MAGIC: Ergodic Theory Lecture 8 - Topological entropy

Charles Walkden

March 13th 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ) . Last time we defined the entropy $h_{\mu}(T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this lecture we recap some basic facts about entropy.

Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ) . Last time we defined the entropy $h_{\mu}(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_{\mu}(T)$ depends on μ .

Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ) . Last time we defined the entropy $h_{\mu}(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_{\mu}(T)$ depends on μ .

We also relate entropy to another important quantity: topological entropy.

Let T be an m.p.t. of a prob. space (X, \mathcal{B}, μ) . Last time we defined the entropy $h_{\mu}(T)$.

In this lecture we recap some basic facts about entropy.

In the context of a continuous transformation of a compact metric space we study how $h_{\mu}(T)$ depends on μ .

We also relate entropy to another important quantity: topological entropy.

Throughout: metric entropy = measure-theoretic entropy = $h_{\mu}(T)$.

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

Define the entropy of ζ

$$H_\mu(\zeta) = -\sum_{A\in \zeta} \mu(A)\log \mu(A).$$

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

Define the entropy of $\boldsymbol{\zeta}$

$$H_\mu(\zeta) = -\sum_{A\in \zeta} \mu(A)\log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}.$

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

Define the entropy of ζ

$$H_\mu(\zeta) = -\sum_{A\in \zeta} \mu(A)\log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}.$

If $T: X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A \mid A \in \zeta\}.$

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

Define the entropy of ζ

$$H_{\mu}(\zeta) = -\sum_{A\in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}.$

If $T: X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A \mid A \in \zeta\}.$

The entropy of T relative to ζ is

$$h_{\mu}(T,\zeta) = \lim_{n\to\infty} \frac{1}{n} H_{\mu} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

Let $\zeta = \{A_j\}$ be a finite partition of a prob. space (X, \mathcal{B}, μ) .

Define the entropy of $\boldsymbol{\zeta}$

$$H_{\mu}(\zeta) = -\sum_{A\in \zeta} \mu(A) \log \mu(A).$$

If ζ, η are partitions then $\zeta \lor \eta = \{A \cap B \mid A \in \zeta, B \in \eta\}.$

If $T: X \to X$ is measurable then $T^{-1}\zeta = \{T^{-1}A \mid A \in \zeta\}.$

The entropy of T relative to ζ is

$$h_{\mu}(T,\zeta) = \lim_{n\to\infty} \frac{1}{n} H_{\mu} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

The entropy of T is

 $h_{\mu}(T) = \sup\{h_{\mu}(T,\zeta) \mid \zeta \text{ a finite partition}\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A finite partition ζ is a generator if $\bigvee_{j=-n}^{n} T^{-j} \zeta \nearrow \mathcal{B}$. (Equiv. $\bigvee_{j=-n}^{n} T^{-j} \zeta$ separates μ -a.e. pair of points.)

A finite partition ζ is a generator if $\bigvee_{j=-n}^{n} T^{-j} \zeta \nearrow \mathcal{B}$. (Equiv. $\bigvee_{j=-n}^{n} T^{-j} \zeta$ separates μ -a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

 $h_{\mu}(T) = h_{\mu}(T,\zeta).$

A finite partition ζ is a generator if $\bigvee_{j=-n}^{n} T^{-j} \zeta \nearrow \mathcal{B}$. (Equiv. $\bigvee_{j=-n}^{n} T^{-j} \zeta$ separates μ -a.e. pair of points.)

Theorem (Sinai)

Suppose T is an invertible m.p.t. and ζ is a generator. Then

$$h_{\mu}(T) = h_{\mu}(T,\zeta).$$

Let σ be the full *k*-shift with the Bernoulli (p_1, \ldots, p_k) -measure μ . Then $\zeta = \{[1], \ldots, [k]\}$ is a generator.

$$h_{\mu}(\sigma) = h_{\mu}(\sigma,\zeta) = -\sum_{j=1}^{k} p_j \log p_j.$$

<ロト (個) (目) (目) (目) (0) (0)</p>

Let (X, \mathcal{B}) be a compact metric space with the Borel σ -algebra. Let $T: X \to X$ be continuous.

Let $M(X) = \{ all Borel probability measures \}$. Let $M(X, T) = \{ all T-invariant Borel probability measures \}$.

Let (X, \mathcal{B}) be a compact metric space with the Borel σ -algebra. Let $T: X \to X$ be continuous.

Let $M(X) = \{ all Borel probability measures \}$. Let $M(X, T) = \{ all T-invariant Borel probability measures \}$.

A sequence $\mu_n \in M(X)$ weak*-converges to μ ($\mu_n \rightharpoonup \mu$) if

$$\int f d\mu_n \to \int f d\mu \ \forall f \in C(X,\mathbb{R}).$$

Let (X, \mathcal{B}) be a compact metric space with the Borel σ -algebra. Let $T : X \to X$ be continuous.

