MAGIC: Ergodic Theory Lecture 10 - The ergodic theory of hyperbolic dynamical systems

Charles Walkden

April 12, 2013

In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type.

In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type.

In this lecture we use symbolic dynamics to model more general hyperbolic dynamical systems. We can then use thermodynamic formalism to prove ergodic-theoretic results about such systems.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T. Idea: At each point $x \in M$, there are two directions:

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T.
Idea: At each point $x \in M$, there are two directions:

- T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T.
Idea: At each point $x \in M$, there are two directions:

- T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

$T: M \rightarrow M$ is an Anosov diffeomorphism if $\exists C>0, \lambda \in(0,1)$ s.t. $\forall x \in M$, there is a splitting

$$
T_{x} M=E_{x}^{s} \oplus E_{x}^{u}
$$

into $D T$-invariant sub-bundles E^{s}, E^{u} s.t.

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T.
Idea: At each point $x \in M$, there are two directions:

- T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

$T: M \rightarrow M$ is an Anosov diffeomorphism if $\exists C>0, \lambda \in(0,1)$ s.t. $\forall x \in M$, there is a splitting

$$
T_{x} M=E_{x}^{s} \oplus E_{x}^{u}
$$

into $D T$-invariant sub-bundles E^{s}, E^{u} s.t.

$$
\left\|D_{x} T^{n}(v)\right\| \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0
$$

Hyperbolic dynamical systems

Let T be a C^{1} diffeomorphism of a compact Riemannian manifold M.
Let $T_{x} M$ be the tangent space at $x \in M$.
Let $D_{x} T: T_{x} M \rightarrow T_{T_{x}} M$ be the derivative of T.
Idea: At each point $x \in M$, there are two directions:

- T contracts exponentially fast in one direction.
- T expands exponentially fast in the other.

Definition

$T: M \rightarrow M$ is an Anosov diffeomorphism if $\exists C>0, \lambda \in(0,1)$ s.t. $\forall x \in M$, there is a splitting

$$
T_{x} M=E_{x}^{s} \oplus E_{x}^{u}
$$

into $D T$-invariant sub-bundles E^{s}, E^{u} s.t.

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \quad \forall n \geq 0 .
\end{aligned}
$$

E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively.
E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively. E^{s} is tangent to the stable foliation $W^{s} . W^{s}(x)$ is the stable manifold through x and is an immersed submanifold tangent to E_{x}^{s}.
E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively. E^{s} is tangent to the stable foliation $W^{s} . W^{s}(x)$ is the stable manifold through x and is an immersed submanifold tangent to $E_{x}^{s} \cdot W^{s}(x)$ is characterised by

$$
W^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively. E^{s} is tangent to the stable foliation $W^{s} . W^{s}(x)$ is the stable manifold through x and is an immersed submanifold tangent to $E_{x}^{s} \cdot W^{s}(x)$ is characterised by

$$
W^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

(The convergence in (\dagger) is necessarily exponentially fast.)
E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively. E^{s} is tangent to the stable foliation $W^{s} . W^{s}(x)$ is the stable manifold through x and is an immersed submanifold tangent to $E_{x}^{s} \cdot W^{s}(x)$ is characterised by

$$
W^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

(The convergence in (\dagger) is necessarily exponentially fast.)
Similarly, E^{u} is tangent to the unstable foliation W^{u} comprising of unstable manifolds $W^{u}(x)$.
E^{s}, E^{u} are called the stable and unstable sub-bundles, respectively. E^{s} is tangent to the stable foliation $W^{s} . W^{s}(x)$ is the stable manifold through x and is an immersed submanifold tangent to $E_{x}^{s} . W^{s}(x)$ is characterised by

$$
W^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

(The convergence in (\dagger) is necessarily exponentially fast.)
Similarly, E^{u} is tangent to the unstable foliation W^{u} comprising of unstable manifolds $W^{u}(x) . W^{u}(x)$ is characterised by

$$
W^{u}(x)=\left\{y \in M \mid d\left(T^{-n} x, T^{-n} y\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

Motivating example: the Cat Map

Motivating example: the Cat Map

Let $T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the cat map

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \bmod 1 .
$$

Motivating example: the Cat Map

Let $T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the cat map

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \bmod 1
$$

Note $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ has two eigenvalues

$$
\lambda_{u}=\frac{3+\sqrt{5}}{2}>1 \quad \lambda_{s}=\frac{3-\sqrt{5}}{2} \in(0,1)
$$

Motivating example: the Cat Map

Let $T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the cat map

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \bmod 1
$$

Note $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ has two eigenvalues

$$
\lambda_{u}=\frac{3+\sqrt{5}}{2}>1 \quad \lambda_{s}=\frac{3-\sqrt{5}}{2} \in(0,1)
$$

with corresponding eigenvectors

$$
v_{u}=\binom{1}{\frac{-1+\sqrt{5}}{2}} \quad v_{s}=\binom{1}{\frac{-1-\sqrt{5}}{2}}
$$

Then E_{x}^{s} is parallel to v_{s}, and E_{x}^{u} is parallel to v_{u}.

