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Introduction

Let T be an m.p.t. of a prob. space (X ,B, µ). Last time we
defined the entropy hµ(T ).

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric
space we study how hµ(T ) depends on µ.

We also relate entropy to another important quantity: topological
entropy.

Throughout: metric entropy = measure-theoretic entropy =
hµ(T ).
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Recap on entropy

Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Recap on entropy
Let ζ = {Aj} be a finite partition of a prob. space (X ,B, µ).

Define the entropy of ζ

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A).

If ζ, η are partitions then ζ ∨ η = {A ∩ B | A ∈ ζ,B ∈ η}.

If T : X → X is measurable then T−1ζ = {T−1A | A ∈ ζ}.

The entropy of T relative to ζ is

hµ(T , ζ) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

The entropy of T is

hµ(T ) = sup{hµ(T , ζ) | ζ a finite partition}.



Sinai’s theorem

A finite partition ζ is a generator if
∨n

j=−n T−jζ ↗ B. (Equiv.∨n
j=−n T−jζ separates µ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

hµ(T ) = hµ(T , ζ).

Let σ be the full k-shift with the Bernoulli (p1, . . . , pk)-measure µ.
Then ζ = {[1], . . . , [k]} is a generator.

hµ(σ) = hµ(σ, ζ) = −
k∑

j=1

pj log pj .



Sinai’s theorem

A finite partition ζ is a generator if
∨n

j=−n T−jζ ↗ B. (Equiv.∨n
j=−n T−jζ separates µ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

hµ(T ) = hµ(T , ζ).

Let σ be the full k-shift with the Bernoulli (p1, . . . , pk)-measure µ.
Then ζ = {[1], . . . , [k]} is a generator.

hµ(σ) = hµ(σ, ζ) = −
k∑

j=1

pj log pj .



Sinai’s theorem

A finite partition ζ is a generator if
∨n

j=−n T−jζ ↗ B. (Equiv.∨n
j=−n T−jζ separates µ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

hµ(T ) = hµ(T , ζ).

Let σ be the full k-shift with the Bernoulli (p1, . . . , pk)-measure µ.
Then ζ = {[1], . . . , [k]} is a generator.

hµ(σ) = hµ(σ, ζ) = −
k∑

j=1

pj log pj .



Sinai’s theorem

A finite partition ζ is a generator if
∨n

j=−n T−jζ ↗ B. (Equiv.∨n
j=−n T−jζ separates µ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

hµ(T ) = hµ(T , ζ).

Let σ be the full k-shift with the Bernoulli (p1, . . . , pk)-measure µ.
Then ζ = {[1], . . . , [k]} is a generator.

hµ(σ) = hµ(σ, ζ) = −
k∑

j=1

pj log pj .



The weak∗ topology

Let (X ,B) be a compact metric space with the Borel σ-algebra.
Let T : X → X be continuous.

Let M(X ) = {all Borel probability measures}. Let M(X ,T ) = { all
T -invariant Borel probability measures}.

A sequence µn ∈ M(X ) weak∗-converges to µ (µn ⇀ µ) if∫
f dµn →

∫
f dµ ∀f ∈ C (X ,R).

Q: How does the entropy hµ(T ) vary as a function of µ?
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The entropy map is not continuous

Let Σ2 = full 2-sided 2-shift with shift map σ.

x is periodic with period n iff
x = (· · · x0x1 · · · xn−1︸ ︷︷ ︸ x0x1 · · · xn−1︸ ︷︷ ︸ · · · ). There are 2n points of

period n.

Let

µn =
1

2n

∑
x=σnx

δx ∈ M(X ,T ).

Then hµn(σ) = 0 (as µn is supported on a finite set).

However, µn ⇀ µ, where µ = the Bernoulli (1/2, 1/2)-measure.
Note hµ(σ) = log 2.
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The entropy map is not continuous

Proof (sketch):

Let f = χ[0]. Note that
∫

f dµ2

=
1

22

(
χ[0](...00...) + χ[0](...01...) + χ[0](...10...) + χ[0](...11...)

)
=

1

22
2 =

1

2
= µ(χ[0]) =

∫
f dµ.

In general,
∫
χ[i0,...,im−1] dµn =

∫
χ[i0,...,im−1] dµ when n ≥ m.

