Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ). Last time we defined the entropy $h_{\mu}(T)$.

In this lecture we recap some basic facts about entropy.
Introduction

Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ). Last time we defined the entropy $h_\mu(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_\mu(T)$ depends on μ.
Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ). Last time we defined the entropy $h_\mu(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_\mu(T)$ depends on μ.

We also relate entropy to another important quantity: topological entropy.
Introduction

Let T be an m.p.t. of a prob. space (X, B, μ). Last time we defined the entropy $h_\mu(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_\mu(T)$ depends on μ.

We also relate entropy to another important quantity: topological entropy.

Throughout: metric entropy $= \text{measure-theoretic entropy} = h_\mu(T)$.

Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ $H(\mu)(\zeta) = -\sum_{A \in \zeta} \mu(A) \log \mu(A)$.

If ζ, η are partitions then $\zeta \vee \eta = \{A \cap B | A \in \zeta, B \in \eta\}$.

If $T: X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A | A \in \zeta\}$.

The entropy of T relative to ζ is $h(\mu)(T, \zeta) = \lim_{n \to \infty} \frac{1}{n} H(\mu)\left(\bigcup_{j=0}^{n-1} T^{-j}\alpha\right)$.

The entropy of T is $h(\mu)(T) = \sup\left\{ h(\mu)(T, \zeta) | \zeta \text{ a finite partition} \right\}$.
Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).
Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ

$$H_\mu(\zeta) = -\sum_{A \in \zeta} \mu(A) \log \mu(A).$$
Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ

$$H_\mu(\zeta) = - \sum_{A \in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \vee \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}$.
Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ

$$H_\mu(\zeta) = -\sum_{A \in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}$.

If $T : X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A \mid A \in \zeta\}$.

Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ

$$H_\mu(\zeta) = - \sum_{A \in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \vee \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}$.

If $T : X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A \mid A \in \zeta\}$.

The entropy of T relative to ζ is

$$h_\mu(T, \zeta) = \lim_{n \to \infty} \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$
Recap on entropy

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, B, μ).

Define the entropy of ζ

$$H_\mu(\zeta) = - \sum_{A \in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}$.

If $T : X \to X$ is measurable then $T^{-1} \zeta = \{T^{-1}A \mid A \in \zeta\}$.

The entropy of T relative to ζ is

$$h_\mu(T, \zeta) = \lim_{n \to \infty} \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

The entropy of T is

$$h_\mu(T) = \sup \{ h_\mu(T, \zeta) \mid \zeta \text{ a finite partition} \}.$$
Sinai’s theorem

Suppose T is an invertible m.p.t. and \(\zeta \) is a generator. Then
\[
h_\mu(T) = h_\mu(T, \zeta).
\]

Let \(\sigma \) be the full \(k \)-shift with the Bernoulli \((p_1, \ldots, p_k)\)-measure \(\mu \). Then
\[
\zeta = \{[1], \ldots, [k]\} \text{ is a generator.}
\]

\[
h_\mu(\sigma) = h_\mu(\sigma, \zeta) = -k \sum_{j=1}^{k} p_j \log p_j.
\]
Sinai’s theorem

A finite partition ζ is a generator if $\bigvee_{j=-n}^n T^{-j} \zeta \nearrow B$. (Equiv. $\bigvee_{j=-n}^n T^{-j} \zeta$ separates μ-a.e. pair of points.)
Sinai’s theorem

A finite partition ζ is a generator if $\bigvee_{j=-n}^{n} T^{-j} \zeta \nearrow B$. (Equiv. $\bigvee_{j=-n}^{n} T^{-j} \zeta$ separates μ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

$$h_\mu(T) = h_\mu(T, \zeta).$$
Sinai’s theorem

A finite partition ζ is a generator if $\bigvee_{j=-n}^n T^{-j} \zeta \nearrow B$. (Equiv. $\bigvee_{j=-n}^n T^{-j} \zeta$ separates μ-a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

$$h_\mu(T) = h_\mu(T, \zeta).$$

Let σ be the full k-shift with the Bernoulli (p_1, \ldots, p_k)-measure μ. Then $\zeta = \{[1], \ldots, [k]\}$ is a generator.

$$h_\mu(\sigma) = h_\mu(\sigma, \zeta) = -\sum_{j=1}^k p_j \log p_j.$$
The weak* topology

Let (X, B) be a compact metric space with the Borel σ-algebra. Let $T: X \to X$ be continuous. Let $M(X) = \{\text{all Borel probability measures}\}$. Let $M(X, T) = \{\text{all } T\text{-invariant Borel probability measures}\}$.

A sequence $\mu_n \in M(X)$ weak* converges to μ ($\mu_n \overset{\ast}{\rightharpoonup} \mu$) if $\int f \, d\mu_n \to \int f \, d\mu$ for all $f \in C(X, \mathbb{R})$.

Q: How does the entropy $h_{\mu}(T)$ vary as a function of μ?
The weak* topology

Let \((X, \mathcal{B})\) be a compact metric space with the Borel \(\sigma\)-algebra. Let \(T : X \to X\) be continuous.

Let \(M(X) = \{\text{all Borel probability measures}\}\). Let \(M(X, T) = \{\text{all } T\text{-invariant Borel probability measures}\}\).
The weak* topology

Let \((X, B)\) be a compact metric space with the Borel \(\sigma\)-algebra. Let \(T : X \to X\) be continuous.

Let \(M(X) = \{\text{all Borel probability measures}\}\). Let \(M(X, T) = \{\text{all } T\text{-invariant Borel probability measures}\}\).

A sequence \(\mu_n \in M(X)\) weak*-converges to \(\mu\) \((\mu_n \rightharpoonup \mu)\) if

\[
\int f \, d\mu_n \to \int f \, d\mu \quad \forall f \in C(X, \mathbb{R}).
\]
The weak* topology

Let \((X, \mathcal{B})\) be a compact metric space with the Borel \(\sigma\)-algebra. Let \(T : X \to X\) be continuous.

Let \(M(X) = \{\text{all Borel probability measures}\}\). Let \(M(X, T) = \{\text{all } T\text{-invariant Borel probability measures}\}\).

A sequence \(\mu_n \in M(X)\) weak*-converges to \(\mu \) \((\mu_n \rightharpoonup \mu)\) if

\[
\int f \, d\mu_n \to \int f \, d\mu \quad \forall f \in C(X, \mathbb{R}).
\]

Q: How does the entropy \(h_\mu(T)\) vary as a function of \(\mu\)?
The entropy map is not continuous
The entropy map is not continuous

Let $\Sigma_2 = \text{full 2-sided 2-shift with shift map } \sigma$.

Then $h_{\mu_n}(\sigma) = 0$ (as μ_n is supported on a finite set).

However, $\mu_n \rightharpoonup \mu$, where $\mu = \text{the Bernoulli (1/2, 1/2)-measure}$.