Then E_{x}^{s} is parallel to v_{s}, and E_{x}^{u} is parallel to v_{u}.

Then E_{x}^{s} is parallel to v_{s}, and E_{x}^{u} is parallel to v_{u}.

Then E_{x}^{s} is parallel to v_{s}, and E_{x}^{u} is parallel to v_{u}.

Then E_{x}^{s} is parallel to v_{s}, and E_{x}^{u} is parallel to v_{u}.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

The stable manifold $W^{s}(x)$ is tangent to $E^{s}(x)$. It is an immersed 1-dimensional sub-manifold.
As $v_{s}=(1,(-1-\sqrt{5}) / 2)$ has rationally independent coefficients, $W^{s}(x)$ is dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

Open Question: Which manifolds support Anosov diffeomorphisms?

A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.

A hyperbolic ($=$ no eigenvalues of modulus 1) toral automorphism is Anosov.
A hyperbolic toral automorphism can be thought of in the following way:

A hyperbolic (= no eigenvalues of modulus 1) toral automorphism is Anosov.
A hyperbolic toral automorphism can be thought of in the following way:
\mathbb{R}^{k} is an additive group and $\mathbb{Z}^{k} \subset \mathbb{R}^{k}$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^{k} / \mathbb{Z}^{k}$ is compact). If A is a $k \times k$ integer matrix with $\operatorname{det} A= \pm 1$ then A is an automorphism of \mathbb{R}^{k} that preserves the lattice \mathbb{Z}^{k}.

A hyperbolic ($=$ no eigenvalues of modulus 1) toral automorphism is Anosov.
A hyperbolic toral automorphism can be thought of in the following way:
\mathbb{R}^{k} is an additive group and $\mathbb{Z}^{k} \subset \mathbb{R}^{k}$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^{k} / \mathbb{Z}^{k}$ is compact). If A is a $k \times k$ integer matrix with $\operatorname{det} A= \pm 1$ then A is an automorphism of \mathbb{R}^{k} that preserves the lattice \mathbb{Z}^{k}.

More generally suppose N is a nilpotent Lie group, eg. matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

$(x, y, z \in \mathbb{R})$

A hyperbolic ($=$ no eigenvalues of modulus 1) toral automorphism is Anosov.
A hyperbolic toral automorphism can be thought of in the following way:
\mathbb{R}^{k} is an additive group and $\mathbb{Z}^{k} \subset \mathbb{R}^{k}$ is a cocompact lattice (i.e. a discrete subgroup such that $\mathbb{R}^{k} / \mathbb{Z}^{k}$ is compact). If A is a $k \times k$ integer matrix with $\operatorname{det} A= \pm 1$ then A is an automorphism of \mathbb{R}^{k} that preserves the lattice \mathbb{Z}^{k}.

More generally suppose N is a nilpotent Lie group, eg. matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

$(x, y, z \in \mathbb{R})$ and let $\Gamma \subset N$ be the cocompact lattice where $x, y, z \in \mathbb{Z}$.

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 .

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold.

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

- tori $\mathbb{R}^{k} / \mathbb{Z}^{k}$

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

- tori $\mathbb{R}^{k} / \mathbb{Z}^{k}$
- nilmanifolds N / Γ

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 . Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

- tori $\mathbb{R}^{k} / \mathbb{Z}^{k}$
- nilmanifolds N / Γ
- infranilmanifolds

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 .
Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

- tori $\mathbb{R}^{k} / \mathbb{Z}^{k}$
- nilmanifolds N / Γ
- infranilmanifolds

Moreover, all known Anosov diffeomorphisms are conjugate to the algebraic Anosov automorphisms.

Let $A \in \operatorname{Aut}(N)$ be an automorphism of N such that $A(\Gamma)=\Gamma$ and $D A=$ derivative of A has no eigenvalues of modulus 1 .
Then A induces a map

$$
T: N / \Gamma \longrightarrow N / \Gamma: g \Gamma \longmapsto A g \Gamma .
$$

N / Γ is called a nilmanifold. If N / Γ supports an Anosov diffeomorphism then $\operatorname{dim} N \geq 6$.
The only known examples of Anosov diffeomorphisms are on

- tori $\mathbb{R}^{k} / \mathbb{Z}^{k}$
- nilmanifolds N / Γ
- infranilmanifolds

Moreover, all known Anosov diffeomorphisms are conjugate to the algebraic Anosov automorphisms.

Locally maximal hyperbolic sets

$T: M \rightarrow M$ is Anosov if there is a hyperbolic splitting at all $x \in M$. This is a very strong condition on M.

