MAGIC: Ergodic Theory Lecture 10 - The ergodic theory of hyperbolic dynamical systems

Charles Walkden

April 12, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type.

In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type.

In this lecture we use symbolic dynamics to model more general hyperbolic dynamical systems. We can then use thermodynamic formalism to prove ergodic-theoretic results about such systems.

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $T_x M$ be the tangent space at $x \in M$.

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_X T : T_X M \to T_{T_X} M$ be the derivative of T.

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_X T : T_X M \to T_{T_X} M$ be the derivative of T.

Idea: At each point $x \in M$, there are two directions:

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_x T : T_x M \to T_{T_x} M$ be the derivative of T.

Idea: At each point $x \in M$, there are two directions:

- ► *T* contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_x T : T_x M \to T_{T_x} M$ be the derivative of T.

Idea: At each point $x \in M$, there are two directions:

- ► T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

 $T: M \to M$ is an Anosov diffeomorphism if $\exists C > 0, \lambda \in (0, 1)$ s.t. $\forall x \in M$, there is a splitting

$$T_x M = E_x^s \oplus E_x^u$$

into DT-invariant sub-bundles E^s , E^u s.t.

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_x T : T_x M \to T_{T_x} M$ be the derivative of T.

Idea: At each point $x \in M$, there are two directions:

- ► T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

 $T: M \to M$ is an Anosov diffeomorphism if $\exists C > 0, \lambda \in (0, 1)$ s.t. $\forall x \in M$, there is a splitting

$$T_x M = E_x^s \oplus E_x^u$$

into DT-invariant sub-bundles E^s , E^u s.t.

 $\|D_{x}T^{n}(v)\| \leq C\lambda^{n}\|v\| \,\,\forall v \in E_{x}^{s}, \,\,\forall n \geq 0$

Let T be a C^1 diffeomorphism of a compact Riemannian manifold M.

Let $T_x M$ be the tangent space at $x \in M$.

Let $D_x T : T_x M \to T_{T_x} M$ be the derivative of T.

Idea: At each point $x \in M$, there are two directions:

- ► *T* contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

 $T: M \to M$ is an Anosov diffeomorphism if $\exists C > 0, \lambda \in (0, 1)$ s.t. $\forall x \in M$, there is a splitting

$$T_x M = E_x^s \oplus E_x^u$$

into DT-invariant sub-bundles E^s , E^u s.t.

$$\begin{aligned} \|D_x T^n(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^s, \ \forall n \geq 0\\ \|D_x T^{-n}(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^u, \ \forall n \geq 0. \end{aligned}$$

 E^{s} , E^{u} are called the *stable* and *unstable* sub-bundles, respectively.

・ロト・日本・モート モー うへで

$$W^{s}(x) = \{ y \in M \mid d(T^{n}x, T^{n}y) \to 0 \text{ as } n \to \infty \}.$$
 (†)

$$W^{s}(x) = \{ y \in M \mid d(T^{n}x, T^{n}y) \to 0 \text{ as } n \to \infty \}.$$
 (†)

(The convergence in (†) is necessarily exponentially fast.)

$$W^{s}(x) = \{ y \in M \mid d(T^{n}x, T^{n}y) \to 0 \text{ as } n \to \infty \}.$$
 (†)

(The convergence in (†) is necessarily exponentially fast.)

Similarly, E^u is tangent to the unstable foliation W^u comprising of unstable manifolds $W^u(x)$.

$$W^{s}(x) = \{ y \in M \mid d(T^{n}x, T^{n}y) \to 0 \text{ as } n \to \infty \}.$$
 (†)

(The convergence in (†) is necessarily exponentially fast.)

Similarly, E^u is tangent to the unstable foliation W^u comprising of unstable manifolds $W^u(x)$. $W^u(x)$ is characterised by

$$W^{u}(x) = \{y \in M \mid d(T^{-n}x, T^{-n}y) \to 0 \text{ as } n \to \infty\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let
$$T : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
 be the cat map
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mod 1.$

