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Introduction

Historically ergodic theory was a branch of statistical mechanics.

There are many concepts in ergodic theory that reflect this heritage

(entropy, pressure, Gibbs states, zero-temperature limits etc).

This is the so-called “thermodynamic formalism”, which we

introduce in this lecture. We will not study the connections

between ergodic theory and statistical mechanics; instead we set

things up in a way that allows us to study hyperbolic dynamics.
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Shifts of finite type

Let A be an aperiodic k × k 0− 1 matrix. Define the one-sided

shift of finite type

Σ = {(xj)
∞
j=0 | Axj ,xj+1 = 1 for all j ≥ 0}.

Fix θ ∈ (0, 1). Define a metric on Σ by

dθ(x , y) = θn(x ,y)

where n(x , y) is the first place in which the sequences x , y disagree.

Define cylinder sets by

[i0, . . . , in−1] = {(xj)
∞
j=0 | xj = ij , 0 ≤ j ≤ n − 1}.

Cylinder sets are both open and closed.

Define the shift map

σ(x0, x1, x2, . . .) = (x1, x2, . . .).
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Functions defined on Σ

We need a nice class of functions to work with.

Let f : Σ→ R or C. Then f is Hölder of exponent θ ∈ (0, 1) if

there exists C > 0 s.t.

|f (x)− f (y)| ≤ Cdθ(x , y) (1)

(This is an abuse of notation: one should say that f is Lipschitz

w.r.t. dθ. But dθ(x , y)α = dθα(x , y) so α-Hölder w.r.t. dθ is the

same as Lipschitz w.r.t. dθα .)

Let |f |θ denote the least possible constant C > 0 in (1). Then |f |θ
is a semi-norm, but not a norm.

Define ‖f ‖θ = |f |∞ + |f |θ. Then ‖ · ‖θ is a norm on the Banach

space

Fθ(R) = {f : Σ→ R | ‖f ‖θ <∞}.
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same as Lipschitz w.r.t. dθα .)

Let |f |θ denote the least possible constant C > 0 in (1). Then |f |θ
is a semi-norm, but not a norm.

Define ‖f ‖θ = |f |∞ + |f |θ. Then ‖ · ‖θ is a norm on the Banach

space

Fθ(R) = {f : Σ→ R | ‖f ‖θ <∞}.



Functions defined on Σ
We need a nice class of functions to work with.

Let f : Σ→ R or C. Then f is Hölder of exponent θ ∈ (0, 1) if
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Locally constant functions

Suppose f : Σ→ R depends only on the first n co-ordinates, i.e.

f (x) = f (x0, . . . , xn−1).

We say that f is locally constant.

Equivalently, f is locally constant if it is constant on cylinders of

length n (for some n).

Locally constant functions only take finitely many values.

If f is locally constant then f ∈ Fθ(R) for all θ ∈ (0, 1).

In particular, if f is locally constant then f is continuous. (The

zero-dimensionality of Σ guarantees the existence of lots of locally

constant functions.)
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The transfer operator

Let f ∈ Fθ(R). Define the linear operator Lf : Fθ(C)→ Fθ(C) by

Lf w(x) =
∑

y :σ(y)=x

ef (y)w(y) =
∑

i s.t. Ai,x0
=1

ef (ix)w(ix).

(Here (ix) = (i , x0, x1, . . .).)

Idea: look at the preimages of x , evaluate w at these preimages,

weight them according to the weight function f , then sum.

Example: Take Σ =full one-sided 2-shift. Take f (x) ≡ log 1/2.

Then

Lf w(x) =
1

2
w(0x) +

1

2
w(1x).

We are interested in the spectral properties of Lf .
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An example

Let Σ be the one-sided 2-shift on symbols 0, 1. Fix p, q ∈ (0, 1).

Let f be the weight function depending on 2 co-ordinates:

f (00) = log p, f (01) = log(1−p), f (10) = log q, f (11) = log(1−q).

Consider the action of Lf on functions that only depend on 1

co-ordinate w(x) = w(x0).

Lf w(0) = ef (00)w(0) + ef (10)w(1) = pw(0) + (1− p)w(1)

Lf w(1) = ef (01)w(0) + ef (11)w(1) = qw(0) + (1− q)w(1).

