6. Statistical Analysis Using

Baseline Measurements
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6.1 Baseline Data in Clinical Trials

In most clinical trials data is collected on the characteristics of
patients in addition to the oufcome measures. As well as recording
demographic data such as age and sex, information will be
collected regarding the clinical status of the patient at the time of
entry into the trial, which could include values of the trial outcome
measures at entry into the trial. For example in a trial comparing
treatments for osteoarthritis of the knee, one might record
information regarding pain, physical impairment or psychological
distress, on entry into the trial . Such data may be required to
confirm that patients satisfy the inclusion criteria for the trial. It is
also used to describe the characteristic of patients entering the trial.
Standard practices would be to present a table summarizing the .

characteristics for each treatment group.

Data collected prior to randomisation are called baseline data.

This data can also be used in the estimation and testing hypotheses
regarding the treatment effect. As we shall see, for just one
outcome measure, there are several ways in which this can be
done. If these are all carried out and the investigator allowed to
choose on the basis of the results, it is likely that the most
favourable will be presented. Alternatively, all could will be
presented, which could be a problem, if they give conflicting results.
Either way, this could distort the published report and would be a

source of statistical analysis bias. To prevent this the choice of
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analysis should not be based on the results of the analyses of the
trial, but need to be documented in advance in a statistical analysis
plan. To do this we require criteria to make the decision in advance

as to which method of analysis should be used .

Ex 6.1 The FAP Trial Data

FAP is a genetic defect that predisposes those affected to develop
large numbers of polyps in the colon that are prone to become
malignant. In this trial patients with FAP were randomly allocated to

receive a drug therapy (sulindac) or a placebo.

Patient Treatment Polyp Size
ID Group Baseline (X) 12 Months (Y)
1 sulindac 5.0 1.0
2 placebo 3.4 2.1
3 sulindac 3.0 1.2
4 placebo 4.2 4.1
5 sulindac 22 3.3
6 placebo 2.0 3.0
7 placebo 4.2 25
8 placebo 4.8 4.4
9 sulindac 5.5 3.5
10 sulindac ' 4.7 0.8
1 placebo 25 3.0
12 placebo 2.3 2.7
13 placebo 2.4 2.7
14 sulindac 3.0 4.2
15 placebo 4.0 29
16 placebo 3.2 3.7
17 sulindac 3.0 1.1
18 sulindac 4.0 0.4
19 - sulindac 2.8 1.0

Piantadosi S. Clinical Trials: A methodological Perspective p302 , Wiley 1997
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6.2 Possible Treatment Effect Estimators

(i) Unadjusted
Suppose the random variable Y; represents the continuous
outcome for the i patient in either the new treatment group (T) or

the control group (C), and suppose
Y, =uy, +e, for i e C
Y =pu, +1, +¢, forieT
with £ a random variable with E[E, |ie T] = E[S,- |ie C] =0
t, =E[Y|ier]-E[Y]icc],
which can be estimated by
=Y -1,

(ii) Changes Scores

Suppose 4Xis the value of outcome measure Y, recorded at

baseline. Medical researchers sometimes calculate the change

from baseline, C;, =Y, = X,  which is call the change score.

Treatments are compared using C; instead of Y.
C.ZK—X,.Z/JC+8; for ie C

1

C=Y-X=u.+1.+¢ forieTl

with € a random variable with E[g; |ie T] = E[gz" |ie C] =0,
Ts :E[C,. ’ieT]—E[CI. ’ie(f] ,

which can be estimated by
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f(? CT—EC :(YT_XT)_(?C_XC)

where ET and 5(; are the sample means of the change score for

each group.

For both these methods of analysis statistical inference can be
based on the two-sample t-test and the associated confidence
interval.