Let
$$T : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
 be the cat map
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mod 1.$
Note $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ has two eigenvalues
 $\lambda_u = \frac{3 + \sqrt{5}}{2} > 1$ $\lambda_s = \frac{3 - \sqrt{5}}{2} \in (0, 1)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Let
$$T : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$$
 be the cat map
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mod 1.$
Note $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ has two eigenvalues
 $\lambda_u = \frac{3 + \sqrt{5}}{2} > 1$ $\lambda_s = \frac{3 - \sqrt{5}}{2} \in (0, 1)$

with corresponding eigenvectors

$$v_{u} = \left(egin{array}{c} 1 \ rac{-1+\sqrt{5}}{2} \end{array}
ight) \qquad \qquad v_{s} = \left(egin{array}{c} 1 \ rac{-1-\sqrt{5}}{2} \end{array}
ight).$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

(ロ)、(型)、(E)、(E)、 E) の(の)

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

As $v_s = (1, (-1 - \sqrt{5})/2)$ has rationally independent coefficients, $W^s(x)$ is dense in $\mathbb{R}^2/\mathbb{Z}^2$.

Open Question: Which manifolds support Anosov diffeomorphisms? A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic toral automorphism can be thought of in the following way:

A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic toral automorphism can be thought of in the following way:

 \mathbb{R}^k is an additive group and $\mathbb{Z}^k \subset \mathbb{R}^k$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^k/\mathbb{Z}^k$ is compact). If A is a $k \times k$ integer matrix with det $A = \pm 1$ then A is an automorphism of \mathbb{R}^k that preserves the lattice \mathbb{Z}^k .
A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic toral automorphism can be thought of in the following way:

 \mathbb{R}^k is an additive group and $\mathbb{Z}^k \subset \mathbb{R}^k$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^k/\mathbb{Z}^k$ is compact). If A is a $k \times k$ integer matrix with det $A = \pm 1$ then A is an automorphism of \mathbb{R}^k that preserves the lattice \mathbb{Z}^k .

More generally suppose N is a nilpotent Lie group, eg. matrices of the form

 $(x, y, z \in \mathbb{R})$

A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic toral automorphism can be thought of in the following way:

 \mathbb{R}^k is an additive group and $\mathbb{Z}^k \subset \mathbb{R}^k$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^k/\mathbb{Z}^k$ is compact). If A is a $k \times k$ integer matrix with det $A = \pm 1$ then A is an automorphism of \mathbb{R}^k that preserves the lattice \mathbb{Z}^k .

More generally suppose N is a nilpotent Lie group, eg. matrices of the form

$$\left(\begin{array}{rrrr}1 & x & z\\0 & 1 & y\\0 & 0 & 1\end{array}\right)$$

 $(x, y, z \in \mathbb{R})$ and let $\Gamma \subset N$ be the cocompact lattice where $x, y, z \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 N/Γ is called a *nilmanifold*.

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

• tori
$$\mathbb{R}^k/\mathbb{Z}^k$$

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

- ▶ tori $\mathbb{R}^k / \mathbb{Z}^k$
- nilmanifolds N/Γ

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

- ► tori $\mathbb{R}^k / \mathbb{Z}^k$
- nilmanifolds N/Γ
- infranilmanifolds

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

The only known examples of Anosov diffeomorphisms are on

- ▶ tori $\mathbb{R}^k / \mathbb{Z}^k$
- nilmanifolds N/Γ
- infranilmanifolds

Moreover, all known Anosov diffeomorphisms are conjugate to the algebraic Anosov automorphisms.

$$T: N/\Gamma \longrightarrow N/\Gamma: g\Gamma \longmapsto Ag\Gamma.$$

 N/Γ is called a *nilmanifold*. If N/Γ supports an Anosov diffeomorphism then dim $N \ge 6$.

The only known examples of Anosov diffeomorphisms are on

- ▶ tori $\mathbb{R}^k / \mathbb{Z}^k$
- nilmanifolds N/Γ
- infranilmanifolds

Moreover, all known Anosov diffeomorphisms are conjugate to the algebraic Anosov automorphisms.

 $T: M \to M$ is Anosov if there is a hyperbolic splitting at *all* $x \in M$. This is a very strong condition on M.

 $T: M \to M$ is Anosov if there is a hyperbolic splitting at *all* $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $T: M \to M$ is Anosov if there is a hyperbolic splitting at *all* $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If *M* supports an Anosov diffeomorphism then *M* is a torus $\mathbb{R}^k/\mathbb{Z}^k$, a nilmanifold (N/Γ where *N* is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

 $T: M \to M$ is Anosov if there is a hyperbolic splitting at *all* $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If *M* supports an Anosov diffeomorphism then *M* is a torus $\mathbb{R}^k/\mathbb{Z}^k$, a nilmanifold (N/Γ where *N* is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

Instead of requiring $T_x M$ to have a hyperbolic splitting $E_x^s \oplus E_x^u$ for all $x \in M$, we could require a hyperbolic splitting for all x in a T-invariant compact set $\Lambda \subset M$.