Record this is a matrix(
Lf w(0)

Lf w(1)

)
=

(
p 1− p

q 1− q

)(
w(0)

w(1)

)
= P

(
w(0)

w(1)

)
What are the eigenvalues of P?
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An example

Recall the Perron-Frobenius theorem: if B is an aperiodic

non-negative matrix then

I there is a maximal eigenvalue λ > 0 and all other eigenvalues

λi ∈ C are s.t. |λi | < λ, moreover λ is simple

I there are positive left- and right-eigenvectors u, v s.t.

uB = λB, Bv = λv ; we can take u, v to be positive.

Note that P

(
1

1

)
=

(
p 1− p

q 1− q

)(
1

1

)
=

(
1

1

)
so the

maximal eigenvalue is 1.

The corresponding left-eigenvector is (p0, p1) =
(

q
q+1−p ,

1−p
q+1−p

)
so that pP = p.

In terms of transfer operators: Lf 1 = 1 (1= the function

constantly equal to 1). We say that f is normalised.
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An example

Lf acts on functions of 1 variable as a stochastic matrix P with

right-eigenvector p. This defines a Markov measure, defined on

cylinders by

µf [i0, i1, . . . , in−1] = pi0Pi0,i1Pi1,i2 · · ·Pin−2,in−1 .

Suppose w(x) = w(x0) is a function of one co-ordinate. Then∫
Lf w dµf = µf ([0])Lf w(0) + µf ([1])Lf w(1) =

∫
w dµf .

Note that Pi ,j = ef (i ,j). Hence if x = (x0, x1, . . .) ∈ Σ then

µf [x0, x1, . . . , xn−1] = px0ef (i0,i1)ef (i1,i2) · · · ef (in−2,in−1) = px0ef n(x)

where f n(x) =
∑n−1

j=0 f (σjx).
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An example

Hence there exists C > 0 s.t. for all x = (x0, x1, . . .) ∈ Σ

1

C
≤ µf [x0, x1, . . . , xn−1]

ef n(x)
≤ C .

Such a measure is called a Gibbs measure.

In summary: for our choice of f

I Lf , acting on a suitable space of functions, is normalised

(Lf 1 = 1) and has a maximal simple eigenvalue at 1 (all other

eigenvalues have modulus < 1)

I there is a unique invariant measure µf such that L∗f µf = µf

(i.e.
∫

Lf w dµf =
∫

w dµf )

I the invariant measure µf is ergodic, and satisfies the Gibbs

property.

What if we allow non-locally constant functions f ?
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Ruelle’s Perron-Frobenius theorem

Let Σ be a shift of finite type defined by an aperiodic matrix. Let

f ∈ Fθ(R) be a weight function. Define Lf : Fθ(C)→ Fθ(C) by

Lf w(x) =
∑

y s.t. σ(y)=x

ef (y)w(y).

I ∃ a simple maximal positive eigenvalue λ > 0 of Lf .

I ∃ a strictly positive eigenfunction 0 < h ∈ Fθ(R) s.t.

Lf h = λh.

I The remainder of the spectrum of Lf is contained within a

disc of radius < λ.

I ∃ a unique probability measure ν s.t. L∗f ν = λν (i.e.∫
Lf w dν = λ

∫
w dµ.

I The probability measure dµf = 1R
h dν

h dν is a σ-invariant

measure.

We call µf the equilibrium state of f .
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Ruelle’s Perron-Frobenius theorem

We write λ = eP(f ). P(f ) is called the pressure of f .

If f is normalised (Lf 1 = 1) then 1 = λ = eP(f ), i.e. P(f ) = 0.

The spectrum of Lf acting on Fθ looks like:

λ = eP(f )

maximal simple eigenvalue

rest of spectrum in here
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Gibbs measures

A probability measure (not nec. invariant) m is a Gibbs measure if

there are constants A,B > 0, C ∈ R s.t. for all x ∈ Σ

A ≤ m[x0, . . . , nn−1]

ef n(x)−nC
≤ B

where f n(x) =
∑n−1

j=0 f (σj(x)).

Remarks

I Thus if m is a Gibbs measure with potential f if, up to a

bounded error, the measure of a cylinder is given by exp f n(x)

after normalisation by C .

I Not all constants are equal. (Orwellian equal, rather than

numerically equal!) The values of A,B don’t matter. C is the

pressure of f .