Figure 6.1 STATA Output for FAP trial
0] Unadjusted Analysis

Two-sample t test with unequal variances

Group | Obs Mean std. Err Std. Dev. [95% Conf. Interval]
_________ 2 455 e o st i e et o e e e e e e e e e e i
Sulindac | 9 1.833333 .4711098 1.413329 .7469522 2.919714

Placebo | 10 3.110000 .2306753 . 7294595 2.588176 3.631824

_________ S S,
diff | -1.276667 .5245527 .130485 2.422848
diff = mean (Sulindac)- mean (Placebo) t = -2.4338

Ho: diff = 0 Satterthwaite's degrees of freedom = 11.6981
Ha: diff < O Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 0.0160 Pr(IT| > |tl) = 0.0320 Pr(T > t) =0.9840
=~ _—

(i) Change Score Analysis

Two-sample t test with unequal variances
Group | Obs Mean sStd. Err. sStd. Dev. [95% Conf. Intervall]
_________ L 0 S Sy 5 0 5 e S e e L
Sulindac | 9 -1.522222 .5969314 1.790794 -2.898749 -.1456959
Placebo | 10 -.1900000 .2857544 .9036346 -.8364213 .4564213
_________ o e 2 S 8 S P £
diff | -1.332222 .6618026 -.1160118 2.780456
diff = mean(Sulindac)- mean (Placebo) t = -2.0130
Ho: diff = 0 Satterthwaite's degrees of freedom = 11.5476
Ha: diff < O Ha: diff !'= 0 Ha: diff > 0

Pr(T < t) = 0.0340 Pr(|T| > |[t]|) = 0.0680 Pr(T > t) =0.9660

wn

Note: Adjusted degrees of freedom have been used in both
analyses. This method, called the Satterthwaite test and mention in

2.2, adjusts inference for variance of the two arms being unequal.
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(iii) Analysis Adjusted by Baseline Variables

Suppose that X is a baseline variable. Suppose for some values @

we define an adjusted treatment effect as

AZK—QX,.:;IA-{-E,‘I." for ie C

4=Y-0X,=p, +7(6)+e]

forieT

with & a random variable with E[g;' i e T] = El:gi" |ie Cil =8,

Taking expectations,
t(0)=E[Y,-0X,|icr]-E[Y,-0X,|icc],

which can be estimated by

£(0)=4, - 4. =(Y,-0X,)-(V.-6X,)

e For simplicity it will be assumed that Xis a single variable, butit

could be a vector of covariates.

e Baseline variables can be binary or continuous. If X'is a binary
variable, it is generally convenient to code it with 0 and 1. A
variable coded in this way is sometimes called an indicator or

dummy variable.
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6.3 Comparison of Adjusted and Unadjusted
Analyses

In a randomised controlled trial £| 7(6)]=7(0)is independent of

0 . Hence the expected values of unadjusted, change and an

adjusted estimate of the treatment effect are all equal, that is

E[#,]= E[2.)= E[#(6)]

Proof

Considering f(g) i (Zr "QXT)”(YC —‘9)?(:).

£[#(0)]= £[¥, ]-E[ X ]-0(E[ X, ]- E[ X, ]).

Bandomisation means that E[)—(-T]= E[fc ] 1(

e

Therefore E[f(@)] = El:YT ] - E[Yc] , Which is independent of 6.

Values of # equal to 0 and 1 correspond to the treatment effect in

an unadjusted (fu) , and change(fc) giving the required result m
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Suppose o%,07,0,, are the variances and covariance of X and Y
- 1 1 ~ - - .
with 4= n—+n— . The treatment effect 7, has a minimum variance
T C

when € = equal to Var[f(ﬂ)]=12<7§(1—/72) where B is the
regression coefficient of Y on X and p is the correlation between X

and Y conditional on treatment group.

Proof

Again consider 7(0)=(Y, -0X,)-(Y. -6X.)

var[(0)]= Var[fr ~¥.-0(X,- X, )]

=Var[ ¥, - Y. |+Var[0(X, - X )]-2Cov[ I, - ¥o.0(X, - X.) ]

=Var| Y, Y, |+6*Var[ X, - X |-20Cov[ ¥, - V.. X, - X | [1]

Considering the first term '
Var|Y, - Y. |=Var| ¥, |+Var[ Y. ]-2Cov[ V.Y, | .

Since treatment groups are independent, COV[YT,YCJ =0,

Therefore Var| Y, - Y. |=Var[ Y, |+Var[ ¥, ].