Note $h_{\mu}(\sigma) = \log 2$.
The entropy map is not continuous

Let Σ_2 = full 2-sided 2-shift with shift map σ.

x is periodic with period n iff
$x = (\cdots x_0x_1 \cdots x_{n-1} x_0x_1 \cdots x_{n-1} \cdots)$. There are 2^n points of period n.
The entropy map is not continuous

Let $\Sigma_2 = \text{full 2-sided 2-shift with shift map } \sigma$.

x is periodic with period n iff $x = (\cdots x_0 x_1 \cdots x_{n-1} x_0 x_1 \cdots x_{n-1} \cdots)$. There are 2^n points of period n.

Let

$$\mu_n = \frac{1}{2^n} \sum_{x=\sigma^n x} \delta_x \in M(X, T).$$

Then $h_{\mu_n}(\sigma) = 0$ (as μ_n is supported on a finite set).
The entropy map is not continuous

Let Σ_2 = full 2-sided 2-shift with shift map σ.

x is periodic with period n iff
\[x = (\cdots x_0 x_1 \cdots x_{n-1} x_0 x_1 \cdots x_{n-1} \cdots). \]
There are 2^n points of period n.

Let
\[\mu_n = \frac{1}{2^n} \sum_{x=\sigma^n x} \delta_x \in M(X, T). \]

Then $h_{\mu_n}(\sigma) = 0$ (as μ_n is supported on a finite set).

However, $\mu_n \rightharpoonup \mu$, where $\mu =$ the Bernoulli $(1/2, 1/2)$-measure. Note $h_\mu(\sigma) = \log 2$.

Note $h_\mu(\sigma) = \log 2$.

The entropy map is not continuous

Proof (sketch):

Let \(f = \chi_{[0]} \). Note that

\[
\int f \, d\mu = \frac{1}{2} \left(\chi_{[0]}(\ldots00\ldots) + \chi_{[0]}(\ldots01\ldots) + \chi_{[0]}(\ldots10\ldots) + \chi_{[0]}(\ldots11\ldots) \right) = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.
\]

In general,

\[
\int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu_n = \int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu_{n'}
\]

when \(n \geq m \).

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in \(C(X,\mathbb{R}) \) (by the Stone-Weierstrass theorem). Hence \(\mu_n \rightharpoonup \mu \).

Is the entropy map upper semi-continuous? i.e. does \(\mu_n \rightharpoonup \mu \Rightarrow \limsup_{n \to \infty} h_{\mu_n}(T) \leq h_{\mu}(T) \)?

Answer: no in general, yes in many important cases.
The entropy map is not continuous

Proof (sketch):
Let \(f = \chi_{[0]} \). Note that \(\int f \, d\mu_2 \)
The entropy map is not continuous

Proof (sketch):
Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$

$$= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$$
The entropy map is not continuous

Proof (sketch):

Let \(f = \chi_{[0]} \). Note that \(\int f \, d\mu_2 \)

\[
\begin{align*}
&= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right) \\
&= \frac{1}{2^2} 2 = \frac{1}{2}
\end{align*}
\]
The entropy map is not continuous

Proof (sketch):

Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$

$$= \frac{1}{2^2} \left(\chi_{[0]}(\ldots00\ldots) + \chi_{[0]}(\ldots01\ldots) + \chi_{[0]}(\ldots10\ldots) + \chi_{[0]}(\ldots11\ldots) \right)$$

$$= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$$
The entropy map is not continuous

Proof (sketch):
Let \(f = \chi_0 \). Note that \(\int f \, d\mu_2 \)

\[
= \frac{1}{2^2} (\chi_0(...00...) + \chi_0(...01...) + \chi_0(...10...) + \chi_0(...11...))
\]

\[
= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_0) = \int f \, d\mu.
\]

In general, \(\int \chi_{[i_0,...,i_{m-1}]} \, d\mu_n = \int \chi_{[i_0,...,i_{m-1}]} \, d\mu \) when \(n \geq m \).
The entropy map is not continuous

Proof (sketch):

Let \(f = \chi_0 \). Note that \(\int f \, d\mu_2 \)

\[
= \frac{1}{2^2} (\chi_0(...00...) + \chi_0(...01...) + \chi_0(...10...) + \chi_0(...11...)) \\
= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_0) = \int f \, d\mu.
\]

In general, \(\int \chi_{i_0,...,i_{m-1}} \, d\mu_n = \int \chi_{i_0,...,i_{m-1}} \, d\mu \) when \(n \geq m \).

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in \(C(X, \mathbb{R}) \) (by the Stone-Weierstrass theorem). Hence \(\mu_n \rightharpoonup \mu \).
The entropy map is not continuous

Proof (sketch):
Let \(f = \chi_{[0]} \). Note that \(\int f \, d\mu_2 \)

\[
\begin{align*}
= & \frac{1}{2^2} \left(\chi_{[0]}(\ldots 00\ldots) + \chi_{[0]}(\ldots 01\ldots) + \chi_{[0]}(\ldots 10\ldots) + \chi_{[0]}(\ldots 11\ldots) \right) \\
= & \frac{1}{2^2} \cdot 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.
\end{align*}
\]

In general, \(\int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu_n = \int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu \) when \(n \geq m \).

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in \(C(X, \mathbb{R}) \) (by the Stone-Weierstrass theorem). Hence \(\mu_n \rightharpoonup \mu \).

Is the entropy map upper semi-continuous? i.e. does
\(\mu_n \rightharpoonup \mu \implies \limsup_{n \to \infty} h_{\mu_n}(T) \leq h_{\mu}(T) \)?
The entropy map is not continuous

Proof (sketch):
Let \(f = \chi_{[0]} \). Note that \(\int f \, d\mu_2 \)

\[
\begin{align*}
\int f \, d\mu_2 &= \frac{1}{2^2} (\chi_{[0]}(\ldots00\ldots) + \chi_{[0]}(\ldots01\ldots) + \chi_{[0]}(\ldots10\ldots) + \chi_{[0]}(\ldots11\ldots)) \\
&= \frac{1}{2^2} 2 - \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.
\end{align*}
\]

In general, \(\int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu_n = \int \chi_{[i_0,\ldots,i_{m-1}]} \, d\mu \) when \(n \geq m \).

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in \(C(X, \mathbb{R}) \) (by the Stone-Weierstrass theorem). Hence \(\mu_n \rightharpoonup \mu \).

Is the entropy map upper semi-continuous? i.e. does

\(\mu_n \rightharpoonup \mu \Rightarrow \limsup_{n \to \infty} h_{\mu_n}(T) \leq h_\mu(T) \)?

Answer: no in general, yes in many important cases.
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if:

$\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive.

Recall $d(x, y) = \frac{1}{2^n}$, $n =$ first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^n x, T^n y) = \frac{1}{2^n} \geq \delta$.

Example
Let $T: \mathbb{R}^k/\mathbb{Z}^k \to \mathbb{R}^k/\mathbb{Z}^k$, $T x = A x \mod 1$ be a toral automorphism given by $A \in \text{SL}(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).