I Given a potential f , is there an invariant Gibbs measure? Is it

unique?
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Gibbs measures

Let f ∈ Fθ(R). By Ruelle’s Perron-Frobenius theorem, Lf has a

maximal eigenvalue at eP(f ). There is a maximal eigenfunction h

s.t. Lf h = eP(f )h and a maximal eigenmeasure ν s.t. L∗f ν = eP(f )ν.

The measure dµf = 1R
h dν

h dν is a σ-invariant measure.

Then µf is the unique σ-invariant Gibbs measure with potential f :

A ≤ µf [x0, . . . , nn−1]

ef n(x)−nP(f )
≤ B.
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Cohomologous functions

Two functions f , g : Σ→ R are cohomologous if ∃u ∈ Fθ(R) s.t.

f (x) = g(x) + u(σ(x))− u(x) (2)

Cohomology is the natural equivalence relation between functions

in ergodic theory.

Let f n(x) =
∑n−1

j=0 f (σjx). Summing (2) along orbits gives:

f n(x) = gn(x) + u(σn(x))− u(x) = gn(x) + O(1).

Hence, for example,
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Normalising functions

“Any function is cohomologous to a normalised function

plus constant”

Let f ∈ Fθ(R). Then Lf : Fθ(C)→ Fθ(C) has a maximal

eigenvalue λ > 0 and positive eigenfunction h > 0.

Let

g = f − log hσ + log h − log λ ∈ Fθ(R).

Then

Lg 1 =
∑

y :σy=x

ef (y)−log h(σy)+log h(y)−log λ

=
1

λ

1

h(x)

∑
y :σy=x

ef (y)h(y)

=
1

λ

1

h(x)
Lf h(x) =

1

λ

1

h(x)
λh(x) = 1.

Hence g is normalised.
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How Ruelle’s Perron-Frobenius theorem is often used

Let f ∈ Fθ(R) be normalised. (So Lf 1 = 1, P(f ) = 0.) Let µ be

the unique invariant measure such that L∗f µ = µ.
I Let µ : Fθ(R)→ Fθ(R),

µ(w) =
∫

w dµ be projection

onto the eigenspace

corresponding to the eigenvalue

1.

I Let Q : Fθ(R)→ Fθ(R),

Q = Lf − µ. Then spec. radius

of Q is < r , strictly less than 1.
Then Lf w = µ(w) + Q(w). As eigenprojections are orthogonal:

Ln
f w = µ(w) + Qn(w) = µ(w) + o(rn).
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Application: Decay of correlations

Let f ∈ Fθ(R) be normalised and let µf be the equilibrium state

corresponding to f (so
∫

Lf w dµ =
∫

w dµ).

Recall:

I An invariant measure µ is strong-mixing if

µ(σ−nA ∩ B)→ µ(A)µ(B) ∀A,B ∈ B. Equivalently:∫
vσn · w dµ→

∫
v dµ

∫
w dµ ∀v ,w ∈ L2(Σ,B, µ) (3)

I If µ is strong-mixing then µ is ergodic.

Proposition

The equilibrium state µf is strong-mixing (and so is ergodic).

Replacing v ,w by v −
∫

v dµ, w −
∫

w dµ, it is easy to see that

(3)⇔
∫

vσn · w dµ→ 0 ∀v ,w ∈ L2 s.t.

∫
v dµ =

∫
w dµ = 0.
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Decay of correlations

We want to show
∫

vσn · w dµf → 0 for all v ,w ∈ L2,∫
v dµf =

∫
w dµf = 0. It is sufficient to do this for a dense set of

functions.

Easy check: Fθ(R) is dense in L2.

Let v ,w ∈ Fθ(R),
∫

v dµf =
∫

w dµf = 0. Then∣∣∣∣∫ vσn · w dµf

∣∣∣∣ =

∣∣∣∣∫ Ln
f (vσn · w) dµf

∣∣∣∣ =

∣∣∣∣∫ v · Ln
f w dµf

∣∣∣∣
≤ ‖v‖∞‖Ln

f w‖∞ ≤ ‖v‖∞‖Ln
f w‖θ.

Now Ln
f w = µf (w) + Qnw = Qnw → 0 in norm as n→∞.

Remark
In fact, we’ve shown that equilibrium states (corresponding to

Hölder potentials) have a property known as exponential decay of

correlations (on Hölder functions).
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Easy check: Fθ(R) is dense in L2.