Let $M(X) = \{ all Borel probability measures \}$. Let $M(X, T) = \{ all T-invariant Borel probability measures \}$.

A sequence $\mu_n \in M(X)$ weak*-converges to μ ($\mu_n \rightharpoonup \mu$) if

$$\int f d\mu_n
ightarrow \int f d\mu \ orall f \in C(X,\mathbb{R}).$$

Q: How does the entropy $h_{\mu}(T)$ vary as a function of μ ?

Let $\Sigma_2 = \text{full } 2\text{-sided } 2\text{-shift with shift map } \sigma$.

Let $\Sigma_2 = full$ 2-sided 2-shift with shift map σ .

x is periodic with period n iff $x = (\cdots \underbrace{x_0 x_1 \cdots x_{n-1}}_{x_0 x_1 \cdots x_{n-1}} \underbrace{x_0 x_1 \cdots x_{n-1}}_{x_{n-1}} \cdots)$. There are 2^n points of period n.

Let $\Sigma_2 = \text{full } 2\text{-sided } 2\text{-shift with shift map } \sigma$.

x is periodic with period n iff

$$x = (\cdots \underbrace{x_0 x_1 \cdots x_{n-1}}_{x_0 x_1 \cdots x_{n-1}} \underbrace{x_0 x_1 \cdots x_{n-1}}_{x_0 x_1 \cdots x_{n-1}} \cdots)$$
. There are 2^n points of period n.

Let

$$\mu_n = \frac{1}{2^n} \sum_{x=\sigma^n x} \delta_x \in M(X,T).$$

Then $h_{\mu_n}(\sigma) = 0$ (as μ_n is supported on a finite set).

Let $\Sigma_2 = \text{full } 2\text{-sided } 2\text{-shift with shift map } \sigma$.

x is periodic with period n iff

$$x = (\cdots \underbrace{x_0 x_1 \cdots x_{n-1}}_{0} \underbrace{x_0 x_1 \cdots x_{n-1}}_{0} \cdots)$$
. There are 2^n points of period n.

Let

$$\mu_n = \frac{1}{2^n} \sum_{x=\sigma^n x} \delta_x \in M(X,T).$$

Then $h_{\mu_n}(\sigma) = 0$ (as μ_n is supported on a finite set).

However, $\mu_n \rightharpoonup \mu$, where μ = the Bernoulli (1/2, 1/2)-measure. Note $h_{\mu}(\sigma) = \log 2$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Proof (sketch):

Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f d\mu_2$ $= \frac{1}{2^2} (\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...))$

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f d\mu_2$ $= \frac{1}{2^2} (\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...))$ $= \frac{1}{2^2} 2 = \frac{1}{2}$

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$ $= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$ $= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$ $= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$ $= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$

In general, $\int \chi_{[i_0,...,i_{m-1}]} d\mu_n = \int \chi_{[i_0,...,i_{m-1}]} d\mu$ when $n \ge m$.

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$ $= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$ $= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$

In general,
$$\int \chi_{[i_0,...,i_{m-1}]} \, d\mu_n = \int \chi_{[i_0,...,i_{m-1}]} \, d\mu$$
 when $n \geq m$.

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in $C(X, \mathbb{R})$ (by the Stone-Weierstrass theorem). Hence $\mu_n \rightharpoonup \mu$.

(日) (同) (三) (三) (三) (○) (○)

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$ $= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$ $= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$

In general,
$$\int \chi_{[i_0,...,i_{m-1}]}\,d\mu_n=\int \chi_{[i_0,...,i_{m-1}]}\,d\mu$$
 when $n\geq m$.

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in $C(X, \mathbb{R})$ (by the Stone-Weierstrass theorem). Hence $\mu_n \rightharpoonup \mu$.

(日) (同) (三) (三) (三) (○) (○)

Is the entropy map upper semi-continuous? i.e. does $\mu_n \rightharpoonup \mu \Rightarrow \limsup_{n \to \infty} h_{\mu_n}(T) \le h_{\mu}(T)$?

Proof (sketch): Let $f = \chi_{[0]}$. Note that $\int f \, d\mu_2$ $= \frac{1}{2^2} \left(\chi_{[0]}(...00...) + \chi_{[0]}(...01...) + \chi_{[0]}(...10...) + \chi_{[0]}(...11...) \right)$ $= \frac{1}{2^2} 2 = \frac{1}{2} = \mu(\chi_{[0]}) = \int f \, d\mu.$

In general,
$$\int \chi_{[i_0,...,i_{m-1}]}\,d\mu_n=\int \chi_{[i_0,...,i_{m-1}]}\,d\mu$$
 when $n\geq m$.

Characteristic functions of intervals are continuous. Finite linear combinations of characteristic functions are dense in $C(X, \mathbb{R})$ (by the Stone-Weierstrass theorem). Hence $\mu_n \rightharpoonup \mu$.