_ 2
t, Var[YT]:z—; and

Since observations are independen

2
O

arl7.]- 2
C

Therefore Var[YT _?c] =270} where A=
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Similarly Var[X, - X.]=2c2 and COV[YT—Z?,)—(T—)_(CJ:lZGX%

Substitution into [1] gives Var|7(0)]= A4’ (o7 +0%0% - 290Xy) [2]

A minima can be found by differentiation with respect to 4.
0
—Var| 7(0) |= 1* (2002 - 20

. = B2 "
This equals zero when 0= UXY/UX , Which is the coefficient for

regression of Y on X within each treatment group.

& ”
The second derivative BEVW [7(9)] =270} .

As this is positive, it follows that this is @ minimum. The treatment

effect estimate with minimum variance is therefore

Oxy

Var[f(ﬂ)] =1’ ((7; +po; —2,30‘XY) =Ao; [l— 22 2]

OOy

Since GXY/WT)Z( S =0, Va’”[f(ﬂ):l=/120§(1—/02) as required m
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Estimation of /5 and (/)
The treatment effect r( ﬂ) can be estimated by fitting a linear

model, which is a generalization of linear regression. The general
form of a linear model with k covariates is

Y=u+pX,+..+B X, t+é
where the X’s are the k covariates and the f’s the corresponding k

coefficients. The random variable giis usually assumed to be

N[O,Gj] . If one of the X's is an indicator variable, the coefficient

is the difference in the mean value of Y for X =1 as compared to
X=0, adjusted for other X’s.

When considering the analysis of data from a randomised trial it is

notational clearer to separate the matrix of covariates into an ‘

indicator variable /; equal to 1 for treatment T and 0 for the control

C, and a matrix X of other covariates. The model is then written as
¥ ey 45l +BX, A€

and the treatment effect is the coefficient of the indicator variable /;

Statistical inference is simply the test of whether the coefficient of

the indicator variable [; differs from zero, that is H0 t=0vs
H .t #0. The matrix of coefficients, 5, for other variable is

generally of less interest and often not given in published reports of

trials.
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Fig 6.2 STATA Output for FAP trial

Linear Model Analysis Adjusting for Baseline Polyp Size

Source ss df MsS Number of obs = 19

|

————————————— R e F( 2, 16) = 3.48
Model | 8.63531123 2 4.31765562 Prob > F = 0.0556
Residual | 19.8541618 16 1.24088511 R-squared = 0.3031
————————————— S e e Adj R-squared = 0.2160
Total | 28.4894731 18 1.5827485 Root MSE = 1.114
sizel2 | Coef. std. Err. T P>|t| [95% Conf. Interval]
_____________ o S5 5 e 5 8 e e e o S 5 5 o
sizel | .2087081 .243071 0.86 0.403 -.3065794 .7239956
treatment | -1.2 .5120029 -2.52 0.023 -2.373659 -.2028639
_cons | 2.421263 .8760753 2.76 0.014 .5640666 4.27846
________ S S S

Fitteel Iedel

g1zel2 = 0-209x8§i12e0 — (-288 *Treatment+ 2:42)

Table 6.2 summarizes the treatment effect and inference for all
three analyses. The null hypothesis of no treatment effect would not
have been rejected at a 5% level if the change score analysis had
been carried out.

Table 6.2 Summary of treatment effect estimates for the FAP trial

Treatment  SE 95% C.I p-
Effect Lower Upper value
Unadjusted 7, 128 . 052 242 -013 0.032
Change 7 -1.33 066 -2.78 0.12 0.068
Hnear Model 1.29 0.51 2.37 0.20 0.023
i:(/g) =il = =l -V. 4

Note thul the SE for the linecr

neoele ( treatpent & the Sma“eslf wheel,

5 dlat (3 expected fromn the resclF
on pxqe {3,
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Comparison of standard errors of Unadjusted, Change Score

and Linear Model Analyses

From above Var[f(ﬂ)] =/120'§(1—P2) , Which is a quadratic in p.

From [2] Var[fc] =ﬂ,2(0'; +0')2( —2O'XY) =’ (G; +0)2( —20'Y0'Xp) ,

which is a linear function of o0 .

g‘i"r:ug‘-ft i Q

Assuming oy =0y, Var[’fc]:flﬂ,za}%(l—p)_k el Q *Fumd't
The unadjusted standard error is simply Var[%U] :}“20'; g

Varl:f'(,ﬁ)] —1—p? Va”[fc] _
Hence Var[fU] -

Figure 6.3 comparison of Change Score and Linear models with

. . . 2 2
the unadjusted analysis assuming Oy =0y .