 $T: M \to M$ is Anosov if there is a hyperbolic splitting at *all* $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If *M* supports an Anosov diffeomorphism then *M* is a torus $\mathbb{R}^k/\mathbb{Z}^k$, a nilmanifold (N/Γ where *N* is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

Instead of requiring $T_x M$ to have a hyperbolic splitting $E_x^s \oplus E_x^u$ for all $x \in M$, we could require a hyperbolic splitting for all x in a T-invariant compact set $\Lambda \subset M$.

Topologically, Λ may be very complicated.

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

 $\|D_x T^n(v)\| \leq C\lambda^n \|v\| \ \forall v \in E^s_x, \ \forall n \geq 0$

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

$$\begin{aligned} \|D_x T^n(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^s, \ \forall n \geq 0 \\ \|D_x T^{-n}(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^u, \ \forall n \geq 0. \end{aligned}$$

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

$$\|D_x T^n(\mathbf{v})\| \leq C\lambda^n \|\mathbf{v}\| \, \forall \mathbf{v} \in E_x^s, \, \forall n \geq 0 \|D_x T^{-n}(\mathbf{v})\| \leq C\lambda^n \|\mathbf{v}\| \, \forall \mathbf{v} \in E_x^u, \, \forall n \geq 0.$$

2. $T : \Lambda \to \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

$$\begin{aligned} \|D_x T^n(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^s, \ \forall n \geq 0 \\ \|D_x T^{-n}(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^u, \ \forall n \geq 0. \end{aligned}$$

- 2. $T : \Lambda \to \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
- 3. \exists an open set $U \supset \Lambda$ s.t.

$$\bigcap_{n=-\infty}^{\infty} T^n U = \Lambda.$$

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

$$\begin{aligned} \|D_x T^n(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^s, \ \forall n \geq 0 \\ \|D_x T^{-n}(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^u, \ \forall n \geq 0. \end{aligned}$$

- 2. $T : \Lambda \to \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
- 3. \exists an open set $U \supset \Lambda$ s.t.

$$\bigcap_{n=-\infty}^{\infty} T^n U = \Lambda.$$

If in (3) we have $\bigcap_{n=0}^{\infty} T^n U = \Lambda$, then Λ is an *attractor*.

A compact *T*-invariant set $\Lambda \subset M$ is a *locally maximal hyperbolic* set (or basic set) if

1. there exists a splitting $T_x M = E_x^s \oplus E_x^u$ such that for all $x \in \Lambda$

$$\begin{aligned} \|D_x T^n(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^s, \ \forall n \geq 0 \\ \|D_x T^{-n}(v)\| &\leq C\lambda^n \|v\| \ \forall v \in E_x^u, \ \forall n \geq 0. \end{aligned}$$

- 2. $T : \Lambda \to \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
- 3. \exists an open set $U \supset \Lambda$ s.t.

$$\bigcap_{n=-\infty}^{\infty} T^n U = \Lambda.$$

If in (3) we have $\bigcap_{n=0}^{\infty} T^n U = \Lambda$, then Λ is an *attractor*. Anosov diffeomorphisms are attractors (with $\Lambda = U = M$).

Define

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If one iterates T forwards:

Define

If one iterates T forwards:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

There is a locally maximal hyperbolic set

There is a locally maximal hyperbolic set

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

There is a locally maximal hyperbolic set

Г	-		• •	·	-	-	-	· - I
1	:	:	:	:	:	:	:	: 1
I.	Ĩ			•	•			Ĩ
	•	•	•	•	•	•	•	• :
	•	•	•	•	•	•	•	•
L								- 1
L	•	•	•	•	•	•	•	• 1
L	•	•	•	•	•	•	•	• 1
L	•	•	•	•	•	•	•	: 1
L	•	•	•	•	•	•	•	• i

-the product of two Cantor sets.

Example 2: The Solenoid Attractor

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

Example 2: The Solenoid Attractor

Let M = solid torus.

