same measure in similar subjects perhaps with a 

much larger sample size. 

 

Where equality of variance is not plausible the Satterthwaite test   

or the Welch test can be used in place of a two-sample t-test. 

 
Where data are non-normal data can be transformed to be closer to 

normally distributed, by taking the log, square-root, or reciprocal of 

the measure so that a t-test can be used. Note that inference now 

relates to the transformed values. For example if a log 

transformation is used   inference now relates to the ratio of 

geometric means. Alternatively a non-parametric methods that 

make no distributional assumptions can be used such as the 

Fisher-Pitman permutation test or the Mann Whitney U-test can be 

used. 

 
To simplify calculations equality of variance and normality can 

be assumed in all exercises and exam questions. It is important 

therefore only to be aware of the assumptions and the alternatives.  
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3. Analyses of 
Binary Outcome 
Measures 
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3.1 Treatment Effect for Binary Outcome 

Measures 

Suppose the outcome measure Yi  is binary, examples of which 

might include death, survival, recurrence or remission from disease, 

sometimes referred to by the neutral term “event”. One summary of 

outcome is the proportion of patients that had the event in each 

treatment group, which estimates the probability of events in each 

treatment, say T  and C , or population rates.   An alternative 

parameter is the odds of the event, which is the probability of the 

event divided by the probability of the complimentary event. 

 

Table 3.1 Notation for a Trial with a Binary Outcome 

Frequency Dist. Treatment Control 

Yes rT rC 

No nT - rT nC - rC 

Total nT nC 

Probability of Event 

(Population proportion) 

T  C  

Sample proportion 
T

T

T

r
p

n
  C

C

C

r
p

n
  

Odds of Event 

Population Odds  
 

1

T

T




 

 
 

1

C

C




 

Sample Odds 
T

T

T T

r
q

n r



 

C
C

C C

r
q

n r



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The effect of treatment can be measured in three ways 

Rate or Risk Difference, 
T CRD     ,  

Rate Ratio, T

C

RR



        

Odd Ratio, 
 

 

 
 

1 1

1

1

T

T T C

C T C

C

OR



  

  



 
 





  

 

3.2 Inference for the Rate Difference  

The rate difference (RD) is estimated by ˆ
T CRD p p   where 

T
T

T

r
p

n
 and C

C

C

r
p

n
 . The numbers of successes rT and rC have 

distributions   ,T TBin n   and  ,C CBin n  . From properties of the 

binomial distribution the variance of  rT equals  . 1T T Tn   .  

Hence the proportion T
T

T

r
p

n
  is given by 

  
   
2

1T T T

T

T T

Var r
Var p

n n

 
   and similarly for  CVar p . 

Since treatment groups are independent, it follows that 

     
   1 1T T C C

T C T C

T C

Var RD Var p p Var p Var p
n n

    
       
 

. 

This can be estimated by substituting pT and pC for T  and C .  

Hence, 

 
   1 1ˆ ˆˆ T T C C

T C

T C

p p p p
SE RD SE p p

n n

 
     
 

. 
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This is used for confidence interval construction. 

Under the null hypothesis
0 : 0H RD  , 

T C     say. The pooled 

proportion   can be estimated by T C T T C C

T C T C

r r n p n p
p

n n n n

 
 

 
 with  

  T T C C

T C

n n
E p

n n

 



. 

 

Hence, the null standard error can be defined as 

   
 

1 1 1 1ˆ ˆ 1null

T C T C

p p p p
SE RD p p

n n n n

   
        

 
. 

This is used for statistical inference on 0 : 0H RD  .    
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Two-Sample z-test of Proportions 

A test of 
0 : 0H RD    vs 

1 : 0H RD  can be constructed as 

 

ˆ

ˆˆ ˆ
T C

RD

null T Cnull

RD p p
Z

SE p pSE RD


 

  
 

. 

Under assumptions given below ZRD is approximates a 

standardised normal distribution,  0,1N . This is the two sample z-

test for proportions corresponding to the two-sample t-test for 

means.  

 

Two-Sample z-test of Proportions 

 ˆ
T C

RD

null T C

p p
Z

SE p p





 and    

1 1ˆ 1null T C

T C

SE p p p p
n n

 
    

 
 

where T C

T C

r r
p

n n





.  

For an -size two-sided test of 0 : 0H RD  vs 1 : 0H RD  compare 

RDZ  against critical values defined by 
2z .  Alternatively, the p-

values for the two-sided test is given by   2 1 RDZ  where  is 

the cumulative density of the standardized normal distribution. 

 

Confidence Interval 

A (1-) confidence interval for  T CRD     is given by 

  / 2
ˆ

T C T Cp p z SE p p      

where  
   1 1ˆ T T C C

T C

T C

p p p p
SE p p

n n

 
    

Assumptions 

(i) subjects are independent and  

(ii) nT p, nC p , nT (1-p), nC (1-p) are all greater than 5. 
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There are improved formulae for the z-test and confidence interval 

that include a continuity correction to improve the normal 

approximation of the binomial distribution, but these methods are 

not considered any further in this module. 

Example 3.1.  The Propranolol Trial  

91 patients admitted with myocardial infarction were randomly 

allocated to propranolol or placebo. The table below records 

survival status of propranolol treated patients and control patients 

28 days after admission 

Status 28 days after 
admission 

Propranolol Placebo 

Alive   38 29 
Died 7 17 

Total 45 46 

Ex 3.1 For the Propranolol Trial data calculates the point estimate 

of the difference in survival rate 

For the Propranolol group the rate = 

For the Placebo group the rate = 
 
Therefore  RD=  
 
Ex 3.2 Check the assumptions of z-test of proportions 
 

The assumptions of the z-test of proportions are that nT p, nC p , nT 

(1-p), nC (1-p) are all greater than 5.  

T C

T C

r r
p

n n


 


  

Hence nT p, nC p , nT (1-p), nC (1-p) are  
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Ex 3.3 Compare the survival rate for the two treatments using a z-

test of proportions. 

From above p=0.736. , T C
T C

T C

r r
p p

n n
   

   
1 1ˆ 1null T C

T C

SE p p p p
n n

 
     

 
 

 ˆ
T C

RD

null T C

p p
Z

SE p p


 

  

From table of the normal distribution the critical values of a two-

sided 5% level test are
 

1.960
 

  2 1p value Z   
  

 

Note that it does not matter whether the z-test is compute based on 

the proportion who have died or the proportion still alive. 

 

Normal Distribution and Normal Statistical Tables 

 

Suppose  is the cumulative distribution function of a standardized 

normal distribution  0,1N . In this module the percentage point z of 

a random variable Z with distribution  0,1N is the value such that 

    1P Z z z      . 