Characteristic functions of intervals are continuous. Finite linear
combinations of characteristic functions are dense in C (X ,R) (by
the Stone-Weierstrass theorem). Hence µn ⇀ µ.

Is the entropy map upper semi-continuous? i.e. does
µn ⇀ µ ⇒ lim supn→∞ hµn(T ) ≤ hµ(T )?

Answer: no in general, yes in many important cases.
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Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: ∃δ > 0 s.t. if
d(T nx ,T ny) ≤ δ for all n ∈ Z then x = y .

Example

A shift of finite type is expansive.
Recall d(x , y) = 1/2n, n = first disagreement. Let δ < 1. If
xn 6= yn then d(T nx ,T ny) = 1 ≥ δ.

Example

Let T : Rk/Zk → Rk/Zk , Tx = Ax mod 1 be a toral
automorphism given by A ∈ SL(2,R). Then T is expansive iff A is
hyperbolic (no eigenvalues of modulus 1).

Other examples: all Anosov diffeomorphisms, Smale horseshoe,
solenoid,...
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Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space.
Then the entropy map is upper semi-continuous: if
µn, µ ∈ M(X ,T ), µn ⇀ µ then lim sup hµn(T ) ≤ hµ(T ).

Proof (sketch):

Fact: Suppose µn ⇀ µ. If B ∈ B is s.t. µ(∂B) = 0 then
µn(B)→ µ(B).

If ζ is a partition such that µ(∂A) = 0 ∀A ∈ ζ then
Hµj (ζ)→ Hµ(ζ). Hence

hµn(T , ζ)→ hµ(T , ζ).

Let δ be an expansive constant. If diam ζ < δ then ζ is a
generator. So hµ(T ) = hµ(T , ζ) by Sinai. Alter ζ slightly to
ensure µ(∂A) = 0 ∀A ∈ ζ.
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Topological entropy

Let X be compact metric, let T : X → X be continuous. Recall X
compact ⇒ every open cover of X has a finite subcover.

Definition
Let α be an open cover of X . Let N(α) <∞ be the cardinality of
the smallest finite subcover of X . Define the entropy of α to be

Htop(α) = log N(α)

Definition
Let α = {Ai}, β = {Bj} be open covers. The join is the open
cover α ∨ β = {Ai ∩ Bj | Ai ∈ α,Bj ∈ β}.

Definition
We say α ≤ β if every element of β is a subset of an element of α.
(Example: α ≤ α ∨ β.) Easy check: α ≤ β ⇒ Htop(α) ≤ Htop(β).

Definition
T−1α is the open cover {T−1A | A ∈ α}.
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Topological entropy

Definition
The topological entropy of T relative to the open cover α is

htop(T , α) = lim
n→∞

1

n
Htop

n−1∨
j=0

T−jα

 .

Remark
The limit exists as Hn = Htop

(∨n−1
j=0 T−jα

)
is subadditive:

Hn+m ≤ Hn + Hm.

Definition
The topological entropy of T is

htop(T ) = sup{htop(T , α) | α is an open cover of X}.
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An alternative definition

Let X be compact metric with metric d . Let T : X → X be
continuous.

Let dn(x , y) = max0≤j≤n−1 d(T jx ,T jy). The balls in this metric
are

Bn(x , ε) = {y | d(T jx ,T jy) < ε, 0 ≤ j ≤ n − 1}.

So x , y are dn-close if the first n points in the orbits of x , y are
close.

Idea: suppose we can’t distinguish two orbits if they are close for
the first n iterates. How many such orbits are there?
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Spanning sets

Definition
Let n ≥ 1, ε > 0. F ⊂ X is (n, ε)-spanning if the dn-balls of radius
ε and centres in F covers X :

X =
⋃
x∈F

Bn(x , ε).

We want to make spanning sets as small as possible. Let pn(ε) be
the cardinality of the smallest (n, ε)-spanning set.

Let p(ε) = lim sup
n→∞

1

n
log pn(ε).

Let hspanning (T ) = limε→0 p(ε).
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Separated sets

Definition
Let n ≥ 1, ε > 0. E ⊂ X is (n, ε)-separated if: x , y ∈ E , x 6= y
then dn(x , y) > ε.

We want to make separated sets as large as possible. Let q(ε) be
the cardinality of the largest (n, ε)-separated set.

Remark
pn(ε) ≤ qn(ε) ≤ pn(ε/2).

Let E be (n, ε)-separated of cardinal-
ity qn(ε).