Is the entropy map upper semi-continuous? i.e. does $\mu_n \rightharpoonup \mu \Rightarrow \limsup_{n \to \infty} h_{\mu_n}(T) \le h_{\mu}(T)$?

Answer: no in general, yes in many important cases.

Expansive homeomorphisms

<ロ>

Expansive homeomorphisms

Definition

A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Definition

A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

A shift of finite type is expansive.

Definition

A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

Example

A shift of finite type is expansive. Recall $d(x, y) = 1/2^n$, n = first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^nx, T^ny) = 1 \ge \delta$.

Definition

A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

Example

A shift of finite type is expansive. Recall $d(x, y) = 1/2^n$, n = first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^nx, T^ny) = 1 \ge \delta$.

Example

Let $T : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}^k / \mathbb{Z}^k$, $T_X = A_X \mod 1$ be a toral automorphism given by $A \in SL(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).

Definition

A homeomorphism T is expansive if: $\exists \delta > 0$ s.t. if $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

Example

A shift of finite type is expansive. Recall $d(x, y) = 1/2^n$, n = first disagreement. Let $\delta < 1$. If $x_n \neq y_n$ then $d(T^nx, T^ny) = 1 \ge \delta$.

Example

Let $T : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}^k / \mathbb{Z}^k$, $T_X = A_X \mod 1$ be a toral automorphism given by $A \in SL(2, \mathbb{R})$. Then T is expansive iff A is hyperbolic (no eigenvalues of modulus 1).

Other examples: all Anosov diffeomorphisms, Smale horseshoe, solenoid,...

<ロ>

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \le h_{\mu}(T)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$.

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T,\zeta) \to h_{\mu}(T,\zeta).$$

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \le h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T,\zeta) \to h_{\mu}(T,\zeta).$$

Let δ be an expansive constant. If $\operatorname{diam}\,\zeta<\delta$ then ζ is a generator.

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \le h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T,\zeta) \to h_{\mu}(T,\zeta).$$

Let δ be an expansive constant. If diam $\zeta < \delta$ then ζ is a generator. So $h_{\mu}(T) = h_{\mu}(T, \zeta)$ by Sinai.

Theorem

Let T be an expansive homeomorphism of a compact metric space. Then the entropy map is upper semi-continuous: if $\mu_n, \mu \in M(X, T), \ \mu_n \rightharpoonup \mu$ then $\limsup h_{\mu_n}(T) \leq h_{\mu}(T)$.

Proof (sketch):

Fact: Suppose $\mu_n \rightharpoonup \mu$. If $B \in \mathcal{B}$ is s.t. $\mu(\partial B) = 0$ then $\mu_n(B) \rightarrow \mu(B)$.

If ζ is a partition such that $\mu(\partial A) = 0 \ \forall A \in \zeta$ then $H_{\mu_j}(\zeta) \to H_{\mu}(\zeta)$. Hence

$$h_{\mu_n}(T,\zeta) \to h_{\mu}(T,\zeta).$$

Let δ be an expansive constant. If diam $\zeta < \delta$ then ζ is a generator. So $h_{\mu}(T) = h_{\mu}(T, \zeta)$ by Sinai. Alter ζ slightly to ensure $\mu(\partial A) = 0 \ \forall A \in \zeta$.

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{ ext{top}}(lpha) = \log N(lpha)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{ ext{top}}(lpha) = \log N(lpha)$$

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The *join* is the open cover $\alpha \lor \beta = \{A_i \cap B_j \mid A_i \in \alpha, B_j \in \beta\}$.

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{ ext{top}}(lpha) = \log N(lpha)$$

Definition

Let $\alpha = \{A_i\}$, $\beta = \{B_j\}$ be open covers. The *join* is the open cover $\alpha \lor \beta = \{A_i \cap B_j \mid A_i \in \alpha, B_j \in \beta\}$.

Definition

We say $\alpha \leq \beta$ if every element of β is a subset of an element of α . (Example: $\alpha \leq \alpha \lor \beta$.) Easy check: $\alpha \leq \beta \Rightarrow H_{top}(\alpha) \leq H_{top}(\beta)$.

Let X be compact metric, let $T : X \to X$ be continuous. Recall X compact \Rightarrow every open cover of X has a finite subcover.

Definition

Let α be an open cover of X. Let $N(\alpha) < \infty$ be the cardinality of the *smallest* finite subcover of X. Define the entropy of α to be

$$H_{ ext{top}}(lpha) = \log N(lpha)$$

Definition

Let $\alpha = \{A_i\}, \beta = \{B_j\}$ be open covers. The *join* is the open cover $\alpha \lor \beta = \{A_i \cap B_j \mid A_i \in \alpha, B_j \in \beta\}.$

Definition

We say $\alpha \leq \beta$ if every element of β is a subset of an element of α . (Example: $\alpha \leq \alpha \lor \beta$.) Easy check: $\alpha \leq \beta \Rightarrow H_{top}(\alpha) \leq H_{top}(\beta)$.