Tables provided by the Mathematic department define a percentage 

point the percentage point 
qz to be the value such that  

 q qZ z zP q     . 
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Table 3.2 Summary of Important  Percentage Points of the Standardized 
Normal Distribution 

 q z 

0.2 0.8 0.8416 
0.1 0.9 1.2816 
0.05 0.95 1.6449 

0.025 0.975 1.9600 
0.01 0.99 2.3263 

0.005 0.995 2.5758 

 

Calculation of 95%-Confidence interval for difference of 
proportions 

Ex 3.4 For the Propranolol Trial calculate a 95% confidence interval 
of the difference in survival rate for the two treatments. 

 
   1 1ˆ T T C C

T C

T C

p p p p
SE p p

n n

 
      

 

From tables 0.025z    

(1-) confidence interval calculated from
 

 / 2
ˆ

T C T Cp p z SE p p     

 

 

 

Ex 3.5 Briefly  comment on the effect of propranolol treatment on 

survival.  

“ There was evidence that for patients admitted with myocardial 

infarction those treated with propranolol had an improved survival at 

28 days post admission  (             ) as compared to untreated 

patients (          ) with a difference of        (95% c.i.          to                            

p-value =               ).” 

Note. In the critical appraisal paper  they write p to represent th p-

value 
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Figure 3.1 STATA Output for z-test of proportions for the 

Propranolol Trial Data based on numbers of death before 28 days 

Two-sample test of proportion                Placebo: Number of obs =       46 

                                         Propranolol: Number of obs =       45 

------------------------------------------------------------------------------ 

    Variable |       Mean   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     Placebo |   .3695652   .0711683                      .2300779    .5090526 

 Propranolol |   .1555556   .0540284                      .0496619    .2614493 

-------------+---------------------------------------------------------------- 

        diff |   .2140097   .0893532                      .0388806    .3891387 

              |  under Ho:   .0923926     2.32   0.021 

------------------------------------------------------------------------------ 

         

  diff = prop(Placebo) - prop(Propranolol)                  z =   2.3163 

    Ho: diff = 0 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(Z < z) = 0.9897         Pr(|Z| < |z|) = 0.0205          Pr(Z > z) = 0.0103 

 

  

Numbers Need to Treat  

Numbers need to treat (NNT) is defined as the average of the 

number of patients that need to be treated to prevent one additional 

bad outcome. This measure is popular with doctors as it gives them  

a measure of the population level benefit of any treatment. 

NNT is simply the reciprocal of the rate difference RD, that 

1
NNT

RD
 . 

A confidence interval of NTT can be found by taking the reciprocal 

of the confidence limits of RD. Note that the confidence interval 

becomes nonsensical  if the confidence interval of RD includes 

zero. 

Ex 3.6  Calculate the point estimate and 95% confidence interval of 

NNT for propranolol . 
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3.3 Inference Based on the Odd Ratio  
 

The odd ratio 
 

 

1

1

T C

T C

OR
 

 





can be estimated by 

 

 

1ˆ
1






T T

C C

p p
OR

p p
. 

Since T
T

T

r
p

n
 and C

C

C

r
p

n
 ,  

 

 
ˆ  = 





T C C

T T C

r n r
OR

n r r
. 

Example cont. Propranolol Trial 

Status 28 days after 
admission 

Propranolol Placebo 

Alive   38 29 
Died 7 17 

Total 45 46 

Proportion surviving 84% (38/45) 63% (29/46) 

  

Ex 3.7Calculate the odds ratio of survival until 28 days for 

propranolol treatment as compared to placebo 

 

 
ˆ  = 






T C C

T T C

r n r
OR

n r r
 

 

The odds ratio takes values in the range (0,). An odds ratio equal 

to 1 implies no effect. If the odds ratio is greater than 1, it implies 

increased odds and below 1 implies reduced odds. The odd ratio for  

an event (say death) is the reciprocal of the odd ratio for the 

complimentary event (say survival). 
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Confidence Intervals for Odds Ratios  

The sampling distribution of odds ratio (OR) is poorly approximated 

by the normal distribution. Instead, confidence intervals for the 

 loge OR  are calculated and then exponents (anti-logs) taken to get 

the confidence interval of the odds ratio. This means that the 

resulting confidence interval is not symmetric about the point 

estimate.  

With the notation above 
1 1 1 1ˆloge

T T T C C C

SE OR
r n r r n r

      
    

 

This can be derived as follows: 

 
 

1ˆlog log
1

T C

e e

T C

p p
Var OR Var

p p

  
            

 

   
log log

1 1

T C
e e

T C

p p
Var

p p

    
     

      

 

log log
1 1

T C
e e

T C

p p
Var Var

p p

     
       

       

(*) 

because treatment groups are independent. Approximate standard 

errors can be calculated using the Delta Method, which is based on 

a Taylor Series approximation. This states that  

     
   

2

x E x
Var f x f x Var x


   . 

Considering    log
1

T
T e

T

p
f p

p

 
  

 
’  

. 

Hence  
 

1 1 1

1 1
T

T T T T

f p
p p p p

   
 
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Since  E p   and  
 1T T

T

T

Var p
n

 
  ,   

it follows that 

 
 

 

2

11 1
log

1 1 1

T TT
e

T T T T T T T

p
Var

p n n

 

   

      
      

        

. 

 
Similarly, 

 
1

log
1 1

C
e

C C C C

p
Var

p n  

    
    

     

. 

Substitution in the equation (*) above give 

   
1 1ˆlog
1 1

e

T T T C C C

Var OR
n n   

    
    

 

   
1 1 1 1

1 1T T T T C C C Cn n n n   
   

 
. 

 
The standard error can be obtained by substitution of pT and pC for 

T  and C . 

Hence 
   

1 1 1 1ˆlog
1 1

e

T T T T C C C C

SE OR
n p n p n p n p

      
    

 

1 1 1 1

T T T C C Cr n r r n r
   

 
 as required ■ 

 

Using this result the (1-) confidence interval of   loge OR  is 

 
 

/ 2

1 1 1 1
log T C C

e

T T C T T T C C C

r n r
z

n r r r n r r n r


 
    

   
 

Confidence intervals for the odds ratio are obtained by taking the 

exponents.  
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Ex 3.8 For the data from the Propranolol trial calculate the 95% 

confidence interval for the odd of survival at 28 days for propranolol 

as compared to placebo. 