Example 2: The Solenoid Attractor

Let M = solid torus. Define a map $T : M \rightarrow M$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let M = solid torus. Define a map $T : M \rightarrow M$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let M = solid torus. Define a map $T : M \rightarrow M$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let M = solid torus. Define a map $T : M \rightarrow M$

Take a cross-section of the torus:

Let M = solid torus. Define a map $T : M \rightarrow M$

Take a cross-section of the torus:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

So $\Lambda = \bigcap_{n=0}^{\infty} T^n M$ is 1-dimensional and in each cross section is a Cantor set.

So $\Lambda = \bigcap_{n=0}^{\infty} T^n M$ is 1-dimensional and in each cross section is a Cantor set.

Open Question: Give a reasonable classification of all locally maximal hyperbolic sets.

So $\Lambda = \bigcap_{n=0}^{\infty} T^n M$ is 1-dimensional and in each cross section is a Cantor set.

Open Question: Give a reasonable classification of all locally maximal hyperbolic sets.

(Conjecture: Are they all locally the product of a manifold and a Cantor set?)

Let Λ be a locally maximal hyperbolic set and let $\mathcal{T}:\Lambda\to\Lambda$ be hyperbolic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type. Let $x \in \Lambda$.

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let $x \in \Lambda$.

Typically the stable and unstable manifolds will be dense in Λ .

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let $x \in \Lambda$.

Typically the stable and unstable manifolds will be dense in Λ . Define the *local* stable and unstable manifolds to be

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let $x \in \Lambda$.

Typically the stable and unstable manifolds will be dense in Λ . Define the *local* stable and unstable manifolds to be

$$W^{s}_{\epsilon}(x) = \{ y \in M \mid d(T^{n}x, T^{n}y) \leq \epsilon, \forall n \geq 0 \}$$

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let $x \in \Lambda$.

Typically the stable and unstable manifolds will be dense in Λ . Define the *local* stable and unstable manifolds to be

$$\begin{aligned} W^s_\epsilon(x) &= \{ y \in M \mid d(T^n x, T^n y) \leq \epsilon, \ \forall n \geq 0 \} \\ W^u_\epsilon(x) &= \{ y \in M \mid d(T^{-n} x, T^{-n} y) \leq \epsilon, \ \forall n \geq 0 \}. \end{aligned}$$

Let Λ be a locally maximal hyperbolic set and let $T : \Lambda \to \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Let $x \in \Lambda$.

Typically the stable and unstable manifolds will be dense in Λ . Define the *local* stable and unstable manifolds to be

$$\begin{aligned} W^s_\epsilon(x) &= \{ y \in M \mid d(T^n x, T^n y) \leq \epsilon, \ \forall n \geq 0 \} \\ W^u_\epsilon(x) &= \{ y \in M \mid d(T^{-n} x, T^{-n} y) \leq \epsilon, \ \forall n \geq 0 \}. \end{aligned}$$

(It follows that $d(T^nx, T^ny) \rightarrow 0$ exponentially fast as $n \rightarrow \pm \infty$ respectively.)

If $x,y\in\Lambda$ are sufficiently close then we define their "product" to be

<□ > < @ > < E > < E > E のQ @

If $x,y\in\Lambda$ are sufficiently close then we define their "product" to be

<□ > < @ > < E > < E > E のQ @

$$[x,y] = W^u_{\epsilon}(x) \cap W^s_{\epsilon}(y).$$

If $x, y \in \Lambda$ are sufficiently close then we define their "product" to be

$$[x,y] = W^u_{\epsilon}(x) \cap W^s_{\epsilon}(y).$$

Thus [x, y] is a point whose orbit approximates that of y (in forward time) and approximates x (in backwards time).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$x, y$$
 sufficiently close $\implies [x, y] \in R$.

$$x, y$$
 sufficiently close $\implies [x, y] \in R$.

If *R* is a rectangle and $x \in R$ then we define

$$W^{s}(x,R) = W^{s}_{\epsilon} \cap R$$
$$W^{u}(x,R) = W^{u}_{\epsilon} \cap R.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$x, y$$
 sufficiently close $\implies [x, y] \in R$.

If *R* is a rectangle and $x \in R$ then we define

$$W^{s}(x,R) = W^{s}_{\epsilon} \cap R$$
$$W^{u}(x,R) = W^{u}_{\epsilon} \cap R.$$

$$x, y$$
 sufficiently close $\implies [x, y] \in R$.

If *R* is a rectangle and $x \in R$ then we define

$$W^{s}(x,R) = W^{s}_{\epsilon} \cap R$$

 $W^{u}(x,R) = W^{u}_{\epsilon} \cap R.$

$$x, y$$
 sufficiently close $\implies [x, y] \in R$.