Then E is (n, ε)-spanning.
Hence pn(ε) ≤ qn(ε).
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Separated sets

Remark (continued)

pn(ε) ≤ qn(ε) ≤ pn(ε/2).

Suppose E is (n, ε)-separated of cardinality qn(ε).

Suppose F is (n, ε/2)-spanning of cardinality pn(ε/2).

For every x ∈ E there exists a y ∈ F such that x ∈ Bn(y , ε/2).

This map E → F : x 7→ y is injective. (If not, then x , x ′ ∈ E could
map to the same y ∈ F . Then dn(x , x ′) ≤ dn(x , y) + dn(y , x) < ε.
Then x = x ′ as E is (n, ε)-separated.)

Hence qn(ε) ≤ pn(ε/2).
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Spanning and separated sets

Hence

hspanning(T ) = lim
ε→0

lim sup
n→∞

1

n
log pn(ε) = lim

ε→0
lim sup
n→∞

1

n
log qn(ε).

Theorem (Bowen)

The definition of topological entropy using open sets agrees with
the definition of topological entropy using spanning/separated sets.

Proof (sketch):

Careful analysis using Lebesgue numbers of open covers...
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Calculating topological entropy

Let α = {A1, . . . ,Ak} be a finite open cover. For each x look at
the sequence of elements of α the orbit of x visits. This codes the
orbit of x by a bi-infinite sequence of symbols from {1, . . . , k}.

This coding may not be ‘nice’: different points may have the same
coding, the coding may not be unique, the set of all sequences may
be complicated (eg: not of finite type).

α is a (topological) generator if each sequence codes at most one
point. Precisely, α is a generator if for each sequence (ij)

∞
j=−∞

card
∞⋂

j=−∞
T−jAij = 0 or 1.
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Calculating topological entropy

Proposition

T has a (topological) generator iff T is expansive.

Proof (sketch):

Suppose T is expansive with expansive constant δ. Consider the
open cover by balls of radius δ/2. Let α be a finite subcover. Then
α is a (topological) generator.
The converse is slightly more involved.
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Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator.
Then htop(T ) = htop(T , α).

Proof (sketch):

Step 1: Clearly htop(T , α) ≤ htop(T ).

Step 2: diam
∨n

j=−n T−jα→ 0.

(If diam
∨n

j=−n T−jα→ ε0 > 0 then two points could have the
same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let r > 0 be a Lebesgue
number for β. Choose n s.t. diam

∨n
j=−n T−jα ≤ r . Then

β ≤
∨n

j=−n T−jα. Then

htop(T , β) ≤ htop

(
T ,
∨n

j=−n T−jα
)

= htop(T , α). Take the

supremum over all β.
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Topological entropy of shifts

Let σ : Σk → Σk be the full two-sided k-shift.

Let α = {[1], . . . , [k]}. Note α is an open cover of Σk . It’s clear
that α is a (top.) generator.

Note
∨n−1

j=0 σ
−jα is the open cover of Σk into all cylinders of length

n. There are kn of these and all of them are needed to cover Σk .
Hence

htop(σ) = htop(σ, α) = lim
n→∞

1

n
Htop

n−1∨
j=0

σ−jα


= lim

n→∞

1

n
log kn = log k .
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Topological entropy of shifts

Let A be an irreducible k × k 0− 1 matrix. Let σ : ΣA → ΣA be
the shift of finite type. Let α = {[1], . . . , [k]}. Again, this open
cover is a generator.

Now Htop

(∨n−1
j=0 σ

−jα
)

= log(no. of cylinders of length n in ΣA).

Number of words in ΣA of length n starting at i and ending at j is
(An)i ,j . Hence number of cylinders of length n is∑k

i ,j=1(An)i ,j = ‖An‖.

Hence

htop(σ) = htop(σ, α) = lim
n→∞

1

n
Htop

n−1∨
j=0

σ−jα


= lim

n→∞

1

n
log ‖An‖ = log λ

where λ > 0 is the largest eigenvalue of A, by the spectral radius
formula.
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The variational principle

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X .
Then

htop(T ) = sup{hµ(T ) | µ ∈ M(X ,T )}.

Remark
There are examples to show that this supremum need not be
achieved.

