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In the last two lectures we studied thermodynamic formalism in the

context of one-sided aperiodic shifts of finite type.

In this lecture we use symbolic dynamics to model more general

hyperbolic dynamical systems. We can then use thermodynamic

formalism to prove ergodic-theoretic results about such systems.
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Hyperbolic dynamical systems
Let T be a C 1 diffeomorphism of a compact Riemannian manifold

M.

Let TxM be the tangent space at x ∈ M.

Let DxT : TxM → TTxM be the derivative of T .

Idea: At each point x ∈ M, there are two directions:
I T contracts exponentially fast in one direction.
I T expands exponentially fast in the other.

Definition
T : M → M is an Anosov diffeomorphism if ∃C > 0, λ ∈ (0, 1) s.t.

∀x ∈ M, there is a splitting

TxM = E s
x ⊕ Eu

x

into DT -invariant sub-bundles E s , Eu s.t.

‖DxT
n(v)‖ ≤ Cλn‖v‖ ∀v ∈ E s

x , ∀n ≥ 0

‖DxT
−n(v)‖ ≤ Cλn‖v‖ ∀v ∈ Eu

x , ∀n ≥ 0.
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E s , Eu are called the stable and unstable sub-bundles, respectively.

E s is tangent to the stable foliation W s . W s(x) is the stable

manifold through x and is an immersed submanifold tangent to

E s
x . W s(x) is characterised by

W s(x) = {y ∈ M | d(T nx ,T ny)→ 0 as n→∞}. (†)

(The convergence in (†) is necessarily exponentially fast.)

Similarly, Eu is tangent to the unstable foliation W u comprising of

unstable manifolds W u(x). W u(x) is characterised by

W u(x) = {y ∈ M | d(T−nx ,T−ny)→ 0 as n→∞}.
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Motivating example: the Cat Map

Let T : R2/Z2 → R2/Z2 be the cat map

T

(
x

y

)
=

(
2 1

1 1

)(
x

y

)
mod 1.

Note

(
2 1

1 1

)
has two eigenvalues

λu =
3 +
√

5

2
> 1 λs =

3−
√

5

2
∈ (0, 1)

with corresponding eigenvectors

vu =

(
1

−1+
√

5
2

)
vs =

(
1

−1−
√

5
2

)
.
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Then E s
x is parallel to vs , and Eu

x is parallel to vu.

y
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The stable manifold W s(x) is tangent to E s(x). It is an immersed

1-dimensional sub-manifold.

As vs = (1, (−1−
√

5)/2) has rationally independent coefficients,

W s(x) is dense in R2/Z2.

x

Open Question: Which manifolds support Anosov

diffeomorphisms?
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A hyperbolic ( = no eigenvalues of modulus 1) toral automorphism

is Anosov.

A hyperbolic toral automorphism can be thought of in the

following way:

Rk is an additive group and Zk ⊂ Rk is a cocompact lattice (i.e. a

discrete subgroup such that Rk/Zk is compact). If A is a k × k

integer matrix with det A = ±1 then A is an automorphism of Rk

that preserves the lattice Zk .

More generally suppose N is a nilpotent Lie group, eg. matrices of

the form  1 x z

0 1 y

0 0 1

 .

(x , y , z ∈ R) and let Γ ⊂ N be the cocompact lattice where

x , y , z ∈ Z.
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Let A ∈ Aut (N) be an automorphism of N such that A(Γ) = Γ

and DA = derivative of A has no eigenvalues of modulus 1.

Then A induces a map

T : N/Γ −→ N/Γ : gΓ 7−→ AgΓ.

N/Γ is called a nilmanifold. If N/Γ supports an Anosov

diffeomorphism then dim N ≥ 6.

The only known examples of Anosov diffeomorphisms are on

I tori Rk/Zk

I nilmanifolds N/Γ

I infranilmanifolds

Moreover, all known Anosov diffeomorphisms are conjugate to the

algebraic Anosov automorphisms.
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Locally maximal hyperbolic sets

T : M → M is Anosov if there is a hyperbolic splitting at all

x ∈ M. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the

Klein bottle, etc.

Conjecture

If M supports an Anosov diffeomorphism then M is a torus Rk/Zk ,

a nilmanifold (N/Γ where N is a nilpotent Lie group, Γ a compact

lattice), or an infranilmanifold.

Instead of requiring TxM to have a hyperbolic splitting E s
x ⊕ Eu

x

for all x ∈ M, we could require a hyperbolic splitting for all x in a

T -invariant compact set Λ ⊂ M.

Topologically, Λ may be very complicated.
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Definition
A compact T -invariant set Λ ⊂ M is a locally maximal hyperbolic

set (or basic set) if

1. there exists a splitting TxM = E s
x ⊕ Eu

x such that for all x ∈ Λ

‖DxT
n(v)‖ ≤ Cλn‖v‖ ∀v ∈ E s

x , ∀n ≥ 0

‖DxT
−n(v)‖ ≤ Cλn‖v‖ ∀v ∈ Eu

x , ∀n ≥ 0.

