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such that
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Information and entropy of a partition
Let (X, B, 1) be a probability space.
Suppose we are trying to locate a point x € X using a partition
a={Aj}.

If we know that x € A; then we have received some information.

If A;is ‘big’ then we have received a ‘small’ amount of information.
If A; is 'small’ then we have received a 'large’ amount of
information.

This motivates defining the ‘information function’ as

1(@)(x) = Y xalx)(1(A))
Aca

for an appropriate choice of function ¢.
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e I} aVp

a,3 are independent if (AN B) = u(A)u(B) VA € o, B € .
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It is natural to assume that if a, 3 are independent, then:

Information obtained

by knowing which . Information Information
element of a V 3 we B obtained from « obtained from 8
are in
(AN B)) = p(u(A)u(B)) = B(u(A)) + é(1(B))
This indicates we should take ¢(t) = — log t.
Definition

The information function of « is

== " xa(x)log u(A).

Aca
The entropy of « is the average amount of information:

H(a) :/ == 1(A)log u(A

Aca
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Conditional information & entropy

Conditional information and entropy are useful generalisations of
I(a), H(c).

Let A be a sub-o-algebra.

For example: if § is a partition then the set of all unions of
elements of (3 is a o-algebra (also denoted by ).

How much information do we gain by knowing which element of «
we are in, given we know which element of 5 we are in?
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Recall conditional expectation:
E( | “4) : Ll(Xvau) - Ll(X,A,,U,)

E(f | A) is determined by
1. E(f | A) is A-measurable,
2 [LE(f| A)dp= [,fduVA€E Al
E(f|.A) is the best .A-measurable approximation to f.
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Consider the o-algebra G generated by a partition (.

I
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|

B 19)0) = 3 wa e 2t
Bep

Let A € B. The conditional probability of A given a sub-c-algebra
Ais

1(AlA) = E(xalA).
Note:

pAlB) = xs(x A(m)B)
Bes
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Definition
The conditional information of « given A is

Ia | A)(x) = = xa(x)log (A | A)(x).

Aca

The conditional entropy of « given A is
H(a | A) :/I(a | A)dp.
The basic identities:

IavBly) = Ha|y)+1(B|aVy)
HlaVvp|y) = H(al[v)+H(B|aVy)
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0 is a refinement of « if every element of « is a union of elements

of (3.

« 6
Write a < 3.
Facts
1. 8<y = IlaVvp|y)=I(aly)
H(aV B |v)=H(a|y)
2. f<a = 1B |v) <I(a]y)
H(B | v) < H(e | 7)
3. B<y = H(a | B) > H(a | 7)



Definition
0 is a refinement of « if every element of « is a union of elements

of (3.

a B
Write a < 3.
Facts
L <y = lNavi|y)=Ial|)
H(aVv B |~)=H(a|v)
2. f<a = 1B 1) < I {a]7)
H(B | ~) < H(a|7)
3. B<y —  Ha|B)=Hlalr)
1,2 follow from the basic identities, 3 follows from Jensen's ineq
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We can now start to define the entropy h(T) of an mpt T.
We first define the entropy of T relative to a partition.
We need the following:

Subadditive lemma

Suppose a, € R is subadditive: aprm < ap + am.

. a . -
Then lim = exists and equals inf = (could be —o0).
n—oo N n n
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Let T: (X,B,u) — (X, B, 1) be an mpt.

Let « be a finite or countable partition.

Define T-la = {T"'A| A€ a} - a countable partition.
Note:

H(T ) = = (T A)log (T 'A)
Aca
= = u(A)log (A
Aca
= H(a).

Define

n—1

Ho(a) =H | \/ Ta

j=0
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Then

Hntm(a) =

basic
identity

IN

+H

n+m—1

\/ Tfoz\/TJa

n+m—1

\/ T

Jj=n



Then

n+m—1
Hopim(a) = HI \/ Ta
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Then

n+m—1
Hom(e) = H[ \/ T7a
j=0
idt::tii‘;y n—1 ' n+m—1

= H\/ T7a|+H \/Tfa\/Tfa
j=0 j
n—1 n+m-—1

< H \/ T7a|l+H \/ T
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Then

n+m—1
Hp g m(c) = HI \/ Ta
j=0
idt;istiicty n—1 . ntm—1

= H\/ T7a|+H \/Tfa\/Tfa
j=0 j
n—1 n+m—1

< H \/ T 7 a|l +H \/ T a
Jj=0 j=n
n—1

= H{\TYVa|+H|T "\ T a
j=0 '

= Hn(a) + Hm(a).