Other examples: all Anosov diffeomorphisms, Smale horseshoe, solenoid,...
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive. Recall $d(x, y) = 1/2^n$, $n =$ first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^n x, T^n y) = 1 \geq \delta$.

Example
Let $T: \mathbb{R}^k/\mathbb{Z}^k \to \mathbb{R}^k/\mathbb{Z}^k$, $T x = A x \mod 1$ be a toral automorphism given by $A \in \text{SL}(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).

Other examples: all Anosov diffeomorphisms, Smale horseshoe, solenoid,...
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive.
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive.
Recall $d(x, y) = 1/2^n$, $n =$ first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^n x, T^n y) = 1 \geq \delta$.

Other examples: all Anosov diffeomorphisms, Smale horseshoe, solenoid,...
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive.
Recall $d(x, y) = 1/2^n$, $n =$ first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^n x, T^n y) = 1 \geq \delta$.

Example
Let $T : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}^k / \mathbb{Z}^k$, $Tx = Ax \mod 1$ be a toral automorphism given by $A \in SL(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).
Expansive homeomorphisms

Definition
A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Example
A shift of finite type is expansive.
Recall $d(x, y) = 1/2^n$, $n =$ first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^n x, T^n y) = 1 \geq \delta$.

Example
Let $T : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}^k / \mathbb{Z}^k$, $Tx = Ax \text{ mod } 1$ be a toral automorphism given by $A \in SL(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).
Other examples: all Anosov diffeomorphisms, Smale horseshoe, solenoid,...
Expansive homeomorphisms

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in \mathcal{M}(X, T)$, $\mu_n \rightharpoonup \mu$ then

$$\limsup h_{\mu_n}(T) \leq h_{\mu}(T).$$

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in B$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$.

Hence $h_{\mu_n}(T, \zeta) \to h_{\mu}(T, \zeta)$.

Let δ be an expansive constant. If $\text{diam} \zeta < \delta$ then ζ is a generator.

So $h_{\mu}(T) = h_{\mu}(T, \zeta)$ by Sinai.

Alter ζ slightly to ensure $\mu(\partial A) = 0 \forall A \in \zeta$.
Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \to \mu$ then $\limsup h_{\mu_n}(T) \leq h_\mu(T)$.

Proof (sketch):
Fact: Suppose $\mu_n \to \mu$. If $B \in B$ is such that $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.
If ζ is a partition such that $\mu(\partial A) = 0$ $\forall A \in \zeta$ then $H_{\mu_n}(\zeta) \to H_\mu(\zeta)$.
Hence $h_{\mu_n}(T, \zeta) \to h_\mu(T, \zeta)$.
Let δ be an expansive constant. If $\text{diam } \zeta < \delta$ then ζ is a generator.
So $h_\mu(T) = h_\mu(T, \zeta)$ by Sinai.
Alter ζ slightly to ensure $\mu(\partial A) = 0$ $\forall A \in \zeta$.
Expansive homeomorphisms

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_\mu(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.
Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_\mu(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_\mu(\zeta)$.
Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightarrow \mu$ then $\lim \sup h_{\mu_n}(T) \leq h_\mu(T)$.

Proof (sketch):
Fact: Suppose $\mu_n \rightarrow \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \rightarrow H_\mu(\zeta)$. Hence

$$h_{\mu_n}(T, \zeta) \rightarrow h_\mu(T, \zeta).$$
Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightharpoonup \mu$ then $\lim \sup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T, \zeta) \to h_{\mu}(T, \zeta).$$

Let δ be an expansive constant. If $\operatorname{diam} \zeta < \delta$ then ζ is a generator.
Expansive homeomorphisms

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T, \zeta) \to h_{\mu}(T, \zeta).$$

Let δ be an expansive constant. If $\text{diam } \zeta < \delta$ then ζ is a generator. So $h_{\mu}(T) = h_{\mu}(T, \zeta)$ by Sinai.
Expansive homeomorphisms

Theorem
Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T)$, $\mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \to \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T, \zeta) \to h_{\mu}(T, \zeta).$$

Let δ be an expansive constant. If $\operatorname{diam} \zeta < \delta$ then ζ is a generator. So $h_{\mu}(T) = h_{\mu}(T, \zeta)$ by Sinai. Alter ζ slightly to ensure $\mu(\partial A) = 0 \ \forall A \in \zeta$.
Topological entropy

Let X be compact metric, let $T: X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the smallest finite subcover of X. Define the entropy of α to be $H_{\text{top}}(\alpha) = \log N(\alpha)$.

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The join is the open cover $\alpha \vee \beta = \{A_i \cap B_j | A_i \in \alpha, B_j \in \beta\}$.

Definition

We say $\alpha \leq \beta$ if every element of β is a subset of an element of α. (Example: $\alpha \leq \alpha \vee \beta$.) Easy check: $\alpha \leq \beta \Rightarrow H_{\text{top}}(\alpha) \leq H_{\text{top}}(\beta)$.

Definition

$T^{-1}\alpha$ is the open cover $\{T^{-1}A | A \in \alpha\}$.
Topological entropy

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.
Topological entropy

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{\text{top}}(\alpha) = \log N(\alpha)$$
Topological entropy

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{\text{top}}(\alpha) = \log N(\alpha)$$

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The *join* is the open cover $\alpha \vee \beta = \{A_i \cap B_j \mid A_i \in \alpha, B_j \in \beta\}$.
Topological entropy

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{\text{top}}(\alpha) = \log N(\alpha)$$

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The *join* is the open cover $\alpha \vee \beta = \{A_i \cap B_j \mid A_i \in \alpha, B_j \in \beta\}$.

Definition

We say $\alpha \leq \beta$ if every element of β is a subset of an element of α. (Example: $\alpha \leq \alpha \vee \beta$.) Easy check: $\alpha \leq \beta \Rightarrow H_{\text{top}}(\alpha) \leq H_{\text{top}}(\beta)$.
Topological entropy

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the smallest finite subcover of X. Define the entropy of α to be

$$H_{\text{top}}(\alpha) = \log N(\alpha)$$

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The join is the open cover $\alpha \cup \beta = \{A_i \cap B_j | A_i \in \alpha, B_j \in \beta\}$.

Definition

We say $\alpha \leq \beta$ if every element of β is a subset of an element of α. (Example: $\alpha \leq \alpha \cup \beta$.) Easy check: $\alpha \leq \beta \Rightarrow H_{\text{top}}(\alpha) \leq H_{\text{top}}(\beta)$.