Locally maximal hyperbolic sets

$T: M \rightarrow M$ is Anosov if there is a hyperbolic splitting at all $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Locally maximal hyperbolic sets

$T: M \rightarrow M$ is Anosov if there is a hyperbolic splitting at all $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If M supports an Anosov diffeomorphism then M is a torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$, a nilmanifold (N / Γ where N is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

Locally maximal hyperbolic sets

$T: M \rightarrow M$ is Anosov if there is a hyperbolic splitting at all $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If M supports an Anosov diffeomorphism then M is a torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$, a nilmanifold (N / Γ where N is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

Instead of requiring $T_{x} M$ to have a hyperbolic splitting $E_{x}^{s} \oplus E_{x}^{u}$ for all $x \in M$, we could require a hyperbolic splitting for all x in a T-invariant compact set $\Lambda \subset M$.

Locally maximal hyperbolic sets

$T: M \rightarrow M$ is Anosov if there is a hyperbolic splitting at all $x \in M$. This is a very strong condition on M.

There are no Anosov diffeomorphisms on homotopy spheres, the Klein bottle, etc.

Conjecture

If M supports an Anosov diffeomorphism then M is a torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$, a nilmanifold (N / Γ where N is a nilpotent Lie group, Γ a compact lattice), or an infranilmanifold.

Instead of requiring $T_{x} M$ to have a hyperbolic splitting $E_{x}^{s} \oplus E_{x}^{u}$ for all $x \in M$, we could require a hyperbolic splitting for all x in a T-invariant compact set $\Lambda \subset M$.

Topologically, Λ may be very complicated.

Definition
A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\left\|D_{x} T^{n}(v)\right\| \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0
$$

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \forall n \geq 0
\end{aligned}
$$

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \forall n \geq 0
\end{aligned}
$$

2. $T: \Lambda \rightarrow \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \forall n \geq 0
\end{aligned}
$$

2. $T: \Lambda \rightarrow \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
3. \exists an open set $U \supset \wedge$ s.t.

$$
\bigcap_{n=-\infty}^{\infty} T^{n} U=\Lambda
$$

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \forall n \geq 0
\end{aligned}
$$

2. $T: \Lambda \rightarrow \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
3. \exists an open set $U \supset \wedge$ s.t.

$$
\bigcap_{n=-\infty}^{\infty} T^{n} U=\Lambda
$$

If in (3) we have $\bigcap_{n=0}^{\infty} T^{n} U=\Lambda$, then Λ is an attractor.

Definition

A compact T-invariant set $\Lambda \subset M$ is a locally maximal hyperbolic set (or basic set) if

1. there exists a splitting $T_{x} M=E_{x}^{s} \oplus E_{x}^{u}$ such that for all $x \in \Lambda$

$$
\begin{aligned}
\left\|D_{x} T^{n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{s}, \forall n \geq 0 \\
\left\|D_{x} T^{-n}(v)\right\| & \leq C \lambda^{n}\|v\| \forall v \in E_{x}^{u}, \forall n \geq 0
\end{aligned}
$$

2. $T: \Lambda \rightarrow \Lambda$ has a dense set of periodic points, has a dense orbit, and is not a single orbit.
3. \exists an open set $U \supset \wedge$ s.t.

$$
\bigcap_{n=-\infty}^{\infty} T^{n} U=\Lambda
$$

If in (3) we have $\bigcap_{n=0}^{\infty} T^{n} U=\Lambda$, then Λ is an attractor.
Anosov diffeomorphisms are attractors (with $\Lambda=U=M$).

Example 1: The Smale horseshoe

Example 1: The Smale horseshoe

Define

Example 1: The Smale horseshoe

Define

If one iterates T forwards:

Example 1: The Smale horseshoe

Define

If one iterates T forwards:

and backwards

There is a locally maximal hyperbolic set

and backwards

There is a locally maximal hyperbolic set

and backwards

There is a locally maximal hyperbolic set

-the product of two Cantor sets.

Example 2: The Solenoid Attractor

Example 2: The Solenoid Attractor

Let $M=$ solid torus.

Example 2: The Solenoid Attractor

Let $M=$ solid torus. Define a map $T: M \rightarrow M$

Example 2: The Solenoid Attractor

Let $M=$ solid torus. Define a map $T: M \rightarrow M$

Example 2: The Solenoid Attractor

Let $M=$ solid torus. Define a map $T: M \rightarrow M$

Example 2: The Solenoid Attractor

Let $M=$ solid torus. Define a map $T: M \rightarrow M$

Take a cross-section of the torus:

Example 2: The Solenoid Attractor

Let $M=$ solid torus. Define a map $T: M \rightarrow M$

Take a cross-section of the torus:

So $\Lambda=\bigcap_{n=0}^{\infty} T^{n} M$ is 1-dimensional and in each cross section is a Cantor set.

So $\Lambda=\bigcap_{n=0}^{\infty} T^{n} M$ is 1-dimensional and in each cross section is a Cantor set.

Open Question: Give a reasonable classification of all locally maximal hyperbolic sets.

So $\Lambda=\bigcap_{n=0}^{\infty} T^{n} M$ is 1-dimensional and in each cross section is a Cantor set.

Open Question: Give a reasonable classification of all locally maximal hyperbolic sets.
(Conjecture: Are they all locally the product of a manifold and a Cantor set?)

Symbolic dynamics and Markov Partitions

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic.

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.
Typically the stable and unstable manifolds will be dense in Λ.