Hence H,(«) is subadditive.
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By the subadditive lemma, we can define

n—oo N

. 1 n—1 )
h(T,a) = lim = H \/ T /o | =entropy of T relative to a.
j=0

Remarks
1. By sub-additivity, H,(a) < nH(«). Hence
0 < hy(T,a) < H(w).
2. Using the basic identities and the Increasing Martingale

Theorem, we can obtain the following alternative formula for
hu(T,a):

o0 n
h(T,a)=H | o \/T_joz = lim H oz|\/T_joz
n—o0
j=1 j=1

‘Entropy = average amount of information from the present,
given the past’
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Entropy of an mpt

Let T be an mpt of a probability space (X, B, u).
Then the entropy of T is:

« is a finite or countable }

hu(T) =sup {hﬂ(T’a) partition s.t. H(a) < oo

Potential problem: working from the definitions, this quantity
seems impossible to calculate!
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Generators and Sinai's Theorem

Let T be an mpt of the probability space (X, B, u).
Definition
A finite or countable partition « is a generator for T if T is

invertible and
n—1

\/ T7a /B
j==(n-1)
(i.e. B is the smallest o-algebra that contains all elements of all
the partitions \/"_ __(n yT “a).
We say that « is a strong generator if

n—1
\ T7a /B

J=0
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Remark
To check whether a partition « is a strong generator (resp.
generator) it is sufficient to show it separates y-a.e. pair of points:
for p-a.e. x,y € X, dns.t. x, y are in different elements of the

s n—1 4+—j n—1 —j
partition \/;Zy T /o (resp. \/jzf(nfl) T a).

Recall:
hu(T) =suph,(T,a)

where the supremum is taken over all partitions of finite entropy.

Sinai's theorem tells us that this supremum is acheived when « is a
generator or a strong generator.
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Theorem: (Sinai)

Let « be a finite or countable partition with H(«) < co. Suppose
either:

» T is invertible and « is a generator, or
> « is a strong generator.
Then h,(T) = hu(T, ).

This allows us to calculate the entropy of many of our favourite
examples.
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Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the
two-sided case.

Let A be an aperiodic k x k matrix with corresponding one-sided
shift of finite type Zj. Let o be the shift map.

Let P = (Pj;) be a stochastic matrix compatible with A.

Let p=(p1...,px) be the unique probability left-eigenvector:

pP = p.
Recall that the Markov measure pp is defined on cylinder sets by:
pplios - -5 in—1] = PiyPigiy - - - Pin_sin_1-

Let o = {[1],...,[k]} denote the partition of £} into cylinders of
length 1.
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Easy check: H(a) < oo
Easy check: «;, = \/j'-’;o1 cda = A{lioy..,in-1]}
= the partition of ¥}
into cylinders of length n

Hence « is a strong generator, as o, separates points.
Hence we can apply Sinai's theorem:

n—1

H \/ ol

Jj=o

= - Z M[iO)' "7in—1] |Oglu’[i07' '-)in—l]

loy-+5In—1

= = > PP Pirsin_ 108(Pis Pigiy - - Pir_sin_y)
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Easy check: Hla) <
Easy check: a, =/ oda = {ligy.-,in-1]}
= the partition of ¥}
into cylinders of length n

Hence « is a strong generator, as o, separates points.
Hence we can apply Sinai's theorem:

n—1

= - Z M[iO)' "7in—1] |Oglu’[i07' '-)in—l]

iOv“winfl
= = > PP Pirsin_ 108(Pis Pigiy - - Pir_sin_y)
i07 7in 1

re-arranging Z pilog pi — n — 1) Z pi’Dij log PU
iJ
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Hence

hu(0) "= hu(o,0)

1 n—1 )
= lim =H \/ o7
j=0

n—oo N
= —ZP;P,'J' |OgPU
i
Remark
If v is the Bernoulli-(p1, . .., px) measure then

hu(o) == pilogp;.
i



Hence

hu(0) "= hu(o,0)