Let v ,w ∈ Fθ(R),
∫

v dµf =
∫

w dµf = 0. Then∣∣∣∣∫ vσn · w dµf

∣∣∣∣ =

∣∣∣∣∫ Ln
f (vσn · w) dµf

∣∣∣∣ =

∣∣∣∣∫ v · Ln
f w dµf

∣∣∣∣
≤ ‖v‖∞‖Ln

f w‖∞ ≤ ‖v‖∞‖Ln
f w‖θ.

Now Ln
f w = µf (w) + Qnw = Qnw → 0 in norm as n→∞.

Remark
In fact, we’ve shown that equilibrium states (corresponding to

Hölder potentials) have a property known as exponential decay of

correlations (on Hölder functions).
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Another example

Let Σ = {(xj)
∞
j=0 | xj ∈ {0, 1}} be the full one-sided 2-shift. Let

f (x) ≡ 0.

Here Lf w(x) =
∑

y s.t. σ(y)=x ef (y)w(y) = w(0x) + w(1x).

Let h ≡ 1. Then Lf h = 2h. Hence the maximal eigenvalue for Lf

is λ = 2, i.e. P(f ) = log 2.

Let ν be the Bernoulli (1/2, 1/2)-measure. It is straightforward to

check that
∫

Lf w dν = 2
∫

w dν, so ν is the eigenmeasure for Lf .

Hence we get an invariant measure dµf = h dν. So µf is also the

Bernoulli (1/2, 1/2)-measure.

Recall that µf is the measure of maximal entropy for σ:

P(f ) = log 2 = hµf
(σ) = sup{hµ(σ) | µ is σ-invariant}

(by the variational principle for entropy).
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The variational principle for pressure

Let Σ be an aperiodic shift of finite type. If µ is an invariant

measure we write h(µ) = hµ(σ) for the entropy.

Theorem (The variational principle)

P(f ) = sup

{
h(µ) +

∫
f dµ | µ is σ-invariant

}
. (4)

If f ∈ Fθ(R) then this supremum is achieved by a unique

σ-invariant measure, and this measure is µf , i.e.

P(f ) = h(µf ) +
∫

f dµf .

Remarks

I When f ≡ 0 this is the variational principle that we had in the

last lecture: P(0) is the topological entropy and the

corresponding equilibrium state is the measure of maximal

entropy.

I We can use equation (4) to define pressure for an arbitrary

continuous function f and continuous transformation T .
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Definitions of pressure

Pressure is an ubiquitous quantity in ergodic theory. There are

many ways of defining it.

I as the normalisation constant for Gibbs measure

µ[x0, . . . , xn−1] ∼ exp(f n(x)− nP(f ))

I from the variational principle

P(f ) = sup{h(µ) +

∫
f dµ | µ is σ-invariant},

I as the log of the maximal eigenvalue for Lf ,
I many other expressions: eg:

P(f ) = lim
n→∞

1

n
log

∑
x=σn(x)

ef n(x).

(Sp P(0) = htop(σ) = exponential rate of growth of the

number of periodic orbits of period n.)
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Properties of pressure

I P(f ) is monotone: f ≤ g ⇒ P(f ) ≤ P(g).
I P is convex: P(αf + (1− α)g) ≤ αP(f ) + (1− α)P(g),

0 ≤ α ≤ 1.
I if f is cohomologous to g + c (i.e. f = g + uσ − u + c) then

P(f ) = P(g) + c.
I f 7→ P(f ) is analytic. This is because P(f ) is the (log of a)

simple isolated eigenvalue of a bounded linear operator. Such

eigenvalues perturb analytically as the operator is perturbed.

The map f 7→ Lf is analytic. Hence f 7→ P(f ) is analytic.

Example: fix f ∈ Fθ(R). Define s 7→ P(−sf ) : R→ R. Then

this is analytic in s.

(Suppose f > 0. Note that when s = 0, P(−sf ) =

htop(σ) > 0. Also P(−sf )↘ −∞ as s →∞. Hence there is

a unique s0 such that P(−s0f ) = 0. This value of s0, for

particular f , is often of great importance in applications. )
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Next lecture

In this lecture we have only been interested in shifts of finite type.

In the next lecture we discuss the hyperbolic dynamical systems,

and see how one can study the ergodic theory of such systems

using symbolic dynamics and thermodynamic formalism.
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