If *R* is a rectangle and $x \in R$ then we define

$$W^{s}(x,R) = W^{s}_{\epsilon} \cap R$$
$$W^{u}(x,R) = W^{u}_{\epsilon} \cap R.$$

 $x\in \operatorname{Int} R$

 $x \in \operatorname{Int} R \implies$

 $T(W^u(x, R))$ is a union of sets of the form $W^u(y, R')$.

 $x \in \operatorname{Int} R \implies$

 $T(W^u(x, R))$ is a union of sets of the form $W^u(y, R')$.

 $x \in \operatorname{Int} R \implies$

 $T^{-1}(W^{s}(y, R))$ is a union of sets of the form $W^{s}(y, R')$.

 $T(W^u(x, R))$ is a union of sets of the form $W^u(y, R')$.

 $x \in \operatorname{Int} R \implies$

 $T^{-1}(W^s(y, R))$ is a union of sets of the form $W^s(y, R')$.

 $T(W^u(x, R))$ is a union of sets of the form $W^u(y, R')$.

 $x \in \operatorname{Int} R \implies$

 $T^{-1}(W^s(y, R))$ is a union of sets of the form $W^s(y, R')$.

A partition $\mathcal{R} = \{R_1, \dots, R_k\}$ of Λ into rectangles is called a *Markov partition* if

 $T(W^u(x, R))$ is a union of sets of the form $W^u(y, R')$.

 $x \in \operatorname{Int} R \implies$

 $T^{-1}(W^s(y, R))$ is a union of sets of the form $W^s(y, R')$.

Idea: If $x \in R_1$, then T(x) must be in either R_2 , R_3 , R_4 .

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Idea: If $x \in R_1$, then T(x) must be in either R_2 , R_3 , R_4 . For $x \in \bigcap_{n=-\infty}^{\infty} T^n(\operatorname{Int} \mathcal{R})$, we can code the orbit of x by recording the sequence of rectangles the orbit visits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea: If $x \in R_1$, then T(x) must be in either R_2 , R_3 , R_4 . For $x \in \bigcap_{n=-\infty}^{\infty} T^n(\operatorname{Int} \mathcal{R})$, we can code the orbit of x by recording the sequence of rectangles the orbit visits. Note that (cf decimal expansions) if $x \in \bigcup_{n=-\infty}^{\infty} T^n(\partial \mathcal{R})$ then the coding is not unique.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R} = \{R_1, \ldots, R_k\}$ with an arbitrarily small diameter.

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R} = \{R_1, \ldots, R_k\}$ with an arbitrarily small diameter.

In particular, there exists an aperiodic 2-sided shift of finite type $\boldsymbol{\Sigma}$ s.t.

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R} = \{R_1, \ldots, R_k\}$ with an arbitrarily small diameter.

In particular, there exists an aperiodic 2-sided shift of finite type $\boldsymbol{\Sigma}$ s.t.

1. the coding map

$$\pi: \Sigma \longrightarrow \Lambda: (x_j)_{-\infty}^{\infty} \longmapsto \bigcap_{-\infty}^{\infty} T^{-j} R_{x_j}$$

is continuous, surjective, and injective except on $\bigcup_{-\infty}^{\infty} T^{-j}(\partial \mathcal{R})$

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R} = \{R_1, \ldots, R_k\}$ with an arbitrarily small diameter.

In particular, there exists an aperiodic 2-sided shift of finite type $\boldsymbol{\Sigma}$ s.t.

1. the coding map

$$\pi: \Sigma \longrightarrow \Lambda: (x_j)_{-\infty}^{\infty} \longmapsto \bigcap_{-\infty}^{\infty} T^{-j} R_{x_j}$$

is continuous, surjective, and injective except on $\bigcup_{-\infty}^\infty \mathcal{T}^{-j}(\partial\mathcal{R})$

2.
$$\begin{array}{ccc}
\Sigma & \xrightarrow{\sigma} \Sigma \\
 & & \downarrow \\
 & & \downarrow \\
 & & & \downarrow \\
 & & & \Lambda \\
 & & & & \Lambda \\
\end{array}$$
commutes.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This gives the matrix:

1	1	1	0	1	0	
	1	1	0	1	0	
	1	1	0	1	0	
	0	0	1	0	1	
	0	0	1	0	1	J

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark

In general, rectangles may be (geometrically) very complicated. For Anosov automorphisms of a k-dimensional torus, $k \ge 3$, the boundary of a Markov partition will typically be a fractal.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T : \Lambda \to \Lambda$. Note that T is invertible, so the symbolic model $\sigma : \Sigma \to \Sigma$ is 2-sided.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T : \Lambda \to \Lambda$. Note that T is invertible, so the symbolic model $\sigma : \Sigma \to \Sigma$ is 2-sided. In previous lectures, thermodynamic formalism was defined for 1-sided shifts of finite type.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T : \Lambda \to \Lambda$. Note that T is invertible, so the symbolic model $\sigma : \Sigma \to \Sigma$ is 2-sided. In previous lectures, thermodynamic formalism was defined for 1-sided shifts of finite type.

Let
$$\Sigma =$$
 two sided shift of finite type

- Let $\Sigma = two sided shift of finite type$
 - $d_{\theta} =$ metric given by $\theta^{|\text{first disagreement}|}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\Sigma =$ two sided shift of finite type $d_{\theta} =$ metric given by $\theta^{|\text{first disagreement}|}$ $F_{\theta}(\Sigma, \mathbb{R}) =$ {functions $f : \Sigma \to \mathbb{R}$ that are θ -Hölder}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\Sigma =$ two sided shift of finite type $d_{\theta} =$ metric given by $\theta^{|\text{first disagreement}|}$ $F_{\theta}(\Sigma, \mathbb{R}) =$ {functions $f : \Sigma \to \mathbb{R}$ that are θ -Hölder}.

If $x = (x_j)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $(x_j)_{j=0}^{\infty}$ as "the future" and $(x_j)_{-\infty}^0$ as "the past".

Let $\Sigma =$ two sided shift of finite type $d_{\theta} =$ metric given by $\theta^{|\text{first disagreement}|}$ $F_{\theta}(\Sigma, \mathbb{R}) =$ {functions $f : \Sigma \to \mathbb{R}$ that are θ -Hölder}.

If $x = (x_j)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $(x_j)_{j=0}^{\infty}$ as "the future" and $(x_j)_{-\infty}^0$ as "the past". Note that if $f \in F_{\theta(\Sigma,\mathbb{R})}$ then, typically, f(x) will depend both on the future and the past.

Let $\Sigma =$ two sided shift of finite type $d_{\theta} =$ metric given by θ |first disagreement| $F_{\theta}(\Sigma, \mathbb{R}) =$ {functions $f : \Sigma \to \mathbb{R}$ that are θ -Hölder}.

If $x = (x_j)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $(x_j)_{j=0}^{\infty}$ as "the future" and $(x_j)_{-\infty}^0$ as "the past". Note that if $f \in F_{\theta(\Sigma,\mathbb{R})}$ then, typically, f(x) will depend both on the future and the past.

If f only depends on future coordinates, i.e.

$$f(x) = f(x_0, x_1, \dots)$$

then f can be regarded as being defined on the one-sided shift $f: \Sigma^+ \to \mathbb{R}.$

Recall: two functions $f, g: \Sigma \to \mathbb{R}$ are cohomologous if $\exists u \text{ s.t.}$

$$f=g+u\sigma-u.$$

Recall: two functions $f, g : \Sigma \to \mathbb{R}$ are cohomologous if $\exists u \text{ s.t.}$

$$f=g+u\sigma-u.$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$\sum_{j=0}^{n-1} f(\sigma^{j} x) = \sum_{j=0}^{n-1} g(\sigma^{j} x) + u(\sigma^{n} x) - u(x)$$

Recall: two functions $f, g : \Sigma \to \mathbb{R}$ are cohomologous if $\exists u \text{ s.t.}$

$$f=g+u\sigma-u.$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$\sum_{j=0}^{n-1} f(\sigma^{j}x) = \sum_{j=0}^{n-1} g(\sigma^{j}x) + u(\sigma^{n}x) - u(x)$$
$$= \sum_{j=0}^{n-1} g(\sigma^{j}x) + O(1).$$

Recall: two functions $f, g : \Sigma \to \mathbb{R}$ are cohomologous if $\exists u \text{ s.t.}$

$$f=g+u\sigma-u.$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$\sum_{j=0}^{n-1} f(\sigma^{j}x) = \sum_{j=0}^{n-1} g(\sigma^{j}x) + u(\sigma^{n}x) - u(x)$$
$$= \sum_{j=0}^{n-1} g(\sigma^{j}x) + O(1).$$

Theorem

Let $f \in F_{\theta}(\Sigma, \mathbb{R})$. Then f is cohomologous to a function $g \in F_{\theta^{\frac{1}{2}}}(\Sigma^+, \mathbb{R})$ that depends only on the future.