Definition

 $T^{-1}\alpha$ is the open cover $\{T^{-1}A \mid A \in \alpha\}$.

Definition

The topological entropy of ${\mathcal T}$ relative to the open cover α is

$$h_{\mathrm{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\mathrm{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

The topological entropy of T relative to the open cover α is

$$h_{\mathrm{top}}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\mathrm{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

Remark

The limit exists as $H_n = H_{top} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right)$ is subadditive: $H_{n+m} \leq H_n + H_m$.

Definition

The topological entropy of T relative to the open cover α is

$$h_{\mathrm{top}}(T,\alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\mathrm{top}} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right).$$

Remark

The limit exists as $H_n = H_{top} \left(\bigvee_{j=0}^{n-1} T^{-j} \alpha \right)$ is subadditive: $H_{n+m} \leq H_n + H_m$.

Definition

The topological entropy of T is

$$h_{top}(T) = \sup\{h_{top}(T, \alpha) \mid \alpha \text{ is an open cover of } X\}.$$

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \le j \le n-1} d(T^j x, T^j y)$. The balls in this metric are

$$B_n(x,\varepsilon) = \{y \mid d(T^jx,T^jy) < \varepsilon, 0 \le j \le n-1\}.$$

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \le j \le n-1} d(T^j x, T^j y)$. The balls in this metric are

$$B_n(x,\varepsilon) = \{y \mid d(T^jx,T^jy) < \varepsilon, 0 \le j \le n-1\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So x, y are d_n -close if the first n points in the orbits of x, y are close.

Let X be compact metric with metric d. Let $T : X \to X$ be continuous.

Let $d_n(x, y) = \max_{0 \le j \le n-1} d(T^j x, T^j y)$. The balls in this metric are

$$B_n(x,\varepsilon) = \{y \mid d(T^jx, T^jy) < \varepsilon, 0 \le j \le n-1\}.$$

So x, y are d_n -close if the first n points in the orbits of x, y are close.

Idea: suppose we can't distinguish two orbits if they are close for the first *n* iterates. How many such orbits are there?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Definition

Let $n \ge 1, \varepsilon > 0$. $F \subset X$ is (n, ε) -spanning if the d_n -balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

Definition

Let $n \ge 1, \varepsilon > 0$. $F \subset X$ is (n, ε) -spanning if the d_n -balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as *small* as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε) -spanning set.

Definition

Let $n \ge 1, \varepsilon > 0$. $F \subset X$ is (n, ε) -spanning if the d_n -balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as *small* as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε) -spanning set.

Let
$$p(\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon)$$
.

Definition

Let $n \ge 1, \varepsilon > 0$. $F \subset X$ is (n, ε) -spanning if the d_n -balls of radius ε and centres in F covers X:

$$X = \bigcup_{x \in F} B_n(x, \varepsilon).$$

We want to make spanning sets as *small* as possible. Let $p_n(\varepsilon)$ be the cardinality of the smallest (n, ε) -spanning set.

Let
$$p(\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon)$$
.

Let $h_{spanning}(T) = \lim_{\varepsilon \to 0} p(\varepsilon)$.

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \ne y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

 $p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

 $p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$

- 3
Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

 $p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$

Let *E* be (n, ε) -separated of cardinality $q_n(\varepsilon)$.

・ロット 全部 マート・ キャー

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \ne y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

 $p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$

Let *E* be (n, ε) -separated of cardinality $q_n(\varepsilon)$. Then *E* is (n, ε) -spanning.

・ロット 全部 マート・ キャー

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

$$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$$

Let *E* be (n, ε) -separated of cardinality $q_n(\varepsilon)$. Then *E* is (n, ε) -spanning.

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

$$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$$

Let *E* be (n, ε) -separated of cardinality $q_n(\varepsilon)$. Then *E* is (n, ε) -spanning.

Definition

Let $n \ge 1, \varepsilon > 0$. $E \subset X$ is (n, ε) -separated if: $x, y \in E, x \neq y$ then $d_n(x, y) > \varepsilon$.

We want to make separated sets as large as possible. Let $q(\varepsilon)$ be the cardinality of the largest (n, ε) -separated set.

Remark

$$p_n(\varepsilon) \leq q_n(\varepsilon) \leq p_n(\varepsilon/2).$$

Let *E* be (n, ε) -separated of cardinality $q_n(\varepsilon)$. Then *E* is (n, ε) -spanning. Hence $p_n(\varepsilon) \le q_n(\varepsilon)$.

・ロト ・聞 ト ・ヨト ・ヨト

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

Suppose *E* is (n, ε) -separated of cardinality $q_n(\varepsilon)$.

Suppose F is $(n, \varepsilon/2)$ -spanning of cardinality $p_n(\varepsilon/2)$.