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.
Typically the stable and unstable manifolds will be dense in Λ.
Define the local stable and unstable manifolds to be

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.
Typically the stable and unstable manifolds will be dense in Λ.
Define the local stable and unstable manifolds to be

$$
W_{\epsilon}^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \leq \epsilon, \forall n \geq 0\right\}
$$

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.
Typically the stable and unstable manifolds will be dense in Λ.
Define the local stable and unstable manifolds to be

$$
\begin{aligned}
& W_{\epsilon}^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \leq \epsilon, \forall n \geq 0\right\} \\
& W_{\epsilon}^{u}(x)=\left\{y \in M \mid d\left(T^{-n} x, T^{-n} y\right) \leq \epsilon, \forall n \geq 0\right\}
\end{aligned}
$$

Symbolic dynamics and Markov Partitions

Let Λ be a locally maximal hyperbolic set and let $T: \Lambda \rightarrow \Lambda$ be hyperbolic. We want to code the dynamics of T by using an (aperiodic) shift of finite type.
Let $x \in \Lambda$.
Typically the stable and unstable manifolds will be dense in Λ.
Define the local stable and unstable manifolds to be

$$
\begin{aligned}
& W_{\epsilon}^{s}(x)=\left\{y \in M \mid d\left(T^{n} x, T^{n} y\right) \leq \epsilon, \forall n \geq 0\right\} \\
& W_{\epsilon}^{u}(x)=\left\{y \in M \mid d\left(T^{-n} x, T^{-n} y\right) \leq \epsilon, \forall n \geq 0\right\}
\end{aligned}
$$

(It follows that $d\left(T^{n} x, T^{n} y\right) \rightarrow 0$ exponentially fast as $n \rightarrow \pm \infty$ respectively.)

If $x, y \in \Lambda$ are sufficiently close then we define their "product" to be

If $x, y \in \Lambda$ are sufficiently close then we define their "product" to be

$$
[x, y]=W_{\epsilon}^{u}(x) \cap W_{\epsilon}^{s}(y)
$$

If $x, y \in \Lambda$ are sufficiently close then we define their "product" to be

$$
[x, y]=W_{\epsilon}^{u}(x) \cap W_{\epsilon}^{s}(y)
$$

Thus $[x, y]$ is a point whose orbit approximates that of y (in forward time) and approximates x (in backwards time).

Example: The Cat Map

Example: The Cat Map

Example: The Cat Map

Example: The Cat Map

Example: The Cat Map

A set $R \subset \Lambda$ is called a rectangle if x, y sufficiently close $\Longrightarrow[x, y] \in R$.

A set $R \subset \Lambda$ is called a rectangle if
x, y sufficiently close $\Longrightarrow[x, y] \in R$.
If R is a rectangle and $x \in R$ then we define

$$
\begin{aligned}
W^{s}(x, R) & =W_{\epsilon}^{s} \cap R \\
W^{u}(x, R) & =W_{\epsilon}^{u} \cap R .
\end{aligned}
$$

A set $R \subset \Lambda$ is called a rectangle if

$$
x, y \text { sufficiently close } \Longrightarrow[x, y] \in R .
$$

If R is a rectangle and $x \in R$ then we define

$$
\begin{aligned}
W^{s}(x, R) & =W_{\epsilon}^{s} \cap R \\
W^{u}(x, R) & =W_{\epsilon}^{u} \cap R .
\end{aligned}
$$

A set $R \subset \Lambda$ is called a rectangle if

$$
x, y \text { sufficiently close } \Longrightarrow[x, y] \in R .
$$

If R is a rectangle and $x \in R$ then we define

$$
\begin{aligned}
W^{s}(x, R) & =W_{\epsilon}^{s} \cap R \\
W^{u}(x, R) & =W_{\epsilon}^{u} \cap R .
\end{aligned}
$$

A set $R \subset \Lambda$ is called a rectangle if

$$
x, y \text { sufficiently close } \Longrightarrow[x, y] \in R .
$$

If R is a rectangle and $x \in R$ then we define

$$
\begin{aligned}
W^{s}(x, R) & =W_{\epsilon}^{s} \cap R \\
W^{u}(x, R) & =W_{\epsilon}^{u} \cap R
\end{aligned}
$$

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$x \in \operatorname{Int} R$

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$x \in \operatorname{Int} R \quad \Longrightarrow$

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if

[^0]A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$T\left(W^{u}(x, R)\right)$ is a union of sets of the
form $W^{u}\left(y, R^{\prime}\right)$.
$T^{-1}\left(W^{s}(y, R)\right)$ is a union of sets of
the form $W^{s}\left(y, R^{\prime}\right)$.

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$T\left(W^{u}(x, R)\right)$ is a union of sets of the
form $W^{u}\left(y, R^{\prime}\right)$.
$T^{-1}\left(W^{s}(y, R)\right)$ is a union of sets of
the form $W^{s}\left(y, R^{\prime}\right)$.