ˆloge OR  
 

 

 

1 1 1 1ˆ ˆloge

T T T C C C

SE OR
r n r r n r

       
    

 

95% Confidence intervals of ˆloge OR 
 

 are given by 

  1.96   , that is  
 
 
 

Taking exponentials 95% Confidence interval of ÔR  is (       ,         ) 
 
 

 

Hypotheses Test for the Odds Ratio 

A test of the null hypothesis Ho:OR=1 could be based on the 

statistic 

ˆlog

ˆ ˆlog

e

lor

e

OR
Z

SE OR

 
 

  
  

 i.e. test 
0

ˆ: log 0eH OR  
 

. In practice 

one does not do this as the test of the null Ho: OR=1 is equivalent to 

the test based on the rate difference, Ho: RD=0, which is preferable 

as it does not depend an approximate standard error determined 

using the delta method.  The p-value for the z-test of proportions 

calculated above is therefore used for hypothesis tests of the odds 

ratio in preference to the statistic lorZ . 
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Ex 3.9 Summarize the results of the propranolol trial based on 

Odds Ratios analysis. 

“ There was evidence that propranolol increased the odds of 

survival compared to placebo (OR= 3.18, 95% c.i. 1.17 to 8.67, 

p=0.022).” 

 

Interpretation of the Odds Ratio 

Many people find odds ratios difficult to interpret, but the odds ratio 

is an important measure of effect in medical statistics. One reason 

for this is that the odds ratio can be estimated by logistic regression, 

which enables estimation of the odds ratio adjusted for other 

variables. This is very important for observational studies as it 

enables adjustment of effects for confounding variables. What is 

more the odds ratio is essential for case control studies as it is not 

possible to estimate either the risk difference or the risk ratio of the 

outcome due to the way in which subjects have been selected. 

 

3.4 Analyses Based on the Rate Ratio  

The rate ratio T

C

RR



  can be estimated by ˆ T

C

p
RR

p
  

Confidence intervals for the rate ratio, also called the risk ratio, can 

be constructed in a similar way to the odds ratio. As with the odds 

ratio the hypotheses test for the rate ratio is equivalent to that for 

the rate difference (RD) and so the z-test for proportions is still used 

to test hypotheses. 
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4. Sample Size And 
Power In Parallel 
Group Clinical 
Trials 
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4.1 Sample size and power  
 

Sample calculation is important for two reasons 

 If too few patients are recruited, the trial may lack statistical 

power, so the study is likely to fail to answer the question it is 

attempting to address. 

 If more patients than the minimum required to answer the 

question are recruited, some patients may be exposed to an 

inferior treatment unnecessarily. 

As patient recruitment is often difficult, the first reason is generally 

more important than the second. 

 

Two approaches to sample size in clinical trials 

(i) Predetermined trial size  

The number of patients to be recruited is fixed before the trial starts.  

 

(ii) Trial size determined by outcome   

Statistical analyses, called interim analyses, are carried out 

intermittently as the trial progresses. The trial is stopped if benefit or 

harm is demonstrated. Whilst this type of trial design is attractive, 

outcome needs to be determined shortly after recruitment so the 

interim analysis can be completed. Statistical analysis is also much 

more complex as it needs to account for multiple statistical testing.  

 

Predetermine sample size is much more often used as they are 

easier to organise and run.  To maintain an overall significance 

level of  , called the family wise error rate, the test size for each 
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test is made smaller, but this is complex as sequential statistical 

tests are not independent. This is a hybrid called a group sequential 

trial design that has a maximum sample size but also has interim 

analyses to allow early termination. 

 

4.2 Statistical Power 
 
Consider a trial comparing a new treatment group (T) to a control 

group (C). Suppose  is the treatment effect. To test for a treatment 

effect (  0)  the two-sided hypothesis are: 

Null hypothesis   H0:  =0 

Alternate hypothesis  H1:  0 

 

If H0 is rejected, when H0 is true, a Type I or false positive error has 

occurred. 

Pr [Type I error] = Pr [ Reject H0 | H0] = , 

which is the significance level.  

If instead H0  not rejected, when H0 is false, a Type II  or false 

negative error has occurred. Define  as the probability of a Type II 

error. This depends on the significance level   and the magnitude 

of the effect that we wish to detect. 

Pr [Type II error] = Pr [Not reject H0  | H1 ] =  (, ) 

 

Statistical Power is the probability that a test will detect a difference 

 with a significance level .   Power =1 - (, )   
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Calculation of Power 
 

As previously defined the test statistic of a two sample t-test is 
ˆ

T



  where 1 1T Cn n   . 

 

Fig 4.1  Illustration of power calculation for a normally distributed 

outcome for a two-sided two-sample t-test.  

(i) Smaller Sample Size – Low Power 
 

 
 
(ii) Larger Sample Size - Increased Power 
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Under H1 the test statistic 
ˆ

T



 has the non-central t-distribution. 

 

If F is the cumulative distribution of the non-central t-distribution 

with 2T Cn n   degrees of freedom  and non-centrality parameter 

̂


, then  

  2 21 , 1 ( 2) ( 2)T C T CPower F t n n F t n n 

 
  

 

    
               

    
 

4.3 Sample Size Calculation for Continuous 

Outcome Measures 

 

Because the central and non-central t-distributions have degrees of 

freedom determined by sample size there is not a closed form 

formula for sample size based on this distribution. Instead, we shall 

use the normal distribution as an approximation for the central and 

non-central t-distributions to get an approximate formula. 

For a normally distributed outcome variable the approximate 

number of subjects required in each of two equal sized groups  

to have power 1- to detect a treatment effect  using a two group t-

test with an  two-sided significance level is  

 
2

2

22

2
n z z 




  ,       

where  is the within group standard deviation. 

Assuming n is sufficiently large such that a normal approximation to 

the central and non-central t-distribution is adequate, the test 
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statistic T has the standard normal distribution  0,1N  under Ho and 

,1N




 
 
 

 under H1. Therefore 

2 21 1Power z z 

 


 

    
           

    
 [1] 

where 1 1T Cn n    and   is the cumulative distribution for 

 0,1N . The second term on the RHS of equation [1]  is negligible, 

therefore 

21 1Power z





 
     

 
 . 

Hence 

2z





 
   

 
. 

Since    z1
,  it follows that 2z z 




  

  

giving 2z z 




  .  [2] 

If equal sized groups are assumed  T Cn n n  , then n2 .  

Substitution into [2] gives 2
2

n
z z 




  . 

Rearrangement gives  
2

2

22

2
n z z 




 

as required■ 
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Power 

From the above derivation the power of a trial with two groups of 

size nT and nC  to detect an treatment effect of magnitude   using a 

two group t-test with an  two-sided significance level is 

21 z




 
  

 
where  is the cumulative distribution function of 

 0,1N  and  1 1T Cn n   . 