Definition

$T^{-1}\alpha$ is the open cover $\{T^{-1}A | A \in \alpha\}$.
Topological entropy

Definition

The topological entropy of T relative to the open cover α is

$$h_{\text{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigsqcup_{j=0}^{n-1} T^{-j} \alpha \right).$$

Remark

The limit exists as $H_n = H_{\text{top}}(\bigsqcup_{j=0}^{n-1} T^{-j} \alpha)$ is subadditive:

$$H_{n+m} \leq H_n + H_m.$$

Definition

The topological entropy of T is

$$h_{\text{top}}(T) = \sup \{ h_{\text{top}}(T, \alpha) | \alpha \text{ is an open cover of } X \}.$$
Definition
The topological entropy of T relative to the open cover α is

$$h_{\text{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$
Topological entropy

Definition
The topological entropy of T relative to the open cover α is

$$h_{\text{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

Remark
The limit exists as $H_n = H_{\text{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right)$ is subadditive: $H_{n+m} \leq H_n + H_m$.
Topological entropy

Definition
The topological entropy of T relative to the open cover α is

$$h_{\text{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

Remark
The limit exists as $H_n = H_{\text{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right)$ is subadditive: $H_{n+m} \leq H_n + H_m$.

Definition
The topological entropy of T is

$$h_{\text{top}}(T) = \sup \{ h_{\text{top}}(T, \alpha) \mid \alpha \text{ is an open cover of } X \}.$$
An alternative definition

Let X be compact metric with metric d. Let $T : X \to X$ be continuous. Let $d_n(x, y) = \max_{0 \leq j \leq n-1} d(T^j x, T^j y)$. The balls in this metric are $B_n(x, \epsilon) = \{ y | d(T^j x, T^j y) < \epsilon, 0 \leq j \leq n-1 \}$.

So x, y are d_n-close if the first n points in the orbits of x, y are close.

Idea: suppose we can't distinguish two orbits if they are close for the first n iterates. How many such orbits are there?
An alternative definition

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \leq j \leq n-1} d(T^j x, T^j y)$. The balls in this metric are $B_n(x, \varepsilon) = \{y | d(T^j x, T^j y) < \varepsilon, 0 \leq j \leq n-1\}$.

So x, y are d_n-close if the first n points in the orbits of x, y are close.

Idea: suppose we can't distinguish two orbits if they are close for the first n iterates. How many such orbits are there?
An alternative definition

Let \(X \) be compact metric with metric \(d \). Let \(T : X \to X \) be continuous.

Let \(d_n(x, y) = \max_{0 \leq j \leq n-1} d(T^j x, T^j y) \). The balls in this metric are

\[
B_n(x, \varepsilon) = \{ y \mid d(T^j x, T^j y) < \varepsilon, 0 \leq j \leq n-1 \}.
\]
An alternative definition

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \leq j \leq n-1} d(T^j x, T^j y)$. The balls in this metric are

$$B_n(x, \varepsilon) = \{y \mid d(T^j x, T^j y) < \varepsilon, 0 \leq j \leq n - 1\}.$$

So x, y are d_n-close if the first n points in the orbits of x, y are close.
An alternative definition

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \leq j \leq n-1} d(T^j x, T^j y)$. The balls in this metric are

$$B_n(x, \varepsilon) = \{y \mid d(T^j x, T^j y) < \varepsilon, 0 \leq j \leq n - 1\}.$$

So x, y are d_n-close if the first n points in the orbits of x, y are close.

Idea: suppose we can’t distinguish two orbits if they are close for the first n iterates. How many such orbits are there?
Spanning sets

Definition

Let \(n \geq 1 \), \(\varepsilon > 0 \). \(F \subset X \) is \((n, \varepsilon)\)-spanning if the \(d_n \)-balls of radius \(\varepsilon \) and centres in \(F \) covers \(X \):

\[
X = \bigcup_{x \in F} B_n(x, \varepsilon).
\]

We want to make spanning sets as small as possible. Let \(p_n(\varepsilon) \) be the cardinality of the smallest \((n, \varepsilon)\)-spanning set.

Let \(p(\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) \).

Let \(h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} p(\varepsilon) \).
Spanning sets

Definition
Let $n \geq 1$, $\varepsilon > 0$. $F \subset X$ is (n, ε)-spanning if the d_n-balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$
Spanning sets

Definition
Let $n \geq 1, \varepsilon > 0$. $F \subset X$ is (n, ε)-spanning if the d_n-balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as small as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε)-spanning set.
Spanning sets

Definition
Let $n \geq 1, \varepsilon > 0$. $F \subset X$ is (n, ε)-spanning if the d_n-balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as small as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε)-spanning set.

Let $p(\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon)$.

Spanning sets

Definition
Let $n \geq 1, \varepsilon > 0$. $F \subset X$ is (n, ε)-spanning if the d_n-balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as small as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε)-spanning set.

Let $p(\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon)$.

Let $h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} p(\varepsilon)$.
Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E$, $x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q_n(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.

Remark
$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2)$.

Let E be (n, ε)-separated of cardinality $q_n(\varepsilon)$. Then E is (n, ε)-spanning. Hence $p_n(\varepsilon) \leq q_n(\varepsilon)$.

Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.
Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E$, $x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.

Remark
$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2)$.
Separated sets

Definition
Let \(n \geq 1, \varepsilon > 0 \). \(E \subset X \) is \((n, \varepsilon)\)-separated if: \(x, y \in E, x \neq y \) then \(d_n(x, y) > \varepsilon \).

We want to make separated sets as large as possible. Let \(q(\varepsilon) \) be the cardinality of the largest \((n, \varepsilon)\)-separated set.

Remark
\(p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2) \).
Separated sets

Definition
Let \(n \geq 1, \varepsilon > 0 \). \(E \subset X \) is \((n, \varepsilon)\)-separated if: \(x, y \in E, x \neq y \) then \(d_n(x, y) > \varepsilon \).

We want to make separated sets as large as possible. Let \(q(\varepsilon) \) be the cardinality of the largest \((n, \varepsilon)\)-separated set.

Remark
\(p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2) \).

Let \(E \) be \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).
Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E$, $x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.

Remark
$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2)$.

Let E be (n, ε)-separated of cardinality $q_n(\varepsilon)$.
Then E is (n, ε)-spanning.
Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E$, $x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.

Remark
$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2)$.

Let E be (n, ε)-separated of cardinality $q_n(\varepsilon)$.
Then E is (n, ε)-spanning.
Separated sets

Definition
Let \(n \geq 1, \varepsilon > 0 \). \(E \subset X \) is \((n, \varepsilon)\)-separated if: \(x, y \in E, x \neq y \) then \(d_n(x, y) > \varepsilon \).

We want to make separated sets as large as possible. Let \(q(\varepsilon) \) be the cardinality of the largest \((n, \varepsilon)\)-separated set.

Remark
\(p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2) \).

Let \(E \) be \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \). Then \(E \) is \((n, \varepsilon)\)-spanning.
Separated sets

Definition
Let $n \geq 1, \varepsilon > 0$. $E \subset X$ is (n, ε)-separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε)-separated set.

Remark
$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2)$.

Let E be (n, ε)-separated of cardinality $q_n(\varepsilon)$.
Then E is (n, ε)-spanning.
Hence $p_n(\varepsilon) \leq q_n(\varepsilon)$.
Separated sets

Remark (continued)

\(p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \)

Suppose \(E \) is \((n, \varepsilon)-\)separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)-\)spanning of cardinality \(p_n(\varepsilon/2) \).