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$T\left(W^{u}(x, R)\right)$ is a union of sets of the
form $W^{u}\left(y, R^{\prime}\right)$.
$T^{-1}\left(W^{s}(y, R)\right)$ is a union of sets of
the form $W^{s}\left(y, R^{\prime}\right)$.

A partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ of Λ into rectangles is called a Markov partition if
$T\left(W^{u}(x, R)\right)$ is a union of sets of the
form $W^{u}\left(y, R^{\prime}\right)$.
$T^{-1}\left(W^{s}(y, R)\right)$ is a union of sets of
the form $W^{s}\left(y, R^{\prime}\right)$.

Idea: If $x \in R_{1}$, then $T(x)$ must be in either R_{2}, R_{3}, R_{4}.

Idea: If $x \in R_{1}$, then $T(x)$ must be in either R_{2}, R_{3}, R_{4}. For $x \in \cap_{n=-\infty}^{\infty} T^{n}$ (Int $\left.\mathcal{R}\right)$, we can code the orbit of x by recording the sequence of rectangles the orbit visits.

Idea: If $x \in R_{1}$, then $T(x)$ must be in either R_{2}, R_{3}, R_{4}. For $x \in \cap_{n=-\infty}^{\infty} T^{n}(\operatorname{Int} \mathcal{R})$, we can code the orbit of x by recording the sequence of rectangles the orbit visits. Note that (cf decimal expansions) if $x \in \bigcup_{n=-\infty}^{\infty} T^{n}(\partial \mathcal{R})$ then the coding is not unique.

Theorem (Bowen)

Theorem (Bowen)

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ with an arbitrarily small diameter.

Theorem (Bowen)

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ with an arbitrarily small diameter.
In particular, there exists an aperiodic 2-sided shift of finite type Σ
s.t.

Theorem (Bowen)

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ with an arbitrarily small diameter.
In particular, there exists an aperiodic 2-sided shift of finite type Σ
s.t.

1. the coding map

$$
\pi: \Sigma \longrightarrow \Lambda:\left(x_{j}\right)_{-\infty}^{\infty} \longmapsto \bigcap_{-\infty}^{\infty} T^{-j} R_{x_{j}}
$$

is continuous, surjective, and injective except on
$\bigcup_{-\infty}^{\infty} T^{-j}(\partial \mathcal{R})$

Theorem (Bowen)

Let T be a hyperbolic map on a locally maximal hyperbolic set. Then there exists a Markov partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ with an arbitrarily small diameter.
In particular, there exists an aperiodic 2-sided shift of finite type Σ
s.t.

1. the coding map

$$
\pi: \Sigma \longrightarrow \Lambda:\left(x_{j}\right)_{-\infty}^{\infty} \longmapsto \bigcap_{-\infty}^{\infty} T^{-j} R_{x_{j}}
$$

is continuous, surjective, and injective except on
$\bigcup_{-\infty}^{\infty} T^{-j}(\partial \mathcal{R})$
2.

Example: Cat Map

Example: Cat Map

Example: Cat Map

Example: Cat Map

Example: Cat Map

This gives the matrix:

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Remark

In general, rectangles may be (geometrically) very complicated.
For Anosov automorphisms of a k-dimensional torus, $k \geq 3$, the boundary of a Markov partition will typically be a fractal.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T: \Lambda \rightarrow \Lambda$. Note that T is invertible, so the symbolic model $\sigma: \Sigma \rightarrow \Sigma$ is 2 -sided.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T: \Lambda \rightarrow \Lambda$. Note that T is invertible, so the symbolic model $\sigma: \Sigma \rightarrow \Sigma$ is 2 -sided. In previous lectures, thermodynamic formalism was defined for 1-sided shifts of finite type.

Ergodic theory and hyperbolic dynamics

We want to use the thermodynamic formalism to study a hyperbolic map $T: \Lambda \rightarrow \Lambda$. Note that T is invertible, so the symbolic model $\sigma: \Sigma \rightarrow \Sigma$ is 2 -sided. In previous lectures, thermodynamic formalism was defined for 1-sided shifts of finite type.

Functions of the future

Functions of the future

Let
$\Sigma=$ two sided shift of finite type

Functions of the future

Let
$\Sigma=$ two sided shift of finite type
$d_{\theta}=$ metric given by $\theta^{\text {first disagreement } \mid}$

Functions of the future

Let
$\Sigma=$ two sided shift of finite type
$d_{\theta}=$ metric given by $\theta^{\text {first disagreement } \mid}$
$F_{\theta}(\Sigma, \mathbb{R})=\{$ functions $f: \Sigma \rightarrow \mathbb{R}$ that are θ-Hölder $\}$.

Functions of the future

Let $\quad \Sigma=$ two sided shift of finite type
$d_{\theta}=$ metric given by $\theta^{\mid \text {first disagreement } \mid}$
$F_{\theta}(\Sigma, \mathbb{R})=\{$ functions $f: \Sigma \rightarrow \mathbb{R}$ that are θ-Hölder $\}$.
If $x=\left(x_{j}\right)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $\left(x_{j}\right)_{j=0}^{\infty}$ as "the future" and $\left(x_{j}\right)_{-\infty}^{0}$ as "the past".