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

Suppose *E* is (n, ε) -separated of cardinality $q_n(\varepsilon)$.

Suppose *F* is $(n, \varepsilon/2)$ -spanning of cardinality $p_n(\varepsilon/2)$.

For every $x \in E$ there exists a $y \in F$ such that $x \in B_n(y, \varepsilon/2)$.

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

Suppose *E* is (n, ε) -separated of cardinality $q_n(\varepsilon)$.

Suppose *F* is $(n, \varepsilon/2)$ -spanning of cardinality $p_n(\varepsilon/2)$.

For every $x \in E$ there exists a $y \in F$ such that $x \in B_n(y, \varepsilon/2)$.

This map $E \rightarrow F : x \mapsto y$ is injective.

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

Suppose *E* is (n, ε) -separated of cardinality $q_n(\varepsilon)$.

Suppose *F* is $(n, \varepsilon/2)$ -spanning of cardinality $p_n(\varepsilon/2)$.

For every $x \in E$ there exists a $y \in F$ such that $x \in B_n(y, \varepsilon/2)$.

This map $E \to F : x \mapsto y$ is injective. (If not, then $x, x' \in E$ could map to the same $y \in F$. Then $d_n(x, x') \leq d_n(x, y) + d_n(y, x) < \varepsilon$. Then x = x' as E is (n, ε) -separated.)

Remark (continued) $p_n(\varepsilon) \le q_n(\varepsilon) \le p_n(\varepsilon/2).$

Suppose *E* is (n, ε) -separated of cardinality $q_n(\varepsilon)$.

Suppose *F* is $(n, \varepsilon/2)$ -spanning of cardinality $p_n(\varepsilon/2)$.

For every $x \in E$ there exists a $y \in F$ such that $x \in B_n(y, \varepsilon/2)$.

This map $E \to F : x \mapsto y$ is injective. (If not, then $x, x' \in E$ could map to the same $y \in F$. Then $d_n(x, x') \leq d_n(x, y) + d_n(y, x) < \varepsilon$. Then x = x' as E is (n, ε) -separated.)

Hence $q_n(\varepsilon) \leq p_n(\varepsilon/2)$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへぐ

Hence

$$h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence

$$h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon).$$

Theorem (Bowen)

The definition of topological entropy using open sets agrees with the definition of topological entropy using spanning/separated sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence

$$h_{\text{spanning}}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log p_n(\varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log q_n(\varepsilon).$$

Theorem (Bowen)

The definition of topological entropy using open sets agrees with the definition of topological entropy using spanning/separated sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof (sketch):

Careful analysis using Lebesgue numbers of open covers...

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover.

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be 'nice':

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be 'nice': different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be 'nice': different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

 α is a (topological) generator if each sequence codes at most one point.

Let $\alpha = \{A_1, \ldots, A_k\}$ be a finite open cover. For each x look at the sequence of elements of α the orbit of x visits. This codes the orbit of x by a bi-infinite sequence of symbols from $\{1, \ldots, k\}$.

This coding may not be 'nice': different points may have the same coding, the coding may not be unique, the set of all sequences may be complicated (eg: not of finite type).

 α is a (topological) generator if each sequence codes at most one point. Precisely, α is a generator if for each sequence $(i_j)_{j=-\infty}^{\infty}$

$$\operatorname{card} \bigcap_{j=-\infty}^{\infty} T^{-j} \overline{A_{i_j}} = 0 \text{ or } 1.$$

(日) (同) (三) (三) (三) (○) (○)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Proposition

T has a (topological) generator iff T is expansive.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

T has a (topological) generator iff T is expansive.

Proof (sketch):

Suppose T is expansive with expansive constant δ . Consider the open cover by balls of radius $\delta/2$. Let α be a finite subcover. Then α is a (topological) generator.

Proposition

T has a (topological) generator iff T is expansive.

Proof (sketch):

Suppose T is expansive with expansive constant δ . Consider the open cover by balls of radius $\delta/2$. Let α be a finite subcover. Then α is a (topological) generator.

The converse is slightly more involved.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$.

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$. (If diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$. (If diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let r > 0 be a Lebesgue number for β .

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$. (If diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let r > 0 be a Lebesgue number for β . Choose *n* s.t. diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j} \alpha$.

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$. (If diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let r > 0 be a Lebesgue number for β . Choose *n* s.t. diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j} \alpha$. Then $h_{\text{top}}(T,\beta) \leq h_{\text{top}}\left(T,\bigvee_{j=-n}^{n} T^{-j} \alpha\right) = h_{\text{top}}(T,\alpha)$.
Calculating topological entropy using generators

Proposition

Let T be an expansive homeomorphism & let α be a generator. Then $h_{top}(T) = h_{top}(T, \alpha)$.

Proof (sketch):

Step 1: Clearly $h_{top}(T, \alpha) \leq h_{top}(T)$.