For every \(x \in E \) there exists a \(y \in F \) such that \(x \in B_n(y, \varepsilon/2) \).

This map \(E \rightarrow F : x \mapsto y \) is injective.

(If not, then \(x, x' \in E \) could map to the same \(y \in F \). Then \(d_n(x, x') \leq d_n(x, y) + d_n(y, x) < \varepsilon \). Then \(x = x' \) as \(E \) is \((n, \varepsilon)-\)separated.)

Hence \(q_n(\varepsilon) \leq p_n(\varepsilon/2) \).
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]

Suppose \(E \) is \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)\)-spanning of cardinality \(p_n(\varepsilon/2) \).
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]

Suppose \(E \) is \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)\)-spanning of cardinality \(p_n(\varepsilon/2) \).

For every \(x \in E \) there exists a \(y \in F \) such that \(x \in B_n(y, \varepsilon/2) \).
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]

Suppose \(E \) is \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)\)-spanning of cardinality \(p_n(\varepsilon/2) \).

For every \(x \in E \) there exists a \(y \in F \) such that \(x \in B_n(y, \varepsilon/2) \).

This map \(E \rightarrow F : x \mapsto y \) is injective.
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]

Suppose \(E \) is \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)\)-spanning of cardinality \(p_n(\varepsilon/2) \).

For every \(x \in E \) there exists a \(y \in F \) such that \(x \in B_n(y, \varepsilon/2). \)

This map \(E \to F : x \mapsto y \) is injective. (If not, then \(x, x' \in E \) could
map to the same \(y \in F \). Then \(d_n(x, x') \leq d_n(x, y) + d_n(y, x) < \varepsilon. \)
Then \(x = x' \) as \(E \) is \((n, \varepsilon)\)-separated.)
Remark (continued)

\[p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2). \]

Suppose \(E \) is \((n, \varepsilon)\)-separated of cardinality \(q_n(\varepsilon) \).

Suppose \(F \) is \((n, \varepsilon/2)\)-spanning of cardinality \(p_n(\varepsilon/2) \).

For every \(x \in E \) there exists a \(y \in F \) such that \(x \in B_n(y, \varepsilon/2) \).

This map \(E \to F : x \mapsto y \) is injective. (If not, then \(x, x' \in E \) could map to the same \(y \in F \). Then \(d_n(x, x') \leq d_n(x, y) + d_n(y, x) < \varepsilon \).

Then \(x = x' \) as \(E \) is \((n, \varepsilon)\)-separated.)

Hence \(q_n(\varepsilon) \leq p_n(\varepsilon/2) \).
Hence
\[h(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon). \]

Theorem (Bowen)
The definition of topological entropy using open sets agrees with the definition of topological entropy using spanning/separated sets.

Proof (sketch):
Careful analysis using Lebesgue numbers of open covers...
Spanning and separated sets

Hence

\[
h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon).
\]
Spanning and separated sets

Hence

\[h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon). \]

Theorem (Bowen)

The definition of topological entropy using open sets agrees with the definition of topological entropy using spanning/separated sets.
Spanning and separated sets

Hence

\[h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon). \]

Theorem (Bowen)

The definition of topological entropy using open sets agrees with the definition of topological entropy using spanning/separated sets.

Proof (sketch):

Careful analysis using Lebesgue numbers of open covers...
Calculating topological entropy

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x, look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$. This coding may not be 'nice': different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

α is a (topological) generator if each sequence codes at most one point. Precisely, α is a generator if for each sequence $(i_j)_{\infty}^{\infty}$, $\bigcap_{j=\infty}^{-\infty} T^{-j} A_i = \emptyset$ or 1.
Calculating topological entropy

Let \(\alpha = \{A_1, \ldots, A_k\} \) be a finite open cover.
Calculating topological entropy

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be ‘nice’: different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (e.g., not of finite type). α is a (topological) generator if each sequence codes at most one point.

Precisely, α is a generator if for each sequence $(i_j)_{j=-\infty}^{\infty}$, $\bigcap_{j=-\infty}^{\infty} T^{-j} A_{i_j} = \emptyset$ or $\{1, \ldots, k\}$.
Calculating topological entropy

Let \(\alpha = \{A_1, \ldots, A_k\} \) be a finite open cover. For each \(x \) look at the sequence of elements of \(\alpha \) the orbit of \(x \) visits. This codes the orbit of \(x \) by a bi-infinite sequence of symbols from \(\{1, \ldots, k\} \).

This coding may not be ‘nice’:
Calculating topological entropy

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be ‘nice’: different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).
Calculating topological entropy

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be ‘nice’: different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

α is a (topological) generator if each sequence codes at most one point.
Calculating topological entropy

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be ‘nice’: different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

α is a (topological) generator if each sequence codes at most one point. Precisely, α is a generator if for each sequence $(i_j)_{j=-\infty}^{\infty}$

$$\text{card} \bigcap_{j=-\infty}^{\infty} T^{-j}A_{i_j} = 0 \text{ or } 1.$$
Calculating topological entropy

Proposition

T has a (topological) generator iff T is expansive.

Proof (sketch):
Suppose T is expansive with expansive constant δ. Consider the open cover by balls of radius δ/2. Let α be a finite subcover. Then α is a (topological) generator.

The converse is slightly more involved.
Proposition

T has a (topological) generator iff T is expansive.
Proposition

\(T \) has a (topological) generator iff \(T \) is expansive.

Proof (sketch):

Suppose \(T \) is expansive with expansive constant \(\delta \). Consider the open cover by balls of radius \(\delta/2 \). Let \(\alpha \) be a finite subcover. Then \(\alpha \) is a (topological) generator.
Proposition

\(T \) has a (topological) generator iff \(T \) is expansive.

Proof (sketch):

Suppose \(T \) is expansive with expansive constant \(\delta \). Consider the open cover by balls of radius \(\delta/2 \). Let \(\alpha \) be a finite subcover. Then \(\alpha \) is a (topological) generator.

The converse is slightly more involved.
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism and let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1:

Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2:

$d(\bigsqcup_{n,j} T^{-n} \alpha) \to 0$.

(If $d(\bigsqcup_{n,j} T^{-n} \alpha) \to \epsilon > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3:

Let β be any open cover. Let $r > 0$ be a Lebesgue number for β.

Choose n s.t. $d(\bigsqcup_{n,j} T^{-n} \alpha) \leq r$. Then $\beta \leq \bigsqcup_{n,j} T^{-n} \alpha$.

Then $h_{\text{top}}(T, \beta) \leq h_{\text{top}}(T, \bigsqcup_{n,j} T^{-n} \alpha) = h_{\text{top}}(T, \alpha)$.

Take the supremum over all β.
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator.
Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam} \bigcup_{n,j} = -nT - j\alpha \to 0$.