N

—_
(&)

; \ —Change |
\ —Linear Model

0.5 1
Corr[X,Y]

Q
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|

Ratio of variance of estimates
compare to Unadjusted Estimate

o

o
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Summary Analyses using Baseline Data

All three estimates of the treatment effect defined in (6.2) are
unbiased, but an estimate of the treatment effect based on a linear
model has smaller expected variance, where baseline covariates
correlate with the outcome measure and it does not matter whether

this correlation is positive or negative.

Reducing the variance of the treatment effect estimate is important
as this increases the precision of the estimate, thereby giving
greater power for a given sample size. As a consequence, if a
baseline variable is thought to predict outcome, an analysis
adjusting for this variable is recommended. Where an outcome
measure is recorded at baseline, then it is usually a strong predictor

of outcome, and the variable should be used as a covariate.

To prevent the analysis bias, a single set of baseline covariates
should be selected prior to starting analysis. This should be
recorded in the statistical analysis plan of the trial. This choice will
therefore need to be based on prior knowledge or reasoning as to
what variables are likely to predict outcome irrespective of which

treatment is received.
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6.4 A Flawed Analysis using Within Group Change
from Baseline

A statistical analysis sometime seen in the medical literature is to
carry out a separate paired t-test on each treatment groups.
Treatments are then compared by using the results of the separate
statistical tests. If improvement in one group is statistically
significant but not the other, it is concluded that one treatment is
more effective than the other. This analysis is illustrated below with
the FAP data

Figure 6.4 STATA Output for paired t-test analysis of each
treatment

Results for: polyp.mtw (treat = 0)

Paired t test

Variable | Obs Mean Std. Err Std. Dev [95% Conf. Intervall]
_________ R e e e e S S e seera s et e S e e e s s
sizel2 | 10 3.11 .2306753 .7294595 2.588176 3.631824
sizel | 10 3.3 .3076795 .972968 2.603981 3.996019
_________ B e L
diff | 10 = 19 .2857544 .9036346 -.8364213 .4564213

mean (diff) = mean(sizel2 - size0) t = -0.6649
Ho: mean(diff) = 0 degrees of freedom =

Ha: mean(diff) < 0 Ha: mean(diff) !'= 0 Ha: mean(diff) > 0
Pr(T < t) = 0.2614 Pr(|T| > |t|) = 0.5228 Pr(T > t) = 0.7386

Results for: polyp.mtw (treat = 1)

Paired t test

Variable | Obs Mean sStd. Err Std. Dev [95% Conf. Interval]
_________ 0 R 0 7 0 G
sizel2 | 9 1.833333 .4711098 1.413329 . 7469522 2.919714
sizel | 9 3.355556 .4163703 1.249111 2.395404 4.315707
_________ L N
diff | 9 -1.522222 .5969314 1.790794 -2.898749 —-.1456959
mean (diff) = mean(sizel2 - size0) t = -2.5501

Ho: mean(diff) = 0 degrees of freedom = 8
Ha: mean(diff) < O Ha: mean(diff) !'= 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0171 Pr(|T| > |t]) = 0.0342 Pr(T > t) = 0.9829
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Why the Analysis using Within-Group Changes is Flawed

The main reason why this method is flawed is because the two p-
values relate to two separate hypotheses test and so do not directly
test the benefit of one treatment as compared to the other, that is

they do not compare the two potential outcomes.

Use of this type of analysis also suggests other misunderstandings.

e Failure to reject the null hypothesis, for a treatment does not
imply that there is no change. The absolute change within each
treatment groups could be the same but unequal variances may
affect the probability of rejecting the null hypothesis for one

treatment and not another.

e Tests of within group change are often statistically significant, but
change within a treatment group may not be due to treatment. It
may occur because the condition naturally resolves. They may
tell us more about the natural history of the condition than the
benefit of receiving treatment one treatment as compared to

another.

Unfortunately, clinical researchers often carry out this type of
analysis, when the statistical analysis directly comparing the two
treatments is not statistically significant. This is done in the

desperate search for a statistically significant result to report.
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