 

Figure 4.2 Plot of Power (1 - ) against standardised effect define 

as   for various total sample sizes for a two sample t-test 

assuming a 5% two-sided significance level and equal size groups. 
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Ex 4.1  A clinical trial is planned to compare cognitive behavioural 

therapy (CBT) and a drug therapy for the treatment of depression. 

The primary outcome measure is the HoNOS scale, which is a 

measure of impairment due to psychological distress. From 

published data the within group standard deviation of HoNOS is 

estimated to be 5.7 units.  

(i) Calculate the sample size required for each treatment  to 

detect a treatment effect of  2 units on the HoNOS scale 

with 80% power and  a two group t-test with a 0.05 two-

sided significance level.  

 =          = 

 =      = 

z/2  =     z = 

Using the formula,  
2 2

2
2

2

S

n z z 




   

Sample size per group = 

Software assuming t-distribution give sample size per group= 129 

(ii) Assuming the same significance level, what power would 

the study have with only 50 patients into each treatment? 

 

2

2
1 1.96

5.7 1/50 1/50
1

1 0.58 0.42

Power z




 
  

 
   

 





 

 



 

 
 
 
Note Power determine using statistical software that assumes a t-
distribution rather than a normal approximation equals to 0.41. 
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The Effect of Unequal Randomisation on Sample 
Size  
 
Suppose the allocation ratio between treatment groups is 1:k. i.e. 

for every patient allocated to one group on average k are allocated 

to the other.  For a continuous outcome, it can be shown that the 

total sample size to give the same power is increased by  

 
2

1

4.

k
N

k


 

 where N is the sample size assuming equal allocation. Derivation 

of this formula is set as an exercise. 

 

Table 4.1 Increase in total sample size required to maintain power 

when allocation is unequal 

Allocation 

Ratio 
k 

Percentage Increase 

in sample size  

 
2

1

4.

k

k


 

3:2 1.5 4.2% 

2:1 2 12.5% 

3:1 3 33.3% 

4:1 4 56.3% 

 

From table 4.1 it can be seen that as the allocation ratio increases 

the sample size to achieve the same power increases, but the effect 

is not great until the allocation ratio exceeds 2:1. 
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Practical Considerations when Calculating Sample size 

 To estimate sample size we need to choose a value of . One 

might take   to be  the minimum difference that is thought to be 

clinically important, which is called the minimum clinically 

important difference (MCID). Alternatively, one may have an idea 

of the size of the treatment effect   and choose that instead. 

 

  An estimate of  is needed to complete the calculation. This is 

often obtained from previous trials using the same outcome in a  

similar population. 

 

 Power (1-) = 0.8 or 0.9 and a significance level of 5% are 

generally used.  

 

 The above formula is for a two-side significance test. The sample 

size formula for a one-sided test is obtained by replacing /2 by 

 in the formulae derived. 

 

 Where a trial compares several outcomes, it is usual to specify 

one measure as the primary outcome measure for which 

sample size is then determined. 
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4.4 Sample Size Calculation for Binary 
Outcome Measures 
 
For a binary outcome measure the approximate number of subjects 

required in each of two equal sized groups to have power (1-) to 

detect a treatment effect    T C   using  a two sample z-test of 

proportions with a  two-sided significance level  is 

      
2

2

2

2 1 1 1      



    


T T C Cz z
n

 

were
2

T C 



 . 

Suppose Tp and Cp are the observed proportion of successes in 

each group. The test statistic for the two-tailed z-test of proportions 

test is  
  1 .

T Cp p
T

p p 





 with 1 1T Cn n    and 

T C

T C

r r
p

n n





.  

The distribution of T  is approximately  
1 1

0, 1
T C

N
n n

 
  

   
  

 under 

the null hypothesis, with  critical values  2z and 2z
 for an   

level two-sided test  with 
T T C C

T C

n n

n n

 





 . 

Suppose    T C  is the effect under the alternative hypothesis. 

Without loss of generality assume that  > 0. The power 1  equals 

   2 2Pr 1 Pr 1T C T Cp p z p p z                
    . 
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The distribution of T cp p under the alternative hypothesis  is  

   1 1
, T T C C

T C

N
n n

   

  

 
 

. 

Since  > 0,  2Pr 1T Cp p z       
   will be negligible. 

Therefore 

  

   

2. . 1

1 1 1 1T T C C

T C

z

n n

    

    

  
 

    
  

 

 where   is the 

cumulative density function of  0,1N . Since  1 z    , it 

follows that 

  

   

2. . 1

1 1T T C C

T C

z
z

n n





   

   

 
 

 


. 

Assuming equal size groups   T Cn n n  ,  then n2 . 

Rearrangement gives 

     
2

1 1 2 1T T C C
z z

n n
 

     


   
    

Further rearrangement gives 

     2 2 1 1 1T T C Cz z
n

      



    
  

so that 

      
2

2

2

2 1 1 1T T C Cz z
n

      



    


 

giving the required result ■ 
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This formula assumes a normal approximation to the binomial i.e. 

 . 5, 1 5n n    . It may be inaccurate if  T  or C , close to 

either 0 or 1. 
 

The power of a trial with two groups of size nT or nC  to detect a 

treatment effect     T C  using a two sample z-test of 

proportions with an  size two-sided  significance level is   

  

   

2 1
1

1 1

S

T T C C

T C

z

n n

    

   

 
 

  
 

 
 
 
 

 

where  is the cumulative distribution function  0,1N and 

1 1T Cn n     and 
T T C C

T C

n n

n n

 





 . 
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Ex 4.2  In a placebo controlled clinical trial the placebo response is 

0.3 and we expect the response in the drug group to be 0.5. How 

many subjects are required in each group so that we have an 90% 

power at a 5% significance level? 

 

 

T =      C =      = 

 

 =         

 

  12
=  

 

   1 1T T C C      = 

 

 From statistical table  z/2 =   z =  

 

      
2

2

2

2 1 1 1T T C Cz z
n

      



    
  

= 
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4.5 Other Considerations Affecting Trial Size 

In many trials it is not possible to follow-up every patient to obtain 

outcome data. This can be due to many factors such as length of 

follow-up, commitment of patients, or severity of the condition.  In 

these situations sample size calculation needs to take account of 

the potential loss of patients to follow-up. Similarly, patient 

recruitment into a trial may only be a small fraction of the 

percentage of patients that are potentially eligible.   

 

Ex4.3 The total sample size of patients for a trial has been 

estimated to be 248 to achieve the required power. 

(i)  It is thought that outcome data may not be obtained for 

15% of patients randomised. How many patients need to be 

randomised? 

 

 

 

 

(ii) It is thought that only 20% of patients screened for the trial 

will be eligible and agree to join the trial. How many patients 

need to be screened? 