Step 2: diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to 0$. (If diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \to \varepsilon_0 > 0$ then two points could have the same coding - contradicting α being a generator.)

Step 3: Let β be any open cover. Let r > 0 be a Lebesgue number for β . Choose *n* s.t. diam $\bigvee_{j=-n}^{n} T^{-j} \alpha \leq r$. Then $\beta \leq \bigvee_{j=-n}^{n} T^{-j} \alpha$. Then $h_{\text{top}}(T,\beta) \leq h_{\text{top}}(T,\bigvee_{j=-n}^{n} T^{-j} \alpha) = h_{\text{top}}(T,\alpha)$. Take the supremum over all β .

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Let $\sigma: \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

・ロト・日本・モート モー うへぐ

Let $\sigma: \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k .

Let $\sigma: \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k . Hence

 $h_{\mathrm{top}}(\sigma)$

Let $\sigma: \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k . Hence

$$h_{top}(\sigma) = h_{top}(\sigma, \alpha) =$$

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

=

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k . Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}}\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)$$

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided *k*-shift.

Let $\alpha = \{[1], \ldots, [k]\}$. Note α is an open cover of Σ_k . It's clear that α is a (top.) generator.

Note $\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha$ is the open cover of Σ_k into all cylinders of length n. There are k^n of these and all of them are needed to cover Σ_k . Hence

$$h_{top}(\sigma) = h_{top}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{top} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \log k^n = \log k.$$

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now $H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A).$

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now
$$H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_{\mathcal{A}}).$$

Number of words in Σ_A of length *n* starting at *i* and ending at *j* is $(A^n)_{i,j}$.

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now
$$H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_A).$$

Number of words in Σ_A of length *n* starting at *i* and ending at *j* is $(A^n)_{i,j}$. Hence number of cylinders of length *n* is $\sum_{i,j=1}^k (A^n)_{i,j} = ||A^n||$.

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now
$$H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length } n \text{ in } \Sigma_{\mathcal{A}}).$$

Number of words in Σ_A of length *n* starting at *i* and ending at *j* is $(A^n)_{i,j}$. Hence number of cylinders of length *n* is $\sum_{i,j=1}^k (A^n)_{i,j} = ||A^n||$.

Hence

 $h_{top}(\sigma) = h_{top}(\sigma, \alpha)$

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now
$$H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length }n \text{ in }\Sigma_A).$$

Number of words in Σ_A of length *n* starting at *i* and ending at *j* is $(A^n)_{i,j}$. Hence number of cylinders of length *n* is $\sum_{i,j=1}^k (A^n)_{i,j} = ||A^n||$.

Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}}\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)$$

Let A be an irreducible $k \times k$ 0 - 1 matrix. Let $\sigma : \Sigma_A \to \Sigma_A$ be the shift of finite type. Let $\alpha = \{[1], \ldots, [k]\}$. Again, this open cover is a generator.

Now
$$H_{\text{top}}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log(\text{no. of cylinders of length }n \text{ in }\Sigma_A).$$

Number of words in Σ_A of length *n* starting at *i* and ending at *j* is $(A^n)_{i,j}$. Hence number of cylinders of length *n* is $\sum_{i,j=1}^k (A^n)_{i,j} = ||A^n||$.

Hence

$$h_{\text{top}}(\sigma) = h_{\text{top}}(\sigma, \alpha) = \lim_{n \to \infty} \frac{1}{n} H_{\text{top}}\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \log \|A^n\| = \log \lambda$$

where $\lambda > 0$ is the largest eigenvalue of A, by the spectral radius formula.

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < のQ @</p>

We can relate metric and topological entropy

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{\text{top}}(T) = \sup\{h_{\mu}(T) \mid \mu \in M(X,T)\}.$$

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{ ext{top}}(T) = \sup\{h_{\mu}(T) \mid \mu \in M(X, T)\}.$$

Remark

There are examples to show that this supremum need not be achieved.

We can relate metric and topological entropy

Theorem (The variational principle)

Let T be a continuous transformation of a compact metric X. Then

$$h_{ ext{top}}(T) = \sup\{h_{\mu}(T) \mid \mu \in M(X,T)\}.$$

Remark

There are examples to show that this supremum need not be achieved.

Definition

Let $M_{\max}(X, T) = \{ \mu \in M(X, T) \mid h_{top}(T) = h_{\mu}(T) \}$ denote the set of all *measures of maximal entropy*.

Proposition

If the entropy map is upper semi-continuous then $M_{\max}(X, T) \neq \emptyset$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

If the entropy map is upper semi-continuous then $M_{\max}(X, T) \neq \emptyset$. Proof: an upper semi-continuous function on a compact metric space achieves its supremum. Note that M(X, T) is a compact metric space.

Proposition

If the entropy map is upper semi-continuous then $M_{\max}(X, T) \neq \emptyset$. Proof: an upper semi-continuous function on a compact metric space achieves its supremum. Note that M(X, T) is a compact metric space.