Definition
Let Mmax(X ,T ) = {µ ∈ M(X ,T ) | htop(T ) = hµ(T )} denote the
set of all measures of maximal entropy.
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The variational principle and measures of maximal entropy

Proposition

If the entropy map is upper semi-continuous then Mmax(X ,T ) 6= ∅.
Proof: an upper semi-continuous function on a compact metric
space achieves its supremum. Note that M(X ,T ) is a compact
metric space.

Remark
Hence expansive homeomorphisms always have at least one
measure of maximal entropy.
In many cases, there is a unique measure of maximal entropy.
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Measures of maximal entropy for shifts

Proposition

Let σ : Σk → Σk be the full two-sided k-shift. Then the Bernoulli
(1/k , . . . , 1/k)-measure is the unique measure of maximal entropy.

Proof.
We know the topological entropy of σ is log k. We know the
entropy of the Bernoulli (1/k , . . . , 1/k)-measure is log k. We show:
if µ ∈ M(X ,T ) has hµ(σ) = log k then µ is the Bernoulli
(1/k , . . . , 1/k)-measure.

Let ζ = {[1], . . . , [k]}. This is a generator, so by Sinai’s thm
log k = hµ(σ) = hµ(σ, ζ).

Note that hµ(σ, ζ) ≤ 1

n
Hµ

n−1∨
j=0

σ−jα

 (as Hn =

Hµ

(∨n−1
j=0 σ

−jα
)

is subadditive, so 1
nHn → infn

1
nHn = hµ(σ, ζ)).
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Proof continued

We need the following fact:

Fact
If η = {A1, . . . ,A`} is a finite partition then H(η) =
−
∑`

i=1 µ(Ai ) log Ai ≤ log ` with equality iff µ(Ai ) = 1/`,
1 ≤ i ≤ `.
(This follows from concavity of −t log t.) So

log k = hµ(σ) = hµ(σ, ζ) ≤ 1

n
Hµ

n−1∨
j=0

σ−jα

 ≤ 1

n
log kn = log k.

Hence Hµ

(∨n−1
j=0 σ

−jα
)

= log kn. So by the fact, each element of∨n−1
j=0 σ

−jα has the same measure 1/kn.
Hence µ assigns measure 1/kn to each cylinder. So µ and the
Bernoulli (1/k , . . . , 1/k)-measure agree on cylinders. By the
Kolmogorov Extension Theorem, µ is the Bernoulli
(1/k , . . . , 1/k)-measure.
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The Parry measure

Let A be an irreducible 0− 1 matrix with corresponding shift of
finite type ΣA. We show how to construct the measure of maximal
entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

I there is a positive maximal eigenvalue λ > 0 s.t. all other
eigenvalues satisfy |λj | < λ, moreover λ is simple;

I there are positive left- and right-eigenvectors u = (u1, . . . , uk),
v = (v1, . . . , vk)T ,

∑
ui =

∑
vi = 1, s.t. uA = λu, Av = λv.

Apply Perron-Frobenius to A and define Pi ,j =
Ai ,jvj

λvi
, pi =

uivi

c
,

where c =
∑k

j=1 ujvj .

Then P is stochastic and pP = p. We define the Parry measure to
be the Markov measure

µ[i0, i1, . . . , in] = pi0Pi0,i1 · · ·Pin−1,in .
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The Parry measure

Recall that for a Markov measure µ given by the stochastic matrix
P we have hµ(σ) = −

∑
i ,j piPi ,j log Pi ,j .

It’s an easy check that the Parry measure µ has hµ(σ) = log λ.

We already know that the topological entropy of σ is log λ. Hence
the Parry measure is a measure of maximal entropy.

Proposition

Let A be an irreducible 0− 1 matrix with corresponding shift of
finite type ΣA. Then the Parry measure is the unique measure of
maximal entropy.
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Towards thermodynamic formalism

Many other dynamical systems have measures of maximal entropy.
Lebesgue measure is the unique measure of maximal entropy for a
linear hyperbolic toral automorphism.

If the dynamical system T is ‘hyperbolic’ (in an appropriate sense,
but this includes: Anosov diffeomorphisms, Axiom A diffeos on
basic sets such as the Smale horseshoe, (in continuous time)
geodesic flows on compact negatively curved Riemannian
manifolds) then there is a unique measure of maximal entropy.

These measures of maximal entropy can often be related to the
spectral properties (=maximal eigenvalue) of an associated
operator. We will discuss this further in the next lecture.
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