2. T : Λ→ Λ has a dense set of periodic points, has a dense

orbit, and is not a single orbit.

3. ∃ an open set U ⊃ Λ s.t.

∞⋂
n=−∞

T nU = Λ.

If in (3) we have
⋂∞

n=0 T nU = Λ, then Λ is an attractor.

Anosov diffeomorphisms are attractors (with Λ = U = M).
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So Λ =
⋂∞

n=0 T nM is 1-dimensional and in each cross section is a

Cantor set.

Open Question: Give a reasonable classification of all locally

maximal hyperbolic sets.

(Conjecture: Are they all locally the product of a manifold and a

Cantor set?)
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Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let T : Λ→ Λ be

hyperbolic. We want to code the dynamics of T by using an

(aperiodic) shift of finite type.

Let x ∈ Λ.

Typically the stable and unstable manifolds will be dense in Λ.

Define the local stable and unstable manifolds to be

W s
ε (x) = {y ∈ M | d(T nx ,T ny) ≤ ε, ∀n ≥ 0}

W u
ε (x) = {y ∈ M | d(T−nx ,T−ny) ≤ ε, ∀n ≥ 0}.

(It follows that d(T nx ,T ny)→ 0 exponentially fast as n→ ±∞
respectively.)
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If x , y ∈ Λ are sufficiently close then we define their “product” to

be

[x , y ] = W u
ε (x) ∩W s

ε (y).

Thus [x , y ] is a point whose orbit approximates that of y (in

forward time) and approximates x (in backwards time).
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A set R ⊂ Λ is called a rectangle if

x , y sufficiently close =⇒ [x , y ] ∈ R.

If R is a rectangle and x ∈ R then we define

W s(x ,R) = W s
ε ∩ R

W u(x ,R) = W u
ε ∩ R.
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A partition R = {R1, . . . ,Rk} of Λ into rectangles is called a

Markov partition if

x ∈ Int R =⇒

T (W u(x ,R)) is a union of sets of the

form W u(y ,R ′).

T−1(W s(y ,R)) is a union of sets of

the form W s(y ,R ′).
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Idea: If x ∈ R1, then T (x) must be in either R2, R3, R4.

For

x ∈ ∩∞n=−∞T n(IntR), we can code the orbit of x by recording the

sequence of rectangles the orbit visits. Note that (cf decimal

expansions) if x ∈
⋃∞

n=−∞ T n(∂R) then the coding is not unique.



Idea: If x ∈ R1, then T (x) must be in either R2, R3, R4. For

x ∈ ∩∞n=−∞T n(IntR), we can code the orbit of x by recording the

sequence of rectangles the orbit visits.

Note that (cf decimal

expansions) if x ∈
⋃∞

n=−∞ T n(∂R) then the coding is not unique.



Idea: If x ∈ R1, then T (x) must be in either R2, R3, R4. For

x ∈ ∩∞n=−∞T n(IntR), we can code the orbit of x by recording the

sequence of rectangles the orbit visits. Note that (cf decimal

expansions) if x ∈
⋃∞

n=−∞ T n(∂R) then the coding is not unique.



Theorem (Bowen)

Let T be a hyperbolic map on a locally maximal hyperbolic set.

Then there exists a Markov partition R = {R1, . . . ,Rk} with an

arbitrarily small diameter.

In particular, there exists an aperiodic 2-sided shift of finite type Σ

s.t.

1. the coding map

π : Σ −→ Λ : (xj)
∞
−∞ 7−→

∞⋂
−∞

T−jRxj

is continuous, surjective, and injective except on⋃∞
−∞ T−j(∂R)

2.

Σ
σ //

π

��

Σ

π

��
Λ

T
// Λ

commutes.
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Remark
In general, rectangles may be (geometrically) very complicated.

For Anosov automorphisms of a k-dimensional torus, k ≥ 3, the

boundary of a Markov partition will typically be a fractal.



Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a

hyperbolic map T : Λ→ Λ. Note that T is invertible, so the

symbolic model σ : Σ→ Σ is 2-sided.

In previous lectures,

thermodynamic formalism was defined for 1-sided shifts of finite

type.
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Functions of the future

Let Σ = two sided shift of finite type

dθ = metric given by θ|first disagreement|

Fθ(Σ,R) = {functions f : Σ→ R that are θ-Hölder}.

If x = (xj)
∞
j=−∞ ∈ Σ then we think of (xj)

∞
j=0 as “the future” and

(xj)
0
−∞ as “the past”.

Note that if f ∈ Fθ(Σ,R) then, typically, f (x) will depend both on

the future and the past.

If f only depends on future coordinates, i.e.

f (x) = f (x0, x1, . . . )

then f can be regarded as being defined on the one-sided shift

f : Σ+ → R.
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Cohomologous functions

Recall: two functions f , g : Σ→ R are cohomologous if ∃u s.t.

f = g + uσ − u.