Functions of the future

Let $\quad \Sigma=$ two sided shift of finite type
$d_{\theta}=$ metric given by $\theta^{\mid \text {first disagreement } \mid}$
$F_{\theta}(\Sigma, \mathbb{R})=\{$ functions $f: \Sigma \rightarrow \mathbb{R}$ that are θ-Hölder $\}$.
If $x=\left(x_{j}\right)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $\left(x_{j}\right)_{j=0}^{\infty}$ as "the future" and $\left(x_{j}\right)_{-\infty}^{0}$ as "the past".
Note that if $f \in F_{\theta(\Sigma, \mathbb{R})}$ then, typically, $f(x)$ will depend both on the future and the past.

Functions of the future

Let $\quad \Sigma=$ two sided shift of finite type

$$
\begin{aligned}
d_{\theta} & =\text { metric given by } \theta^{\mid \text {first disagreement } \mid} \\
F_{\theta}(\Sigma, \mathbb{R}) & =\{\text { functions } f: \Sigma \rightarrow \mathbb{R} \text { that are } \theta \text {-Hölder }\}
\end{aligned}
$$

If $x=\left(x_{j}\right)_{j=-\infty}^{\infty} \in \Sigma$ then we think of $\left(x_{j}\right)_{j=0}^{\infty}$ as "the future" and $\left(x_{j}\right)_{-\infty}^{0}$ as "the past".
Note that if $f \in F_{\theta(\Sigma, \mathbb{R})}$ then, typically, $f(x)$ will depend both on the future and the past.
If f only depends on future coordinates, i.e.

$$
f(x)=f\left(x_{0}, x_{1}, \ldots\right)
$$

then f can be regarded as being defined on the one-sided shift $f: \Sigma^{+} \rightarrow \mathbb{R}$.

Cohomologous functions

Recall: two functions $f, g: \Sigma \rightarrow \mathbb{R}$ are cohomologous if $\exists u$ s.t.

$$
f=g+u \sigma-u .
$$

Cohomologous functions

Recall: two functions $f, g: \Sigma \rightarrow \mathbb{R}$ are cohomologous if $\exists u$ s.t.

$$
f=g+u \sigma-u
$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$
\sum_{j=0}^{n-1} f\left(\sigma^{j} x\right)=\sum_{j=0}^{n-1} g\left(\sigma^{j} x\right)+u\left(\sigma^{n} x\right)-u(x)
$$

Cohomologous functions

Recall: two functions $f, g: \Sigma \rightarrow \mathbb{R}$ are cohomologous if $\exists u$ s.t.

$$
f=g+u \sigma-u
$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$
\begin{aligned}
\sum_{j=0}^{n-1} f\left(\sigma^{j} x\right) & =\sum_{j=0}^{n-1} g\left(\sigma^{j} x\right)+u\left(\sigma^{n} x\right)-u(x) \\
& =\sum_{j=0}^{n-1} g\left(\sigma^{j} x\right)+O(1)
\end{aligned}
$$

Cohomologous functions

Recall: two functions $f, g: \Sigma \rightarrow \mathbb{R}$ are cohomologous if $\exists u$ s.t.

$$
f=g+u \sigma-u
$$

Cohomologous functions have the same dynamic behaviour: if f, g are cohomologous then

$$
\begin{aligned}
\sum_{j=0}^{n-1} f\left(\sigma^{j} x\right) & =\sum_{j=0}^{n-1} g\left(\sigma^{j} x\right)+u\left(\sigma^{n} x\right)-u(x) \\
& =\sum_{j=0}^{n-1} g\left(\sigma^{j} x\right)+O(1)
\end{aligned}
$$

Theorem
Let $f \in F_{\theta}(\Sigma, \mathbb{R})$. Then f is cohomologous to a function $g \in F_{\theta^{\frac{1}{2}}}\left(\Sigma^{+}, \mathbb{R}\right)$ that depends only on the future.

This allows us to:

This allows us to:

1. start with a hyperbolic $T: \Lambda \rightarrow \Lambda$

This allows us to:

1. start with a hyperbolic $T: \Lambda \rightarrow \Lambda$
2. code the dynamics of T by a 2 -sided shift of finite type Σ with coding map $\pi: \Sigma \rightarrow \Lambda$

This allows us to:

1. start with a hyperbolic $T: \Lambda \rightarrow \Lambda$
2. code the dynamics of T by a 2 -sided shift of finite type Σ with coding map $\pi: \Sigma \rightarrow \Lambda$
3. if $f: \Lambda \rightarrow \mathbb{R}$ is Hölder then $\hat{f}=f \pi \in F_{\theta}(\Sigma, \mathbb{R})$ for some $\theta \in(0,1)$.