Remark

Hence expansive homeomorphisms always have at least one measure of maximal entropy.

In many cases, there is a *unique* measure of maximal entropy.

<ロ>

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$.

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is log k. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$ -measure is log k.

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is log k. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$ -measure is log k. We show: if $\mu \in M(X, T)$ has $h_{\mu}(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$ -measure.

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$ -measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_{\mu}(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$ -measure.

Let $\zeta = \{[1], \dots, [k]\}$. This is a generator, so by Sinai's thm $\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma, \zeta)$.

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$ -measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_{\mu}(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$ -measure.

(日) (同) (三) (三) (三) (○) (○)

Let $\zeta = \{[1], \ldots, [k]\}$. This is a generator, so by Sinai's thm $\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma, \zeta)$.

Note that
$$h_\mu(\sigma,\zeta) \leq rac{1}{n} H_\mu\left(igvee_{j=0}^{n-1} \sigma^{-j}lpha
ight)$$

Proposition

Let $\sigma : \Sigma_k \to \Sigma_k$ be the full two-sided k-shift. Then the Bernoulli $(1/k, \ldots, 1/k)$ -measure is the unique measure of maximal entropy.

Proof.

We know the topological entropy of σ is $\log k$. We know the entropy of the Bernoulli $(1/k, \ldots, 1/k)$ -measure is $\log k$. We show: if $\mu \in M(X, T)$ has $h_{\mu}(\sigma) = \log k$ then μ is the Bernoulli $(1/k, \ldots, 1/k)$ -measure.

Let $\zeta = \{[1], \dots, [k]\}$. This is a generator, so by Sinai's thm $\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma, \zeta)$.

Note that
$$h_{\mu}(\sigma,\zeta) \leq \frac{1}{n} H_{\mu} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$
 (as $H_n = H_{\mu} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$ is subadditive, so $\frac{1}{n} H_n \to \inf_n \frac{1}{n} H_n = h_{\mu}(\sigma,\zeta)$).

Proof continued

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Proof continued

We need the following fact:

Fact If $\eta = \{A_1, \dots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

Proof continued

We need the following fact:

Fact If $\eta = \{A_1, \dots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \le \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \le i \le \ell$.

(This follows from concavity of $-t \log t$.) So

log k

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの
We need the following fact:

Fact If $\eta = \{A_1, \dots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

 $\log k = h_{\mu}(\sigma)$

We need the following fact:

Fact
If
$$\eta = \{A_1, \dots, A_\ell\}$$
 is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma, \zeta)$$

We need the following fact:

Fact If $\eta = \{A_1, \dots, A_\ell\}$ is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$, $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma, \zeta) \leq \frac{1}{n} H_{\mu} \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$

We need the following fact:

Fact
If
$$\eta = \{A_1, \dots, A_\ell\}$$
 is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$,
 $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma,\zeta) \leq \frac{1}{n} H_{\mu}\left(\bigvee_{j=0}^{n-1} \sigma^{-j}\alpha\right) \leq \frac{1}{n} \log k^{n} = \log k.$$

Hence $H_{\mu}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log k^n$.

We need the following fact:

Fact
If
$$\eta = \{A_1, \dots, A_\ell\}$$
 is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \leq \log \ell$ with equality iff $\mu(A_i) = 1/\ell$,
 $1 \leq i \leq \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma,\zeta) \leq \frac{1}{n} H_{\mu}\left(\bigvee_{j=0}^{n-1} \sigma^{-j}\alpha\right) \leq \frac{1}{n} \log k^{n} = \log k.$$

Hence $H_{\mu}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log k^n$. So by the fact, each element of $\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha$ has the same measure $1/k^n$.

We need the following fact:

Fact
If
$$\eta = \{A_1, \dots, A_\ell\}$$
 is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \le \log \ell$ with equality iff $\mu(A_i) = 1/\ell$
 $1 \le i \le \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma,\zeta) \leq \frac{1}{n} H_{\mu}\left(\bigvee_{j=0}^{n-1} \sigma^{-j}\alpha\right) \leq \frac{1}{n} \log k^{n} = \log k.$$

Hence $H_{\mu}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log k^n$. So by the fact, each element of $\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha$ has the same measure $1/k^n$. Hence μ assigns measure $1/k^n$ to each cylinder.

We need the following fact:

Fact
If
$$\eta = \{A_1, \dots, A_\ell\}$$
 is a finite partition then $H(\eta) = -\sum_{i=1}^{\ell} \mu(A_i) \log A_i \le \log \ell$ with equality iff $\mu(A_i) = 1/\ell$.
 $1 \le i \le \ell$.