1. start with a hyperbolic $T : \Lambda \to \Lambda$

- 1. start with a hyperbolic $T : \Lambda \to \Lambda$
- 2. code the dynamics of T by a 2-sided shift of finite type Σ with coding map $\pi: \Sigma \to \Lambda$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. start with a hyperbolic $T : \Lambda \to \Lambda$
- 2. code the dynamics of T by a 2-sided shift of finite type Σ with coding map $\pi: \Sigma \to \Lambda$
- 3. if $f : \Lambda \to \mathbb{R}$ is Hölder then $\hat{f} = f\pi \in F_{\theta}(\Sigma, \mathbb{R})$ for some $\theta \in (0, 1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. start with a hyperbolic $T : \Lambda \to \Lambda$
- 2. code the dynamics of T by a 2-sided shift of finite type Σ with coding map $\pi: \Sigma \to \Lambda$
- 3. if $f : \Lambda \to \mathbb{R}$ is Hölder then $\hat{f} = f\pi \in F_{\theta}(\Sigma, \mathbb{R})$ for some $\theta \in (0, 1)$.
- 4. replace \hat{f} by a cohomologous function $\hat{g} \in F_{\theta^{\frac{1}{2}}}(\Sigma^+, \mathbb{R})$ and apply thermodynamic formalism.

Application 1: Existence of equilibrium states

Let $T : \Lambda \to \Lambda$ be C^1 hyperbolic diffeomorphism of a basic set Λ .

Application 1: Existence of equilibrium states

Let $T : \Lambda \to \Lambda$ be C^1 hyperbolic diffeomorphism of a basic set Λ . Let $f : \Lambda \to \mathbb{R}$ be Hölder:

$$|f(x)-f(y)| \leq C d(x,y)^{\alpha}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Application 1: Existence of equilibrium states

Let $T : \Lambda \to \Lambda$ be C^1 hyperbolic diffeomorphism of a basic set Λ . Let $f : \Lambda \to \mathbb{R}$ be Hölder:

$$|f(x)-f(y)|\leq C\,d(x,y)^{\alpha}.$$

Let $\pi: \Sigma \to \Lambda$. Then $f\pi: \Sigma \to \mathbb{R} \in F_{\theta}$. Let $\tilde{f}: \Sigma^+ \to \mathbb{R}$ be cohomologous to $f \circ \pi$. Let ν_f be the equilibrium state for (f), a σ -invariant measure.

Application 1: Existence of equilibrium states

Let $T : \Lambda \to \Lambda$ be C^1 hyperbolic diffeomorphism of a basic set Λ . Let $f : \Lambda \to \mathbb{R}$ be Hölder:

$$|f(x)-f(y)|\leq C\,d(x,y)^{\alpha}.$$

Let $\pi: \Sigma \to \Lambda$. Then $f\pi: \Sigma \to \mathbb{R} \in F_{\theta}$. Let $\tilde{f}: \Sigma^+ \to \mathbb{R}$ be cohomologous to $f \circ \pi$. Let ν_f be the equilibrium state for \tilde{f}), a σ -invariant measure.

Let $\mu_f = \nu_f \circ \pi^{-1}$. Then μ_f is called an equilibrium state for f and is a *T*-invariant measure.

Application 2: SRB and physical measures

Let X be a compact Riemannian manifold equipped with the Riemannian volume m.

Application 2: SRB and physical measures

Let X be a compact Riemannian manifold equipped with the Riemannian volume m.

Let $T : X \to X$ be a smooth diffeomorphism. Typically T does not preserve the volume m. Even if m is T-invariant, then it need not be ergodic.

What can we say about

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)$$

for *m*-a.e. $x \in X$?

Let $T : X \to X$ be a smooth diffeomorphism of a compact Riemannian manifold X.

Let $T : X \to X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure.

Let $T : X \to X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable.

Let $T : X \to X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable. It follows easily from Birhoff's Ergodic Theorem that $\exists N, \mu(N) = 1$ s.t.