This allows us to:

1. start with a hyperbolic $T: \Lambda \rightarrow \Lambda$
2. code the dynamics of T by a 2 -sided shift of finite type Σ with coding map $\pi: \Sigma \rightarrow \Lambda$
3. if $f: \Lambda \rightarrow \mathbb{R}$ is Hölder then $\hat{f}=f \pi \in F_{\theta}(\Sigma, \mathbb{R})$ for some $\theta \in(0,1)$.
4. replace \hat{f} by a cohomologous function $\hat{g} \in F_{\theta^{\frac{1}{2}}}\left(\Sigma^{+}, \mathbb{R}\right)$ and apply thermodynamic formalism.

Application 1: Existence of equilibrium states

Let $T: \Lambda \rightarrow \Lambda$ be C^{1} hyperbolic diffeomorphism of a basic set Λ.

Application 1: Existence of equilibrium states

Let $T: \Lambda \rightarrow \Lambda$ be C^{1} hyperbolic diffeomorphism of a basic set Λ. Let $f: \Lambda \rightarrow \mathbb{R}$ be Hölder:

$$
|f(x)-f(y)| \leq C d(x, y)^{\alpha} .
$$

Application 1: Existence of equilibrium states

Let $T: \Lambda \rightarrow \Lambda$ be C^{1} hyperbolic diffeomorphism of a basic set Λ. Let $f: \Lambda \rightarrow \mathbb{R}$ be Hölder:

$$
|f(x)-f(y)| \leq C d(x, y)^{\alpha}
$$

Let $\pi: \Sigma \rightarrow \Lambda$. Then $f \pi: \Sigma \rightarrow \mathbb{R} \in F_{\theta}$. Let $\tilde{f}: \Sigma^{+} \rightarrow \mathbb{R}$ be cohomologous to $f \circ \pi$. Let ν_{f} be the equilibrium state for $\left.\tilde{(} f\right)$, a σ-invariant measure.

Application 1: Existence of equilibrium states

Let $T: \Lambda \rightarrow \Lambda$ be C^{1} hyperbolic diffeomorphism of a basic set Λ. Let $f: \Lambda \rightarrow \mathbb{R}$ be Hölder:

$$
|f(x)-f(y)| \leq C d(x, y)^{\alpha}
$$

Let $\pi: \Sigma \rightarrow \Lambda$. Then $f \pi: \Sigma \rightarrow \mathbb{R} \in F_{\theta}$. Let $\tilde{f}: \Sigma^{+} \rightarrow \mathbb{R}$ be cohomologous to $f \circ \pi$. Let ν_{f} be the equilibrium state for $\left.\tilde{(} f\right)$, a σ-invariant measure.

Let $\mu_{f}=\nu_{f} \circ \pi^{-1}$. Then μ_{f} is called an equilibrium state for f and is a T-invariant measure.

Application 2: SRB and physical measures

Let X be a compact Riemannian manifold equipped with the Riemannian volume m.

Application 2: SRB and physical measures

Let X be a compact Riemannian manifold equipped with the Riemannian volume m.
Let $T: X \rightarrow X$ be a smooth diffeomorphism. Typically T does not preserve the volume m. Even if m is T-invariant, then it need not be ergodic.
What can we say about

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right)
$$

for m-a.e. $x \in X$?

Let $T: X \rightarrow X$ be a smooth diffeomorphism of a compact Riemannian manifold X.

Let $T: X \rightarrow X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure.

Let $T: X \rightarrow X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable.

Let $T: X \rightarrow X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable. It follows easily from Birhoff's Ergodic Theorem that $\exists N, \mu(N)=1$ s.t.

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu \forall x \in N
$$

Let $T: X \rightarrow X$ be a smooth diffeomorphism of a compact Riemannian manifold X. Let μ be an ergodic measure. As X is compact, we know that $C(X, \mathbb{R})$ is separable. It follows easily from Birhoff's Ergodic Theorem that $\exists N, \mu(N)=1$ s.t.

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu \forall x \in N
$$

(i.e. the set of full measure for which the ergodic sums of continuous observables converges can be chosen to be independent of the observables).

Suppose $T: X \rightarrow X$ contains a locally maximal attractor, $T: \Lambda \rightarrow \Lambda$ (not necessarily hyperbolic). The basin of attraction $B(\Lambda)$ is the set of points that converge under forward iteration to Λ.

Suppose $T: X \rightarrow X$ contains a locally maximal attractor, $T: \Lambda \rightarrow \Lambda$ (not necessarily hyperbolic). The basin of attraction $B(\Lambda)$ is the set of points that converge under forward iteration to Λ. (We know $B(\Lambda)$ contains an open set, so has positive Riemannian volume.)

Idea:

Suppose $T: X \rightarrow X$ contains a locally maximal attractor, $T: \Lambda \rightarrow \Lambda$ (not necessarily hyperbolic). The basin of attraction $B(\Lambda)$ is the set of points that converge under forward iteration to Λ. (We know $B(\Lambda)$ contains an open set, so has positive Riemannian volume.)

Idea: We think of m-a.e. point as being 'typical', in the sense that m is a naturally occurring measure.

Suppose $T: X \rightarrow X$ contains a locally maximal attractor, $T: \Lambda \rightarrow \Lambda$ (not necessarily hyperbolic). The basin of attraction $B(\Lambda)$ is the set of points that converge under forward iteration to Λ. (We know $B(\Lambda)$ contains an open set, so has positive Riemannian volume.)