(If $\text{diam} \bigcup_{n,j} = -nT - j\alpha \to \epsilon > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let $r > 0$ be a Lebesgue number for β.
Choose n s.t. $\text{diam} \bigcup_{n,j} \leq r$. Then $\beta \leq \bigcup_{n,j} = -nT - j\alpha$.

Then $h_{\text{top}}(T, \beta) \leq h_{\text{top}}(T, \bigcup_{n,j} = -nT - j\alpha) = h_{\text{top}}(T, \alpha)$.

Take the supremum over all β.

Calculating topological entropy using generators

Proposition

Let \(T \) be an expansive homeomorphism & let \(\alpha \) be a generator. Then \(h_{\text{top}}(T) = h_{\text{top}}(T, \alpha) \).

Proof (sketch):
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.
Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam} \bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$.
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam } \bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$.

(If $\text{diam } \bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam } \bigvee_{j=-n}^{n} T^{-j} \alpha \rightarrow 0$.

(If $\text{diam } \bigvee_{j=-n}^{n} T^{-j} \alpha \rightarrow \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let $r > 0$ be a Lebesgue number for β.
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam} \bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$.

(If $\text{diam} \bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let $r > 0$ be a Lebesgue number for β. Choose n s.t. $\text{diam} \bigvee_{j=-n}^{n} T^{-j} \alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j} \alpha$.

Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \to 0$.

(If $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let $r > 0$ be a Lebesgue number for β. Choose n s.t. $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j}\alpha$. Then

$h_{\text{top}}(T, \beta) \leq h_{\text{top}} \left(T, \bigvee_{j=-n}^{n} T^{-j}\alpha \right) = h_{\text{top}}(T, \alpha)$.

Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{\text{top}}(T) = h_{\text{top}}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{\text{top}}(T, \alpha) \leq h_{\text{top}}(T)$.

Step 2: $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \to 0$.
(If $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let $r > 0$ be a Lebesgue number for β. Choose n s.t. $\text{diam } \bigvee_{j=-n}^{n} T^{-j}\alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j}\alpha$. Then

$h_{\text{top}}(T, \beta) \leq h_{\text{top}} \left(T, \bigvee_{j=-n}^{n} T^{-j}\alpha \right) = h_{\text{top}}(T, \alpha)$. Take the supremum over all β.
Let $\sigma: \Sigma^k \to \Sigma^k$ be the full two-sided k-shift. Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ^k. It's clear that α is a (top.) generator.

Note $\bigvee_{n-1}^{j=0} \sigma^{-j} \alpha$ is the open cover of Σ^k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ^k. Hence $h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} \log k^n = \log k$.
Topological entropy of shifts

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It’s clear that α is a (top.) generator.
Topological entropy of shifts

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It’s clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k.

Topological entropy of shifts

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j}\alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k. Hence

$$h_{top}(\sigma)$$
Let $\sigma : \Sigma_k \rightarrow \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It’s clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k. Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} \log k^n.$$
Topological entropy of shifts

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It’s clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k.

Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log k$$
Topological entropy of shifts

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k. It’s clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k. Hence

\[
|h_{\text{top}}(\sigma)| = |h_{\text{top}}(\sigma, \alpha)| = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \\
= \lim_{n \to \infty} \frac{1}{n} \log k^n = \log k.
\]
Topological entropy of shifts
Topological entropy of shifts

Let A be an irreducible $k \times k$ 0–1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.
Topological entropy of shifts

Let A be an irreducible $k \times k$ $0 - 1$ matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A)$.
Topological entropy of shifts

Let A be an irreducible $k \times k$ $0-1$ matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A)$.

Number of words in Σ_A of length n starting at i and ending at j is $(A^n)_{i,j}$.
Topological entropy of shifts

Let A be an irreducible $k \times k$ $0 - 1$ matrix. Let $\sigma : \Sigma_A \rightarrow \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A)$.

Number of words in Σ_A of length n starting at i and ending at j is $(A^n)_{i,j}$. Hence number of cylinders of length n is $\sum_{i,j=1}^{k} (A^n)_{i,j} = \|A^n\|$.

Topological entropy of shifts

Let A be an irreducible $k \times k$ 0–1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A)$.

Number of words in Σ_A of length n starting at i and ending at j is $(A^n)_{i,j}$. Hence number of cylinders of length n is

$$\sum_{i,j=1}^{k} (A^n)_{i,j} = \|A^n\|.$$

Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha)$$
Topological entropy of shifts

Let \(A \) be an irreducible \(k \times k \) 0–1 matrix. Let \(\sigma : \Sigma_A \to \Sigma_A \) be the shift of finite type. Let \(\alpha = \{[1], \ldots, [k]\} \). Again, this open cover is a generator.

Now \(H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A) \).

Number of words in \(\Sigma_A \) of length \(n \) starting at \(i \) and ending at \(j \) is \((A^n)_{i,j} \). Hence number of cylinders of length \(n \) is \(\sum_{i,j=1}^{k} (A^n)_{i,j} = \|A^n\| \).

Hence

\[
\begin{align*}
 h_{\text{top}}(\sigma) &= h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \\
 &=
\end{align*}
\]
Topological entropy of shifts

Let A be an irreducible $k \times k$ 0 – 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A)$.

Number of words in Σ_A of length n starting at i and ending at j is $(A^n)_{i,j}$. Hence number of cylinders of length n is $\sum_{i,j=1}^{k} (A^n)_{i,j} = \|A^n\|$.

Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \|A^n\| = \log \lambda$$

where $\lambda > 0$ is the largest eigenvalue of A, by the spectral radius formula.
The variational principle

We can relate metric and topological entropy

Theorem (The variational principle)

Let \(T \) be a continuous transformation of a compact metric \(X \).

Then

\[
\begin{align*}
\mathcal{H}_{\text{top}}(T) &= \sup \{ \mathcal{H}_{\mu}(T) | \mu \in \mathcal{M}(X, T) \}.
\end{align*}
\]

Remark

There are examples to show that this supremum need not be achieved.

Definition

Let

\[
\mathcal{M}_{\text{max}}(X, T) = \{ \mu \in \mathcal{M}(X, T) | \mathcal{H}_{\text{top}}(T) = \mathcal{H}_{\mu}(T) \}
\]

denote the set of all measures of maximal entropy.
The variational principle

We can relate metric and topological entropy
The variational principle

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{\text{top}}(T) = \sup \{ h_\mu(T) \mid \mu \in M(X, T) \}.$$
The variational principle

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{\text{top}}(T) = \sup \{ h_\mu(T) \mid \mu \in M(X, T) \}.$$

Remark

There are examples to show that this supremum need not be achieved.
The variational principle

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{\text{top}}(T) = \sup \{ h_\mu(T) \mid \mu \in \mathcal{M}(X, T) \}.$$

Remark

There are examples to show that this supremum need not be achieved.