 
 
 
 
 



 

MATH 38071 64 Part 1 

 
 

5. Methods of 

Treatment Allocation 

in Randomised 

Controlled Trials  
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In most clinical trials patients join when they require treatment, they 

will then need to be randomised before they can start a trial 

treatment. Recruitment may therefore take place over many months 

or years. Because of this random sampling can rarely be used to 

select patients for a particular treatment as one cannot define a 

sampling frame. Instead they are randomly allocated a treatment. 

The four most commonly used methods of random allocation are:  

 Simple Randomisation.  

 Block Randomisation also called Randomised Permuted Blocks.  

 Stratified Randomisation. 

 Minimization. 

 

5.1 Simple Randomisation 

 

This is equivalent to tossing a coin as the probability of receiving 

each treatment is kept constant throughout the trial. It is usually 

carried out using a pseudo-random number generator, which is then 

used to create a randomisation list. All the treatment allocations on 

the list are then used in sequence as patients are recruited. 

 
Imbalance with Simple Randomisation  

 
If simple randomisation is used, the numbers of subjects in each 

treatment group is a random variable and so resulting groups may 

not be of equal size. The probability of different degrees of 

imbalance can be estimated using the binomial distribution. For a 

trial with two treatment groups and an equal allocation ratio and 

total size N, the number allocated to each treatment is B[N,0.5]. 
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Table 5.1 Probability of imbalance for difference trial sizes when 

using simple randomisation 
 

Total 

Number of 

Patients 

Percentage difference in numbers  

100% 50% 30% 20% 

Ratio of larger to small sample  sizes 

2:1 3:2 4:3 6:5 

20 12% 50% 50% 82% 

50 2% 20% 32% 48% 

100 0% 6% 19% 37% 

200 0% 1% 6% 18% 

500 0% 0% 0% 4% 

1000 0% 0% 0% 0% 

 

In table 5.1 we see simple randomisation gives equal sized groups 

that in the long run, but may be quite unequal for small sample 

sizes. 

 
Effect of Unequal Sample Size on Power 

 
Suppose the total sample size estimated assuming equal size 

groups is N for a power  1  .  Suppose that there is imbalance in 

treatment group sizes due to randomisation with  
 

T

C

n
k

n
 . It can be 

shown that power for a given value of k is 

 2 2

2
1

1

k
z z z

k
  

  
        

. 

for a normally distributed outcome measure. Derivation of this result 

is set as an exercise. 
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Table 5.2 Loss of power relative to 1:1 for  different levels of 

imbalance  

Ratio of group sizes k or 1/k Power 

6:5 1.2 0.797 

4:3 1.33 0.792 

3:2 1.5 0.784 

2:1 2 0.752 

 

For a given total sample size the power is reduced as the 

imbalance increases. 

 

Summary: Simple Randomisation 

Advantages 

 Simple and not predictable. 

 Similar treatment group sizes in large trials. 

Disadvantages 

 Imbalance in treatment groups sizes leads to some loss of power 

in small trials. 

 Does not balance treatment groups for prognostic factors other 

than by chance. There is the possibility of chance bias due to 

more people with a particularly poor or good prognosis ending up 

in one or other treatment group. 

The alternative to simple randomisation is an adaptive 

randomisation in which the probability of being allocated to a 

particular treatment varies from patient to patient. It can depend on 

the numbers previously allocated to each treatment or the 

characteristics of  patients previously recruited.
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5.2 Blocks Randomisation 

 
Block Randomisation, also referred to as Randomised Permuted 

Blocks, aims to keep treatment group sizes in a particular ratio, 

which is usually 1:1. Blocks of treatment allocations are created 

with each block containing the treatments in the required ratio. 

Blocks are then randomly selected to construct a randomisation list. 

All the treatment allocations on the list are then used in sequence 

as patients are recruited. 

Procedure for Block Randomisation  

1. Suppose the number of treatments being compared is N. Choose 

a block length L (>N). With equal allocations this must be an 

integer multiple of the number of treatments being compared, say 

N.  

2. All sequences of treatment allocations for the chosen block size 

are then enumerated. For a block size L with N treatments, the 

number of unique blocks is   

!

!
N

L
P

M


 where M=L/N assuning 

equal allocation ratio. 

3. Select a sequence of numbers between 1 and P at random from 

random number tables or equivalent.  

4. Assemble a randomisation list by selecting the blocks according 

to the sequence of random numbers.  

5. Patients are then allocated in turn according to the list. 
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Ex5.1 Assuming equal allocation is required, create a 

randomisation list of 20 patients for a trial with two treatments using 

block randomisation with a block size of four and the random 

number sequence 1, 6, 3, 1, 4. 

L=   and N =   gives P                            unique blocks .   

 

Using the labels A and B for the two treatment the unique blocks 

are  

 

 

The blocks can then be chosen using the random number 

sequence and added to the table create the randomisation list. 

 

Table 5.3 Randomisation list constructed using block randomisation 
Patient  

Num 
1 2 3 4 5 6 7 8 9 

1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

Block                     

Treat. 
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Summary: Block Randomisation 

 
Advantages compared to Simple Randomisation 

 Reduces imbalance in group sizes. For two groups with block 

length L and allocation ratio of (1:1) the maximum imbalance 

during the trial is L/2 and group sizes are balanced at the end of 

each block. 

 Prevents bias due to secular (time) trends in prognosis of patient 

recruited as similar proportions of each treatment are allocated in 

each time period of the trial. 

Disadvantages 

 More complicate than simple randomisation.  

 With a small block length it may be possible to predict the next 

allocation. For this reason a block size of 2 is never used.  One 

way to reduce predictability is to use a random mixture of block of 

different sizes. e.g. for two treatments use blocks of sizes 4, 6 

and 8. 
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5.3 Allocation and Prognostic Factors 
 
Block randomisation only balances the design with respect to size. 

As with simple randomisation, it does not balance treatment groups 

for prognostic factors. By chance, the composition of the two groups 

may differ. For example, suppose a small proportion of eligible 

patients have a particularly poor or good prognosis. From the table 

5.1 it can be seen that these could be unequally distributed 

between treatment arms, causing chance bias.  

 

Since it is desirable to have treatment groups that have a similar 

composition in terms of important prognostic factors, it makes 

sense to vary the allocation probability to achieve this.  Two 

methods that allow this are Stratified Randomisation and 

Minimization. Nevertheless block randomisation is still relevant, as it 

is required for stratified randomisation. 