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow\int f\,d\mu\,\forall x\in N.$$

Let $T : X \to X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable. It follows easily from Birhoff's Ergodic Theorem that $\exists N, \mu(N) = 1$ s.t.

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow \int f\,d\mu\,\forall x\in N.$$

(i.e. the set of full measure for which the ergodic sums of continuous observables converges can be chosen to be independent of the observables).

Suppose $T : X \to X$ contains a locally maximal attractor, $T : \Lambda \to \Lambda$ (not necessarily hyperbolic). The *basin of attraction* $B(\Lambda)$ is the set of points that converge under forward iteration to Λ .

Idea:

Idea: We think of *m*-a.e. point as being 'typical', in the sense that *m* is a naturally occurring measure.

Idea: We think of *m*-a.e. point as being 'typical', in the sense that *m* is a naturally occurring measure. Question:

Idea: We think of *m*-a.e. point as being 'typical', in the sense that *m* is a naturally occurring measure. Question: What happens to ergodic sums of continuous observables for *m*-a.e. point? i.e. does $\lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} f(T^j x)$ exist for all continuous *f*, *m*-a.e., and what is the limit?

Then S is an attractor with basin $S^1 \setminus \{N\}$.

Then S is an attractor with basin $S^1 \setminus \{N\}$. Let $f \in C(X, \mathbb{R})$.

Then S is an attractor with basin $S^1 \setminus \{N\}$. Let $f \in C(X, \mathbb{R})$. As $T^n x \to S \ \forall x \in S^1 \setminus \{N\}$, we have

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow f(S)=\int f\,d\delta_S.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let $T : \Lambda \to \Lambda$ be an attractor. A *T*-invariant probability measure μ is an *SRB (Sinai-Ruelle-Bowen) measure* if

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow\int f\,d\mu$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume m.

Let $T : \Lambda \to \Lambda$ be an attractor. A *T*-invariant probability measure μ is an *SRB (Sinai-Ruelle-Bowen) measure* if

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow\int f\,d\mu$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume *m*.

i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

Let $T : \Lambda \to \Lambda$ be an attractor. A *T*-invariant probability measure μ is an *SRB (Sinai-Ruelle-Bowen) measure* if

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow\int f\,d\mu$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume *m*.

i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

The SRB measure is supported on the attractor Λ .

Let $T : \Lambda \to \Lambda$ be an attractor. A *T*-invariant probability measure μ is an *SRB (Sinai-Ruelle-Bowen) measure* if

$$\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)\longrightarrow\int f\,d\mu$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume *m*.

i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

The SRB measure is supported on the attractor Λ .

As Λ may be (topologically) small, it may have zero Riemannian volume. (Example: the solenoid has zero volume.) Hence the SRB measure may be very different to the volume.

Let $T : \Lambda \to \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\log dT|_{E^u}$

Let $T : \Lambda \to \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\log dT|_{E^u}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume. (Example, the cat map preserves Lebesgue measure = volume.)

Let $T : \Lambda \to \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\log dT|_{E^u}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume. (Example, the cat map preserves Lebesgue measure = volume.) Then volume is the SRB measure.

Let $T : \Lambda \to \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\log dT|_{E^u}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume. (Example, the cat map preserves Lebesgue measure = volume.) Then volume is the SRB measure. For a generic Anosov diffeomorphism, the SRB measure is not equal to volume.

(Not) the end

<ロ> <@> < E> < E> E のQの

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We could go on to study:
Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

- We could go on to study:
 - the geodesic flow on negatively curved manifolds—these are hyperbolic flows,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

We could go on to study:

- the geodesic flow on negatively curved manifolds—these are hyperbolic flows,
- ▶ partially hyperbolic dynamical systems—where the tangent bundle splits into 3 invariant sub-bundles E^s ⊕ E^c ⊕ E^u,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

We could go on to study:

- the geodesic flow on negatively curved manifolds—these are hyperbolic flows,
- ▶ partially hyperbolic dynamical systems—where the tangent bundle splits into 3 invariant sub-bundles E^s ⊕ E^c ⊕ E^u,
- thermodynamic formalism for countable state shifts of finite type,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

We could go on to study:

- the geodesic flow on negatively curved manifolds—these are hyperbolic flows,
- ▶ partially hyperbolic dynamical systems—where the tangent bundle splits into 3 invariant sub-bundles E^s ⊕ E^c ⊕ E^u,
- thermodynamic formalism for countable state shifts of finite type,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

...