Cohomologous functions have the same dynamic behaviour: if f , g

are cohomologous then

n−1∑
j=0

f (σjx) =
n−1∑
j=0

g(σjx) + u(σnx)− u(x)

=
n−1∑
j=0

g(σjx) + O(1).

Theorem
Let f ∈ Fθ(Σ,R). Then f is cohomologous to a function

g ∈ F
θ

1
2

(Σ+,R) that depends only on the future.
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This allows us to:

1. start with a hyperbolic T : Λ→ Λ

2. code the dynamics of T by a 2-sided shift of finite type Σ

with coding map π : Σ→ Λ

3. if f : Λ→ R is Hölder then f̂ = f π ∈ Fθ(Σ,R) for some

θ ∈ (0, 1).

4. replace f̂ by a cohomologous function ĝ ∈ F
θ

1
2

(Σ+,R) and

apply thermodynamic formalism.
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θ

1
2

(Σ+,R) and

apply thermodynamic formalism.



This allows us to:

1. start with a hyperbolic T : Λ→ Λ

2. code the dynamics of T by a 2-sided shift of finite type Σ

with coding map π : Σ→ Λ
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Application 1: Existence of equilibrium states

Let T : Λ→ Λ be C 1 hyperbolic diffeomorphism of a basic set Λ.

Let f : Λ→ R be Hölder:

|f (x)− f (y)| ≤ C d(x , y)α.

Let π : Σ→ Λ. Then f π : Σ→ R ∈ Fθ. Let f̃ : Σ+ → R be

cohomologous to f ◦ π. Let νf be the equilibrium state for (̃f ), a

σ-invariant measure.

Let µf = νf ◦ π−1. Then µf is called an equilibrium state for f and

is a T -invariant measure.
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Application 2: SRB and physical measures

Let X be a compact Riemannian manifold equipped with the

Riemannian volume m.

Let T : X → X be a smooth diffeomorphism. Typically T does not

preserve the volume m. Even if m is T -invariant, then it need not

be ergodic.

What can we say about

lim
n→∞

1

n

n−1∑
j=0

f (T jx)

for m-a.e. x ∈ X?
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Let T : X → X be a smooth diffeomorphism of a compact

Riemannian manifold X .

Let µ be an ergodic measure.

As X is compact, we know that C (X ,R) is separable. It follows

easily from Birhoff’s Ergodic Theorem that ∃N, µ(N) = 1 s.t.

1

n

n−1∑
j=0

f (T jx) −→
∫

f dµ ∀x ∈ N.

(i.e. the set of full measure for which the ergodic sums of

continuous observables converges can be chosen to be independent

of the observables).
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Suppose T : X → X contains a locally maximal attractor,

T : Λ→ Λ (not necessarily hyperbolic). The basin of attraction

B(Λ) is the set of points that converge under forward iteration to

Λ.

(We know B(Λ) contains an open set, so has positive

Riemannian volume.)

Idea: We think of m-a.e. point as being ‘typical’, in the

sense that m is a naturally occurring measure.

Question: What happens to ergodic sums of continuous ob-

servables for m-a.e. point?

i.e. does limn→∞
1
n

∑n−1
j=0 f (T jx) exist for all con-

tinuous f , m-a.e., and what is the limit?
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Example: The North-South Map T : S1 → S1

Then S is an attractor with basin S1 \ {N}. Let f ∈ C (X ,R). As

T nx → S ∀x ∈ S1 \ {N}, we have

1

n

n−1∑
j=0

f (T jx) −→ f (S) =

∫
f dδS .
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Definition
Let T : Λ→ Λ be an attractor. A T -invariant probability measure

µ is an SRB (Sinai-Ruelle-Bowen) measure if

1

n

n−1∑
j=0

f (T jx) −→
∫

f dµ

almost everywhere on B(Λ) w.r.t. the Riemannian volume m.

i.e. the measure we “see” by taking ergodic averages of m-a.e.

point is the SRB measure.

The SRB measure is supported on the attractor Λ.

As Λ may be (topologically) small, it may have zero Riemannian

volume. (Example: the solenoid has zero volume.) Hence the SRB

measure may be very different to the volume.
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Theorem
Let T : Λ→ Λ be a C 1+α hyperbolic attractor. Then there is a

unique SRB measure. Moreover, it corresponds to the invariant

Gibbs measure with potential − log dT |Eu

Remark
Suppose T is an Anosov diffeomorphism and preserves volume.

(Example, the cat map preserves Lebesgue measure = volume.)

Then volume is the SRB measure. For a generic Anosov

diffeomorphism, the SRB measure is not equal to volume.
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(Not) the end

Ergodic theory is a huge subject with many connections to other

areas of mathematics. The material in this course reflects my own

interests.

We could go on to study:

I the geodesic flow on negatively curved manifolds—these are

hyperbolic flows,

I partially hyperbolic dynamical systems—where the tangent

bundle splits into 3 invariant sub-bundles E s ⊕ E c ⊕ Eu,

I thermodynamic formalism for countable state shifts of finite

type,

I ...
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