Idea: We think of m-a.e. point as being 'typical', in the sense that m is a naturally occurring measure.
Question:

Suppose $T: X \rightarrow X$ contains a locally maximal attractor, $T: \Lambda \rightarrow \Lambda$ (not necessarily hyperbolic). The basin of attraction $B(\Lambda)$ is the set of points that converge under forward iteration to Λ. (We know $B(\Lambda)$ contains an open set, so has positive Riemannian volume.)

Idea: We think of m-a.e. point as being 'typical', in the sense that m is a naturally occurring measure.
Question: What happens to ergodic sums of continuous observables for m-a.e. point?
i.e. does $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right)$ exist for all continuous f, m-a.e., and what is the limit?

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Then S is an attractor with basin $S^{1} \backslash\{N\}$.

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Then S is an attractor with basin $S^{1} \backslash\{N\}$. Let $f \in C(X, \mathbb{R})$.

Example: The North-South Map $T: S^{1} \rightarrow S^{1}$

Then S is an attractor with basin $S^{1} \backslash\{N\}$. Let $f \in C(X, \mathbb{R})$. As $T^{n} x \rightarrow S \forall x \in S^{1} \backslash\{N\}$, we have

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow f(S)=\int f d \delta_{S} .
$$

Definition

Let $T: \Lambda \rightarrow \Lambda$ be an attractor. A T-invariant probability measure μ is an SRB (Sinai-Ruelle-Bowen) measure if

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu
$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume m.

Definition

Let $T: \Lambda \rightarrow \Lambda$ be an attractor. A T-invariant probability measure μ is an SRB (Sinai-Ruelle-Bowen) measure if

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu
$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume m. i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

Definition

Let $T: \Lambda \rightarrow \Lambda$ be an attractor. A T-invariant probability measure μ is an SRB (Sinai-Ruelle-Bowen) measure if

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu
$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume m. i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

The SRB measure is supported on the attractor Λ.

Definition

Let $T: \Lambda \rightarrow \Lambda$ be an attractor. A T-invariant probability measure μ is an SRB (Sinai-Ruelle-Bowen) measure if

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu
$$

almost everywhere on $B(\Lambda)$ w.r.t. the Riemannian volume m. i.e. the measure we "see" by taking ergodic averages of m-a.e. point is the SRB measure.

The SRB measure is supported on the attractor Λ. As Λ may be (topologically) small, it may have zero Riemannian volume. (Example: the solenoid has zero volume.) Hence the SRB measure may be very different to the volume.

Theorem
Let $T: \Lambda \rightarrow \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\left.\log d T\right|_{E^{u}}$

Theorem

Let $T: \Lambda \rightarrow \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\left.\log d T\right|_{E^{u}}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume.
(Example, the cat map preserves Lebesgue measure $=$ volume.)

Theorem

Let $T: \Lambda \rightarrow \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\left.\log d T\right|_{E^{u}}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume.
(Example, the cat map preserves Lebesgue measure $=$ volume.)
Then volume is the SRB measure.

Theorem

Let $T: \Lambda \rightarrow \Lambda$ be a $C^{1+\alpha}$ hyperbolic attractor. Then there is a unique SRB measure. Moreover, it corresponds to the invariant Gibbs measure with potential $-\left.\log d T\right|_{E^{u}}$

Remark

Suppose T is an Anosov diffeomorphism and preserves volume.
(Example, the cat map preserves Lebesgue measure $=$ volume.)
Then volume is the SRB measure. For a generic Anosov diffeomorphism, the SRB measure is not equal to volume.
(Not) the end

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.
We could go on to study:

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.
We could go on to study:

- the geodesic flow on negatively curved manifolds-these are hyperbolic flows,

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.
We could go on to study:

- the geodesic flow on negatively curved manifolds-these are hyperbolic flows,
- partially hyperbolic dynamical systems-where the tangent bundle splits into 3 invariant sub-bundles $E^{s} \oplus E^{c} \oplus E^{u}$,

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.
We could go on to study:

- the geodesic flow on negatively curved manifolds-these are hyperbolic flows,
- partially hyperbolic dynamical systems-where the tangent bundle splits into 3 invariant sub-bundles $E^{s} \oplus E^{c} \oplus E^{u}$,
- thermodynamic formalism for countable state shifts of finite type,

(Not) the end

Ergodic theory is a huge subject with many connections to other areas of mathematics. The material in this course reflects my own interests.
We could go on to study:

- the geodesic flow on negatively curved manifolds-these are hyperbolic flows,
- partially hyperbolic dynamical systems-where the tangent bundle splits into 3 invariant sub-bundles $E^{s} \oplus E^{c} \oplus E^{u}$,
- thermodynamic formalism for countable state shifts of finite type,
- ...

[^0]: $T\left(W^{u}(x, R)\right)$ is a union of sets of the form $W^{u}\left(y, R^{\prime}\right)$.