 
Stratified Randomisation 

 

A small number of prognostic factors can be balanced using this 

form of randomisation by using different block randomisations for 

groups or strata of patients.  Before the trial begins strata need to 

be defined either by a categorical variable such as gender or by 

dividing a continuous variable such as age into bands.   
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Procedure for Stratified Randomisation  

1. Select a categorical variable that defines the strata e.g. age 

banding (-64, 65-74,75+) 

2. Construct separate randomisation list for each strata using block 

randomisation. 

 

Stratification may be extended to two or more factors but the 

number of block randomisation lists required rapidly becomes large. 

For example 3 factors each with just 2 levels would requires 
32 8  

separate lists.  As well as the added complexity, with many lists 

there may be many incomplete blocks to be left at the end of the 

trial that could cause imbalance unless the trial is large.   

 
Note that if simple randomisation is used to prepare the list for each 

strata in place of block randomisation, the benefit of stratified 

randomisation is lost, as this will be no different to simple 

randomisation.  

 

Summary Stratified Randomisation 

Advantages 

 Balances groups on prognostic factors used to stratify. 

Disadvantages 

 More complex to organize and administer, which could lead to 

mistakes. 

 Only feasible with a small number of strata / prognostic factors.   
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Minimisation 

To carry out minimization one begins by selecting the factors we 

wish to control. These need to be categorical variable or converted 

into such by banding.  

 

There are two type of minimization, deterministic and stochastic, the 

difference between which is explained below. 

 
Procedure for Minimisation 

 
1. For each levels of each factor being controlled, a running total is 

kept for the numbers of parents assigned to each treatment. 

2. When a new patient is recruited, the totals for that patient’s 

characteristic are added together for each treatment group. The 

patient is then assigned to 

(i) the treatment group with smaller total.  

(deterministic minimization) 

  or 

(ii) probabilistically using a larger probability (say 0.6 or 0.7) 

for the treatment group with the smaller total.  

(stochastic minimization) 

3. After each patient is entered into the trial, the relevant totals for 

each factor are updated based on the treatment allocation that 

took place, ready for the next patient.  

 



 

MATH 38071 74 Part 1 

4. If totals are equal, simple randomisation is used. Hence, the first 

patient is allocated using simple randomisation as all totals are 

zero at the start of the trial. 

 

Ex 5.2 The table below summarizes the minimization totals after 50 

patients have been recruited into a trial with two minimization factors 

Sex and Hospital. Fill in the characteristics of the 51
st
 and 52

nd
 

patients. Using these characteristics apply deterministic minimization to 

allocation the 51
st
 and 52

nd
 patients showing the up-dated minimization 

totals and the treatment allocation for each patient 

 

Factor Sex Hospital  Treatment 

Level Male Fem. I II III Total Allocated 

Treat A B A B A B A B A B A B  

Patient 
No 

             

50 16 14 10 10 13 12 9 6 4 6 26 24 A 

51              

52              

 
Characteristics of Patient 51: Sex =      Hospital =  

Treatment Sex Hospital Total 

A    

B    

 
Characteristics of Patient 52: Sex =  Hospital =  

Treatment Sex Hospital Total 

A    

B    
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We have used deterministic minimisation in this example for 

illustrative purposes, but deterministic minimization can be 

predictable based on knowledge of previous allocations. Stochastic 

minimisation is recommended but this is complicate without 

specialist software. 

Summary: Minimization 

 
Advantages  

 Balance can be achieved on a larger set of prognostic factors 

than for stratified randomisation. 

 

Disadvantages 

 Complicated as randomisation list cannot be prepared in 

advance but depend on the characteristics of patients as they are 

recruited to the trial. It is tedious to do without specialist software. 

 

Comparison of Stratified Randomisation and Minimization 
 

Stratified randomisation maintains balance on all combinations of 

factors.  If a study is stratified on say gender and severity (mild, 

severe), balance between treatments would be maintained on each 

four combinations (male & mild), (male & severe), (female & mild) 

and (female & severe).  
 

 

Minimisation maintains balance between treatments for each level 

of a factor but not on combinations of factors. 

 

  



 

MATH 38071 76 Part 1 

6. Statistical Analysis Using  

Baseline Measurements 
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6.1 Baseline Data in Clinical Trials 

 

In most clinical trials data is collected on the characteristics of 

patients in addition to the outcome measures. As well as recording 

demographic data such as age and sex, information will be 

collected regarding the clinical status of the patient at the time of 

entry into the trial, which could include values of the trial outcome 

measures at entry into the trial. For example in a trial comparing 

treatments for osteoarthritis of the knee, one might record 

information regarding pain, physical impairment or psychological 

distress, on entry into the trial . Such data may be required to 

confirm that patients satisfy the inclusion criteria for the trial. It is 

also used to describe the characteristic of patients entering the trial. 

Standard practices would be to present a table summarizing the 

characteristics for each treatment group. 

 

Data collected prior to randomisation are called baseline data. 

This data can also be used in the estimation and testing hypotheses 

regarding the treatment effect.  As we shall see, for just one 

outcome measure, there are several ways in which this can be 

done. If these are all carried out and the investigator allowed to 

choose on the basis of the results, it is likely that the most 

favourable will be presented. Alternatively, all could will be 

presented, which could be a problem, if they give conflicting results. 

Either way, this could distort the published report and would be a 

source of statistical analysis bias.  To prevent this the choice of 
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analysis should not be based on the results of the analyses of the 

trial, but need to be documented in advance in a statistical analysis 

plan. To do this we require criteria to make the decision in advance 

as to which method of analysis should be used . 

 

Ex 6.1 The FAP Trial Data 

FAP is a genetic defect that predisposes those affected to develop 

large numbers of polyps in the colon that are prone to become 

malignant. In this trial patients with FAP were randomly allocated to 

receive a drug therapy (sulindac) or a placebo. 

Patient Treatment  Polyp  Size 
ID Group Baseline (X) 12 Months (Y) 

1 sulindac 5.0 1.0 
2 placebo 3.4 2.1 
3 sulindac 3.0 1.2 
4 placebo 4.2 4.1 
5 sulindac 2.2 3.3 
6 placebo 2.0 3.0 
7 placebo 4.2 2.5 
8 placebo 4.8 4.4 
9 sulindac 5.5 3.5 

10 sulindac 1.7 0.8 
11 placebo 2.5 3.0 
12 placebo 2.3 2.7 
13 placebo 2.4 2.7 
14 sulindac 3.0 4.2 
15 placebo 4.0 2.9 
16 placebo 3.2 3.7 
17 sulindac 3.0 1.1 
18 sulindac 4.0 0.4 
19 sulindac 2.8 1.0 

Piantadosi  S. Clinical Trials: A methodological Perspective p302 , Wiley 1997 
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6.2  Possible Treatment Effect Estimators  
 

(i) Unadjusted  

Suppose the random variable Yi  represents the continuous 

outcome for the i
th
 patient in either the new treatment group (T) or 

the control group (C), and suppose  

i U iY        for i C  

i U U iY         for i T  

with   a random variable with    | | 0i T i Ci iE E     .  

    | |i T i CU i iE Y E Y     , 

which can be estimated by 

Û T CY Y     

(ii) Changes Scores  

 

Suppose iX is the value of outcome measure iY  recorded at 

baseline. Medical researchers sometimes calculate the change 

from baseline, i i iC Y X   , which is call the change score. 