Definition

Let $M_{\text{max}}(X, T) = \{ \mu \in \mathcal{M}(X, T) \mid h_{\text{top}}(T) = h_\mu(T) \}$ denote the set of all measures of maximal entropy.
The variational principle and measures of maximal entropy

Proposition
If the entropy map is upper semi-continuous then $\mathcal{M}_{\text{max}}(X, T) \neq \emptyset$.

Proof: an upper semi-continuous function on a compact metric space achieves its supremum. Note that $\mathcal{M}(X, T)$ is a compact metric space.

Remark
Hence expansive homeomorphisms always have at least one measure of maximal entropy. In many cases, there is a unique measure of maximal entropy.
The variational principle and measures of maximal entropy

Proposition

If the entropy map is upper semi-continuous then \(M_{\text{max}}(X, T) \neq \emptyset \).
The variational principle and measures of maximal entropy

Proposition

If the entropy map is upper semi-continuous then $M_{\text{max}}(X, T) \neq \emptyset$.

Proof: an upper semi-continuous function on a compact metric space achieves its supremum. Note that $M(X, T)$ is a compact metric space.
The variational principle and measures of maximal entropy

Proposition

If the entropy map is upper semi-continuous then $M_{\text{max}}(X, T) \neq \emptyset$.

Proof: an upper semi-continuous function on a compact metric space achieves its supremum. Note that $M(X, T)$ is a compact metric space.

Remark

Hence expansive homeomorphisms always have at least one measure of maximal entropy.

In many cases, there is a *unique* measure of maximal entropy.
Measures of maximal entropy for shifts

Proposition

Let $\sigma: \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$.

We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$-measure is $\log k$.

We show: if $\mu \in M(X, T)$ has $h_\mu(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$-measure.

Let $\zeta = \{[1], \ldots, [k]\}$. This is a generator, so by Sinai's thm $\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta)$.

Note that $h_\mu(\sigma, \zeta) \leq 1/n H_\mu(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha)$ (as $H_n = H_\mu(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha)$ is subadditive, so $1/n H_n \to \inf n 1/n H_n = h_\mu(\sigma, \zeta)$).
Measures of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.
Measures of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$.
Measures of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \rightarrow \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$-measure is $\log k$.
Measures of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$-measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_\mu(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$-measure.
Measures of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \rightarrow \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$-measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_\mu(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$-measure.

Let $\zeta = \{[1], \ldots, [k]\}$. This is a generator, so by Sinai’s thm $\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta)$.
Measures of maximal entropy for shifts

Proposition
Let \(\sigma : \Sigma_k \rightarrow \Sigma_k \) be the full two-sided \(k \)-shift. Then the Bernoulli \((1/k, \ldots, 1/k)\)-measure is the unique measure of maximal entropy.

Proof.
We know the topological entropy of \(\sigma \) is \(\log k \). We know the entropy of the Bernoulli \((1/k, \ldots, 1/k)\)-measure is \(\log k \). We show: if \(\mu \in M(X, T) \) has \(h_\mu(\sigma) = \log k \) then \(\mu \) is the Bernoulli \((1/k, \ldots, 1/k)\)-measure.

Let \(\zeta = \{ [1], \ldots, [k] \} \). This is a generator, so by Sinai’s thm
\[
\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta).
\]

Note that \(h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \)
Measure of maximal entropy for shifts

Proposition

Let $\sigma : \Sigma_k \rightarrow \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$-measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$-measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_\mu(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$-measure.

Let $\zeta = \{[1], \ldots, [k]\}$. This is a generator, so by Sinai’s thm $\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta)$.

Note that $h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$ (as $H_n = H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$ is subadditive, so $\frac{1}{n} H_n \rightarrow \inf_n \frac{1}{n} H_n = h_\mu(\sigma, \zeta)$).
Proof continued

We need the following fact:

Fact

If $\eta = \{A_1, \ldots, A_\ell\}$ is a finite partition then

$$H(\eta) = \sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$$

with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-\log t$.)

So

$$\log n = h\mu(\sigma) = h\mu(\sigma, \zeta) \leq \frac{1}{n} H\mu(\bigvee_{j=0}^{n-1} \sigma - j\alpha) \leq \frac{1}{n}\log k.$$
Proof continued

We need the following fact:

Fact
If \(\eta = \{A_1, \ldots, A_\ell\} \) is a finite partition then \(H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell \) with equality iff \(\mu(A_i) = 1/\ell \), \(1 \leq i \leq \ell \).

(This follows from concavity of \(-t \log t\).) So
Proof continued

We need the following fact:

Fact
If \(\eta = \{A_1, \ldots, A_\ell\} \) is a finite partition then
\[
H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell
\]
with equality iff \(\mu(A_i) = 1/\ell, \)
\(1 \leq i \leq \ell. \)

(This follows from concavity of \(-t \log t.\)) So

\[
\log k
\]
Proof continued

We need the following fact:

Fact
If \(\eta = \{ A_1, \ldots, A_\ell \} \) is a finite partition then
\[
H(\eta) = - \sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell \text{ with equality iff } \mu(A_i) = 1/\ell, 1 \leq i \leq \ell.
\]
(This follows from concavity of \(-t \log t\).) So

\[
\log k = h_\mu(\sigma)
\]
Proof continued

We need the following fact:

Fact
If $\eta = \{A_1, \ldots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality if $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta)$$
Proof continued

We need the following fact:

Fact
If $\eta = \{A_1, \ldots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$
Proof continued

We need the following fact:

Fact
If $\eta = \{A_1, \ldots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \leq \frac{1}{n} \log k^n = \log k.$$

Hence $H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log k^n$.

Proof continued

We need the following fact:

Fact
If \(\eta = \{A_1, \ldots, A_\ell\} \) is a finite partition then \(H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell \) with equality iff \(\mu(A_i) = 1/\ell \), 1 \(\leq i \leq \ell \).

(This follows from concavity of \(-t \log t\).) So

\[
\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \leq \frac{1}{n} \log k^n = \log k.
\]

Hence \(H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log k^n \). So by the fact, each element of \(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \) has the same measure \(1/k^n \).
Proof continued

We need the following fact:

Fact

If $\eta = \{A_1, \ldots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^\ell \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \leq \frac{1}{n} \log k^n = \log k.$$

Hence $H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log k^n$. So by the fact, each element of $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ has the same measure $1/k^n$.

Hence μ assigns measure $1/k^n$ to each cylinder.
Proof continued

We need the following fact:

Fact

If \(\eta = \{A_1, \ldots, A_\ell\} \) is a finite partition then \(H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell \) with equality iff \(\mu(A_i) = 1/\ell \), \(1 \leq i \leq \ell \).