(This follows from concavity of $-t \log t$.) So

$$\log k = h_{\mu}(\sigma) = h_{\mu}(\sigma,\zeta) \leq \frac{1}{n} H_{\mu}\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right) \leq \frac{1}{n} \log k^{n} = \log k.$$

Hence $H_{\mu}\left(\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha\right) = \log k^n$. So by the fact, each element of $\bigvee_{j=0}^{n-1}\sigma^{-j}\alpha$ has the same measure $1/k^n$. Hence μ assigns measure $1/k^n$ to each cylinder. So μ and the Bernoulli $(1/k, \ldots, 1/k)$ -measure agree on cylinders. By the Kolmogorov Extension Theorem, μ is the Bernoulli $(1/k, \ldots, 1/k)$ -measure.

Let A be an irreducible 0 - 1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Let A be an irreducible 0 - 1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

Let A be an irreducible 0-1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

 there is a positive maximal eigenvalue λ > 0 s.t. all other eigenvalues satisfy |λ_j| < λ, moreover λ is simple;

Let A be an irreducible 0-1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue λ > 0 s.t. all other eigenvalues satisfy |λ_j| < λ, moreover λ is simple;
- ▶ there are positive left- and right-eigenvectors $u = (u_1, ..., u_k)$, $v = (v_1, ..., v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Let A be an irreducible 0 - 1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue λ > 0 s.t. all other eigenvalues satisfy |λ_j| < λ, moreover λ is simple;
- ▶ there are positive left- and right-eigenvectors $u = (u_1, ..., u_k)$, $v = (v_1, ..., v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}$, $p_i = \frac{u_iv_i}{c}$, where $c = \sum_{j=1}^k u_j v_j$.

Let A be an irreducible 0 - 1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue λ > 0 s.t. all other eigenvalues satisfy |λ_j| < λ, moreover λ is simple;
- ▶ there are positive left- and right-eigenvectors $u = (u_1, ..., u_k)$, $v = (v_1, ..., v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}$, $p_i = \frac{u_iv_i}{c}$, where $c = \sum_{j=1}^k u_j v_j$.

Then P is stochastic and pP = p.

Let A be an irreducible 0-1 matrix with corresponding shift of finite type Σ_A . We show how to construct the measure of maximal entropy.

Theorem (Perron-Frobenius)

Let A be a non-negative irreducible matrix. Then

- there is a positive maximal eigenvalue λ > 0 s.t. all other eigenvalues satisfy |λ_j| < λ, moreover λ is simple;
- ▶ there are positive left- and right-eigenvectors $u = (u_1, ..., u_k)$, $v = (v_1, ..., v_k)^T$, $\sum u_i = \sum v_i = 1$, s.t. $uA = \lambda u$, $Av = \lambda v$.

Apply Perron-Frobenius to A and define $P_{i,j} = \frac{A_{i,j}v_j}{\lambda v_i}$, $p_i = \frac{u_iv_i}{c}$, where $c = \sum_{j=1}^k u_jv_j$.

Then *P* is stochastic and pP = p. We define the *Parry measure* to be the Markov measure

$$\mu[i_0, i_1, \dots, i_n] = p_{i_0} P_{i_0, i_1} \cdots P_{i_{n-1}, i_n}.$$

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_{\mu}(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_{\mu}(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It's an easy check that the Parry measure μ has $h_{\mu}(\sigma) = \log \lambda$.

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_{\mu}(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

It's an easy check that the Parry measure μ has $h_{\mu}(\sigma) = \log \lambda$.

We already know that the topological entropy of σ is log λ . Hence the Parry measure is *a* measure of maximal entropy.

Recall that for a Markov measure μ given by the stochastic matrix P we have $h_{\mu}(\sigma) = -\sum_{i,j} p_i P_{i,j} \log P_{i,j}$.

It's an easy check that the Parry measure μ has $h_{\mu}(\sigma) = \log \lambda$.

We already know that the topological entropy of σ is log λ . Hence the Parry measure is *a* measure of maximal entropy.

Proposition

Let A be an irreducible 0 - 1 matrix with corresponding shift of finite type Σ_A . Then the Parry measure is the unique measure of maximal entropy.

<ロト (個) (目) (目) (目) (0) (0)</p>

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

If the dynamical system T is 'hyperbolic' (in an appropriate sense, but this includes: Anosov diffeomorphisms, Axiom A diffeos on basic sets such as the Smale horseshoe, (in continuous time) geodesic flows on compact negatively curved Riemannian manifolds) then there is a unique measure of maximal entropy.

Many other dynamical systems have measures of maximal entropy. Lebesgue measure is the unique measure of maximal entropy for a linear hyperbolic toral automorphism.

If the dynamical system T is 'hyperbolic' (in an appropriate sense, but this includes: Anosov diffeomorphisms, Axiom A diffeos on basic sets such as the Smale horseshoe, (in continuous time) geodesic flows on compact negatively curved Riemannian manifolds) then there is a unique measure of maximal entropy.

These measures of maximal entropy can often be related to the spectral properties (=maximal eigenvalue) of an associated operator. We will discuss this further in the next lecture.