Treatments are compared using iC  instead of iY .  

i i i C iC Y X          for i C  

i i i C C iC Y X          for i T  

with    a random variable with    | | 0i T i Ci iE E     . 

   | |i T i CC i iE C E C    , 

which can be estimated by 
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   Ĉ T C T T C CC C Y X Y X         

where TC and CC  are the sample means of the change score for 

each group.   

 

For both these methods of analysis statistical inference can be 

based on the two-sample t-test and the associated confidence 

interval.  

Figure 6.1 STATA Output for FAP trial  
(i) Unadjusted Analysis  
 
Two-sample t test with unequal variances 

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

Sulindac |       9    1.833333    .4711098    1.413329    .7469522    2.919714 

 Placebo |      10    3.110000    .2306753    .7294595    2.588176    3.631824 

---------+-------------------------------------------------------------------- 

    diff |           -1.276667    .5245527                 .130485    2.422848 

------------------------------------------------------------------------------ 

    diff = mean(Sulindac)- mean(Placebo)                          t =  -2.4338 

Ho: diff = 0                     Satterthwaite's degrees of freedom =  11.6981 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.0160        Pr(|T| > |t|) = 0.0320          Pr(T > t) =0.9840   

 

(ii) Change Score Analysis 
 

Two-sample t test with unequal variances 

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

Sulindac |       9   -1.522222    .5969314    1.790794   -2.898749   -.1456959 

 Placebo |      10   -.1900000    .2857544    .9036346   -.8364213    .4564213 

---------+-------------------------------------------------------------------- 

    diff |            -1.332222    .6618026               -.1160118    2.780456 

------------------------------------------------------------------------------ 

    diff = mean(Sulindac)- mean(Placebo)                          t =  -2.0130 

Ho: diff = 0                     Satterthwaite's degrees of freedom =  11.5476 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 0.0340         Pr(|T| > |t|) = 0.0680          Pr(T > t) =0.9660           

 

Note: Adjusted degrees of freedom have been used in both 

analyses. This method, called the Satterthwaite test and mention in 

2.2, adjusts inference for variance of the two arms being unequal.   
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(iii) Analysis Adjusted by Baseline Variables  

 

Suppose that X is a baseline variable. Suppose for some values   

we define an adjusted treatment effect as 

i i i A iA Y X          for i C  

 i i i A iA Y X           for i T  

with i   a random variable with | | 0i T i Ci iE E           . 

Taking expectations, 

     | |i T i Ci i i iE Y X E Y X        , 

which can be estimated by 

     ˆ
T C T T C CA A Y X Y X          

 

 For simplicity it will be assumed that  X is a single variable, but it 

could be a vector of covariates.  

 

 Baseline variables can be binary or continuous.  If X is a binary 

variable, it is generally convenient to code it with 0 and 1. A 

variable coded in this way is sometimes called an indicator or 

dummy variable. 
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6.3 Comparison of Adjusted and Unadjusted 
Analyses 

 

In a randomised controlled trial    ˆE       is independent of 

 .  Hence the expected values of unadjusted, change and an 

adjusted estimate of the treatment effect are all equal, that is   

     ˆ ˆ ˆ
U CE E E         

 

Proof  

Considering      ̂      T T C CY X Y X . 

   ˆ
T C T CE E Y E Y E X E X                       . 

Randomisation means that    CT XEXE  .  

Therefore   ˆ
T CE E Y E Y             , which is independent of  . 

 

Values of   equal to 0 and 1 correspond to the treatment effect in 

an unadjusted  Û , and change  Ĉ  giving the required result ■ 
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Suppose 
2 2, ,X Y XY    are the variances and covariance of X and Y 

with 
CT nn

11
 . The treatment effect  ˆA  has a minimum variance 

when    equal to    2 2 2ˆ 1YVar          where  is the 

regression coefficient of Y on X and  is the correlation between X 

and Y  conditional on treatment  group. 

Proof 

Again consider      ˆ
T T C CY X Y X        

   ˆ
T C T CVar Var Y Y X X            

   2 ,T C T C T C T CVar Y Y Var X X Cov Y Y X X                  

2. 2 . ,T C T C T C T CVar Y Y Var X X Cov Y Y X X                   [1]  

Considering the first term  

2 ,T C T C T CVar Y Y Var Y Var Y Cov Y Y                   . 

Since treatment groups are independent, , 0T CCov Y Y    . 

Therefore T C T CVar Y Y Var Y Var Y             . 

Since observations are independent, 

2

Y
T

T

Var Y
n


     and 

2

Y
C

C

Var Y
n


    . 

Therefore 
2 2

T C YVar Y Y       where 
CT nn

11
 .  
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Similarly   22

XCT XXVar   and 
2,T C T C XYCov Y Y X X       . 

Substitution into [1] gives     2 2 2 2ˆ 2y X XYVar            [2]  

A minima can be found by differentiation with respect to  . 

   2 2ˆ 2 2X XYVar     



    . 

This equals zero when 
2

XY X    , which is the coefficient for 

regression of Y on X within each treatment group. 

The second derivative   
2

2 2

2
ˆ 2 XVar    




   . 

As this is positive, it follows that this is a minimum. The treatment 

effect estimate with minimum variance is therefore 

   
2

2 2 2 2 2 2

2 2
ˆ 2 1 XY

Y X XY Y

X Y

Var


        
 

 
        

 
  

Since 
2 2

XY X y    ,    2 2 2ˆ 1YVar          as required ■ 
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Estimation of  and     

The treatment effect     can be estimated by fitting a linear 

model, which is a generalization of linear regression. The general 

form of a linear model with k covariates is  

1 1 ...i i k ki iY X X       
. 

where the X’s are the k covariates  and the  ’s the corresponding k 

coefficients. The random variable 
i
 is usually assumed to be 

20,N  
   . If one of the X’s is an indicator variable, the coefficient 𝛽 

is the difference in the mean value of Y for X =1 as compared to 

X=0 , adjusted for other X’s.  