(This follows from concavity of \(-t \log t\).) So

\[
\log k = h_\mu(\sigma) = h_\mu(\sigma, \zeta) \leq \frac{1}{n} H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) \leq \frac{1}{n} \log k^n = \log k.
\]

Hence \(H_\mu \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right) = \log k^n \). So by the fact, each element of \(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \) has the same measure \(1/k^n \). Hence \(\mu \) assigns measure \(1/k^n \) to each cylinder. So \(\mu \) and the Bernoulli \((1/k, \ldots, 1/k)\)-measure agree on cylinders. By the Kolmogorov Extension Theorem, \(\mu \) is the Bernoulli \((1/k, \ldots, 1/k)\)-measure.
The Parry measure

Let A be an irreducible $0-1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$,
- moreover λ is simple;
- there are positive left- and right-eigenvectors $u = (u_1, \ldots, u_k)$, $v = (v_1, \ldots, v_k)^T$, $\sum_i u_i = \sum_j v_j = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = A_{i,j}v_j \lambda v_i$, $p_i = u_i v_i c$, where $c = \sum_j u_j v_j$.

Then P is stochastic and $pP = p$.

We define the Parry measure to be the Markov measure $\mu_{[i_0, i_1, \ldots, i_n]} = p_{i_0} P_{i_0, i_1} \cdots P_{i_{n-1}, i_n}$.
The Parry measure

Let A be an irreducible $0 - 1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.
The Parry measure

Let A be an irreducible $0 - 1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

The Parry measure

Let A be an irreducible 0–1 matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$, moreover λ is simple;
The Parry measure

Let A be an irreducible 0–1 matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$, moreover λ is simple;
- there are positive left- and right-eigenvectors $u = (u_1, \ldots, u_k)$, $v = (v_1, \ldots, v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = A_{i,j}v_j/\lambda v_i$, $p_i = u_i v_i/c$, where $c = \sum_{j=1}^k u_j v_j$. Then P is stochastic and $pP = p$. We define the Parry measure to be the Markov measure $\mu = p_{i_0}P_{i_0,i_1}\cdots P_{i_{n-1},i_n}^{-1}$.
The Parry measure

Let A be an irreducible $0 - 1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$, moreover λ is simple;
- there are positive left- and right-eigenvectors $u = (u_1, \ldots, u_k)$, $v = (v_1, \ldots, v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}$, $p_i = \frac{u_i v_i}{c}$, where $c = \sum_{j=1}^k u_j v_j$.

We define the Parry measure to be the Markov measure $\mu = p_{i_0} P_{i_0, i_1} \cdots P_{i_{n-2}, i_{n-1}}$, $p_{i_n} = u_{i_n} v_{i_n} c$.

The Parry measure

Let A be an irreducible $0 - 1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$, moreover λ is simple;
- there are positive left- and right-eigenvectors $u = (u_1, \ldots, u_k)$, $v = (v_1, \ldots, v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}$, $p_i = \frac{u_i v_i}{c}$, where $c = \sum_{j=1}^k u_j v_j$.

Then P is stochastic and $pP = p$.
The Parry measure

Let A be an irreducible $0-1$ matrix with corresponding shift of finite type Σ_A. We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue $\lambda > 0$ s.t. all other eigenvalues satisfy $|\lambda_j| < \lambda$, moreover λ is simple;
- there are positive left- and right-eigenvectors $u = (u_1, \ldots, u_k), v = (v_1, \ldots, v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u, Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}, p_i = \frac{u_i v_i}{c}$, where $c = \sum_{j=1}^{k} u_j v_j$.

Then P is stochastic and $pP = p$. We define the Parry measure to be the Markov measure

$$\mu[i_0, i_1, \ldots, i_n] = p_{i_0} P_{i_0, i_1} \cdots P_{i_{n-1}, i_n}.$$
The Parry measure

Recall that for a Markov measure μ given by the stochastic matrix P, we have

$$h_\mu(\sigma) = -\sum_{i,j} p_{i,j} \log p_{i,j}.$$

It's an easy check that the Parry measure μ has

$$h_\mu(\sigma) = \log \lambda.$$

We already know that the topological entropy of σ is $\log \lambda$. Hence the Parry measure is a measure of maximal entropy.

Proposition

Let A be an irreducible $0-1$ matrix with corresponding shift of finite type Σ_A. Then the Parry measure is the unique measure of maximal entropy.
The Parry measure

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_\mu(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$. It's an easy check that the Parry measure μ has $h_\mu(\sigma) = \log \lambda$. We already know that the topological entropy of σ is $\log \lambda$. Hence the Parry measure is a measure of maximal entropy.

Proposition: Let A be an irreducible 0–1 matrix with corresponding shift of finite type Σ_A. Then the Parry measure is the unique measure of maximal entropy.
The Parry measure

Recall that for a Markov measure μ given by the stochastic matrix P, we have $h_{\mu}(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

It’s an easy check that the Parry measure μ has $h_{\mu}(\sigma) = \log \lambda$.

We already know that the topological entropy of σ is $\log \lambda$. Hence the Parry measure is a measure of maximal entropy.

Proposition

Let A be an irreducible 0^{-1} matrix with corresponding shift of finite type Σ_A. Then the Parry measure is the unique measure of maximal entropy.
The Parry measure

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_\mu(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

It’s an easy check that the Parry measure μ has $h_\mu(\sigma) = \log \lambda$.

We already know that the topological entropy of σ is $\log \lambda$. Hence the Parry measure is a measure of maximal entropy.
Recall that for a Markov measure μ given by the stochastic matrix P we have $h_\mu(\sigma) = - \sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

It’s an easy check that the Parry measure μ has $h_\mu(\sigma) = \log \lambda$.

We already know that the topological entropy of σ is $\log \lambda$. Hence the Parry measure is a measure of maximal entropy.

Proposition

Let A be an irreducible $0 – 1$ matrix with corresponding shift of finite type Σ_A. Then the Parry measure is the unique measure of maximal entropy.
Towards thermodynamic formalism

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

If the dynamical system T is 'hyperbolic' (in an appropriate sense, but this includes: Anosov diffeomorphisms, Axiom A diffeos on basic sets such as the Smale horseshoe, (in continuous time) geodesic flows on compact negatively curved Riemannian manifolds) then there is a unique measure of maximal entropy. These measures of maximal entropy can often be related to the spectral properties (=maximal eigenvalue) of an associated operator. We will discuss this further in the next lecture.
Towards thermodynamic formalism

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.
Towards thermodynamic formalism

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

If the dynamical system T is ‘hyperbolic’ (in an appropriate sense, but this includes: Anosov diffeomorphisms, Axiom A diffeos on basic sets such as the Smale horseshoe, (in continuous time) geodesic flows on compact negatively curved Riemannian manifolds) then there is a unique measure of maximal entropy.
Towards thermodynamic formalism

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

If the dynamical system T is ‘hyperbolic’ (in an appropriate sense, but this includes: Anosov diffeomorphisms, Axiom A diffeos on basic sets such as the Smale horseshoe, (in continuous time) geodesic flows on compact negatively curved Riemannian manifolds) then there is a unique measure of maximal entropy.

These measures of maximal entropy can often be related to the spectral properties (=maximal eigenvalue) of an associated operator. We will discuss this further in the next lecture.