1 n—1 )
= lim =H \/ o7
j=0

n—oo N
= —ZP;P,'J' |OgPU
i
Remark
If v is the Bernoulli-(p1, . .., px) measure then

hu(o) == pilogp;.
i

If v is the Bernoulli-(1/k,...,1/k) measure then

h.(c) = log k.
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We can model a language (written in the Roman alphabet) as a
shift on 26 symbols (corresponding to the 26 letters in the
alphabet) with an appropriate Markov measure.
For English:
PQU should be near 1 as a Q is highly likely to be followed by U
Pgz should be near 0 as F is unlikely to be followed by Z.
Experimentally, one can estimate

h(English) = 1.6

Note that the Bernoulli (3, . . ., 35 )-measure has entropy
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Example

We can model a language (written in the Roman alphabet) as a
shift on 26 symbols (corresponding to the 26 letters in the
alphabet) with an appropriate Markov measure.

For English:
PQU should be near 1 as a Q is highly likely to be followed by U

Pgz should be near 0 as F is unlikely to be followed by Z.
Experimentally, one can estimate

h(English) = 1.6
Note that the Bernoulli (2—167 ol %)—measure has entropy
log 26 = 4.7.
This suggests that there is a lot of redundancy in English (good for
error-correcting!). See Shannon’s book on Information Theory.
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Recall that two mpts T : (X, B, n) — (X, B, u),
S:(Y,A ,m)— (Y, A, m) are (measure-theoretically) isomorphic
if there exists a bimeasurable bijection ¢ : X — Y such that

X 1~

}

commutes (up to sets of measure zero) and p o ¢*1 =m.
Entropy is invariant under isomorphism:
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Theorem
If T,S are isomorphic then h,(T) = hn(S).
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Proof.
Let a be a finite or countable partition of Y with Hp(a) < cc.
Then ¢~ ta = {¢p"1A| A € a} is a partition of X.

Note that
Hu(™ta) = =) u(¢ " A)log (o A)
Aca
= —Z A)log m(A) = Hp(«).
Aca

More generally

Hy (\/ Tj(¢1a)> = Hy <¢1 \_/ sfa) = Hm (\/ Sja> :
j=0 j=0 j=0

Hence h, (T, ¢ ta) = hm(S, ). Hence h,(T) = hm(S). O
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Example: the doubling map and the full 2-shift

Let Tx = 2x mod 1 be the doubling map with Lebesgue measure
M. Let 0 : 25 — X5 be the full one-sided 2-shift with the
Bernoulli-(1/2,1/2) measure p.

Define ¢ : X2 = {(xj)7%o | xj € {0,1}} — [0,1] by

%
B(x0, X1, ) = Y Y
j=0
Then
> oo = To,

> ¢ is a bijection, except on the countable set of points which
have non-unique base 2 expansions,

» A= up~ ! (clear on dyadic intervals, follows for all sets by the
Kolmogorov Extension Theorem).
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Hence Tx = 2x mod 1 with Lebesgue measure A and the full
one-sided 2-shift o with the Bernoulli-(1/2,1/2) measure p are
isomorphic.

Hence
hx(T) =log2 = h,(0).
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How complete an invariant is entropy?

Given two mpts T : (X, B, u) — (X, B, p),
S:(Y,A m)— (Y, A, m) with the same entropy, is it necessarily
true that they are isomorphic?

In general, the answer is no.

However, for two-sided aperiodic shifts of finite type equipped with
a Bernoulli or Markov measure, then the answer is yes
Theorem (Ornstein)

2-sided Bernoulli shifts with the same entropy are isomorphic.

Theorem (Ornstein and Friedman)

2-sided aperiodic Markov shifts with the same entropy are
isomorphic.

(The one-sided case is far more subtle.)
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Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable
property for a mpt to possess.

Definition

A mpt T of a probability space (X, B, i) is Bernoulli if it is
isomorphic to a shift o with some Bernoulli-(ps, .. ., px) measure.
Example

We have already seen that the doubling map with Lebesgue
measure is Bernoulli.

In general, a mpt that exhibits some form of ‘hyperbolicity’ is,
when equipped with a suitable measure, Bernoulli.

For example, hyperbolic toral automorphisms are Bernoulli.
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Next lecture

Entropy has been defined in a purely measure-theoretic setting.

There is a topological analogue in the setting of continuous
transformations of compact metric spaces: topological entropy.

We will define this and study the connections between
measure-theoretic and topological entropy.