 

When considering the analysis of data from a randomised trial it is 

notational  clearer to separate the matrix of covariates into an 

indicator variable Ii equal to 1 for treatment T and 0 for the control 

C, and a matrix X of other covariates. The model is then written as 

i A i i iY I X        

and the treatment effect is the coefficient of the indicator variable Ii. 

Statistical inference is simply the test of whether the coefficient of 

the indicator variable  Ii  differs from zero, that is 
0
: 0 H vs

1
: 0 H . The matrix of coefficients,  , for other variable is 

generally of less interest and often not given in published reports of 

trials. 
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Fig 6.2 STATA Output for FAP trial  
 
Linear Model Analysis Adjusting for Baseline Polyp Size 
 
      Source |       SS       df       MS              Number of obs =      19 

-------------+------------------------------           F(  2,    16) =    3.48 

       Model |  8.63531123     2  4.31765562           Prob > F      =  0.0556 

    Residual |  19.8541618    16  1.24088511           R-squared     =  0.3031 

-------------+------------------------------           Adj R-squared =  0.2160 

       Total |  28.4894731    18   1.5827485           Root MSE      =   1.114 

 

      size12 |      Coef.   Std. Err.      T    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       size0 |   .2087081    .243071     0.86   0.403    -.3065794    .7239956 

   treatment |  -1.288262   .5120029    -2.52   0.023    -2.373659   -.2028639 

       _cons |   2.421263   .8760753     2.76   0.014     .5640666     4.27846 

-------------+---------------------------------------------------------------- 

 
 
 
Table 6.2 summarizes the treatment effect and inference for all 

three analyses. The null hypothesis of no treatment effect would not 

have been rejected at a 5% level if the change score analysis had 

been carried out. 

Table 6.2 Summary of treatment effect estimates for the FAP trial 

 Treatment 
Effect 

SE 95% 
Lower  

C.I 
Upper 

p-
value 

Unadjusted Û  -1.28 0.52 -2.42 -0.13 0.032 

Change ˆC  -1.33 0.66 -2.78 0.12 0.068 

Linear Model

 ̂   
-1.29

 
0.51 -2.37 -0.20 0.023 
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Comparison of standard errors of Unadjusted, Change Score 

and Linear Model Analyses 

 

From above    2 2 2ˆ 1YVar         , which is a quadratic in . 

From [2]      2 2 2 2 2 2ˆ 2 2C Y X XY Y X Y XVar                  , 

which is a linear function of  .  

Assuming 
2 2

X Y   ,    2 2ˆ 2 1C YVar      . 

The unadjusted standard error is simply   2 2

Û YVar      

Hence 

 

 
2

ˆ
1

Û

Var

Var

 




  
 

and 

 
 

 
ˆ

2 1
ˆ

C

U
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



 

. 

Figure 6.3 comparison of Change Score and Linear models with 

the  unadjusted analysis assuming  
2 2

X Y  . 
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Summary  Analyses using Baseline Data 
 

 

All three estimates of the treatment effect defined in (6.2) are 

unbiased, but an estimate of the treatment effect based on a linear 

model has smaller expected variance, where baseline covariates 

correlate with the outcome measure and it does not matter whether 

this correlation is positive or negative.  

 

Reducing the variance of the treatment effect estimate is important 

as this increases the precision of the estimate, thereby giving 

greater power for a given sample size. As a consequence, if a 

baseline variable is thought to predict outcome, an analysis 

adjusting for this variable is recommended. Where an outcome 

measure is recorded at baseline, then it is usually a strong predictor 

of outcome, and the variable should be used as a covariate. 

 

To prevent the analysis bias, a single set of baseline covariates 

should be selected prior to starting analysis. This should be 

recorded in the statistical analysis plan of the trial. This choice will 

therefore need to be based on prior knowledge or reasoning as to 

what variables are likely to predict outcome irrespective of which 

treatment is received. 
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6.4 A Flawed Analysis using Within Group Change 
from Baseline 
 

 

A statistical analysis sometime seen in the medical literature is to 

carry out a separate paired t-test on each treatment groups.  

Treatments are then compared by using the results of the separate 

statistical tests. If improvement in one group is statistically 

significant but not the other, it is concluded that one treatment is 

more effective than the other. This analysis is illustrated below with 

the FAP data 

Figure 6.4 STATA Output for paired t-test analysis of each 
treatment  
 
Results for: polyp.mtw (treat = 0) 
 
Paired t test 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

  size12 |      10        3.11    .2306753    .7294595    2.588176    3.631824 

   size0 |      10         3.3    .3076795     .972968    2.603981    3.996019 

---------+-------------------------------------------------------------------- 

    diff |      10        -.19    .2857544    .9036346   -.8364213    .4564213 

------------------------------------------------------------------------------ 

     mean(diff) = mean(size12 - size0)                            t =  -0.6649 

 Ho: mean(diff) = 0                              degrees of freedom =        9 

 

 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0 

 Pr(T < t) = 0.2614         Pr(|T| > |t|) = 0.5228          Pr(T > t) = 0.7386 

 

Results for: polyp.mtw (treat = 1) 
 
Paired t test 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

  size12 |       9    1.833333    .4711098    1.413329    .7469522    2.919714 

   size0 |       9    3.355556    .4163703    1.249111    2.395404    4.315707 

---------+-------------------------------------------------------------------- 

    diff |       9   -1.522222    .5969314    1.790794   -2.898749   -.1456959 

------------------------------------------------------------------------------ 

     mean(diff) = mean(size12 - size0)                            t =  -2.5501 

 Ho: mean(diff) = 0                              degrees of freedom =        8 

 

 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0 

 Pr(T < t) = 0.0171         Pr(|T| > |t|) = 0.0342          Pr(T > t) = 0.9829 
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Why the Analysis using Within-Group Changes is Flawed 

 
The main reason why this method is flawed is because the two p-

values relate to two separate hypotheses test and so do not directly 

test the benefit of one treatment as compared to the other, that is 

they do not compare the two potential outcomes. 

 

Use of this type of analysis also suggests other misunderstandings. 

 Failure to reject the null hypothesis, for a treatment does not 

imply that there is no change. The absolute change within each 

treatment groups could be the same but unequal variances may 

affect the probability of rejecting the null hypothesis for one 

treatment and not another.  

 

 Tests of within group change are often statistically significant, but 

change within a treatment group may not be due to treatment.  It 

may occur because the condition naturally resolves. They may 

tell us more about the natural history of the condition than the 

benefit of receiving treatment one treatment as compared to 

another. 

 

Unfortunately, clinical researchers often carry out this type of 

analysis, when the statistical analysis directly comparing the two 

treatments is not statistically significant. This is done in the 

desperate search for a statistically significant result to report. 

 


