MAGIC: Ergodic Theory Lecture 7 - Entropy

Charles Walkden

March 6, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"?

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"? Two mpts $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu), S : (Y, \mathcal{A}, m) \rightarrow (Y, \mathcal{A}, m)$ are *isomorphic* if there exists a bimeasurable bijection $\phi : X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$ (i.e. $\mu(\phi^{-1}B) = m(B) \ \forall B \in A$).

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"? Two mpts $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu), S : (Y, \mathcal{A}, m) \rightarrow (Y, \mathcal{A}, m)$ are *isomorphic* if there exists a bimeasurable bijection $\phi : X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$ (i.e. $\mu(\phi^{-1}B) = m(B) \ \forall B \in A$). It is natural to look for invariants.

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"? Two mpts $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu), S : (Y, \mathcal{A}, m) \rightarrow (Y, \mathcal{A}, m)$ are *isomorphic* if there exists a bimeasurable bijection $\phi : X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$ (i.e. $\mu(\phi^{-1}B) = m(B) \ \forall B \in A$). It is natural to look for invariants. To each mpt T we will associate a number - its *entropy* h(T).

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"? Two mpts $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu), S : (Y, \mathcal{A}, m) \rightarrow (Y, \mathcal{A}, m)$ are *isomorphic* if there exists a bimeasurable bijection $\phi : X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$ (i.e. $\mu(\phi^{-1}B) = m(B) \ \forall B \in \mathcal{A}$). It is natural to look for invariants. To each mpt T we will associate a number - its *entropy* h(T). If S, T are isomorphic then h(S) = h(T). (Conversely, if $h(S) \neq h(T)$ then S, T cannot be isomorphic.)

A central problem in mathematics is the *isomorphism problem*: when are two objects in the same class "the same"? Two mpts $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu), S : (Y, \mathcal{A}, m) \rightarrow (Y, \mathcal{A}, m)$ are *isomorphic* if there exists a bimeasurable bijection $\phi : X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$ (i.e. $\mu(\phi^{-1}B) = m(B) \ \forall B \in \mathcal{A}$). It is natural to look for invariants. To each mpt T we will associate a number - its *entropy* h(T). If S, T are isomorphic then h(S) = h(T). (Conversely, if $h(S) \neq h(T)$ then S, T cannot be isomorphic.) Throughout, $\log = \log_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Information and entropy of a partition Let (X, \mathcal{B}, μ) be a probability space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

If we know that $x \in A_j$ then we have received some information.

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

If we know that $x \in A_j$ then we have received some information. If A_j is 'big' then we have received a 'small' amount of information.

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

If we know that $x \in A_j$ then we have received some information. If A_j is 'big' then we have received a 'small' amount of information. If A_j is 'small' then we have received a 'large' amount of information.

Let (X, \mathcal{B}, μ) be a probability space. Suppose we are trying to locate a point $x \in X$ using a partition $\alpha = \{A_j\}.$

If we know that $x \in A_j$ then we have received some information. If A_j is 'big' then we have received a 'small' amount of information. If A_j is 'small' then we have received a 'large' amount of information.

This motivates defining the 'information function' as

$$I(\alpha)(x) = \sum_{A \in \alpha} \chi_A(x)\phi(\mu(A))$$

for an appropriate choice of function ϕ .

Suppose α and β are two partitions.

<□ > < @ > < E > < E > E のQ @

Suppose α and β are two partitions. The *join* of α and β is the partition

$$\alpha \lor \beta = \{ A \cap B \mid A \in \alpha, B \in \beta \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose α and β are two partitions. The *join* of α and β is the partition

$$\alpha \lor \beta = \{ A \cap B \mid A \in \alpha, B \in \beta \}.$$

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

Suppose α and β are two partitions. The *join* of α and β is the partition

$$\alpha \lor \beta = \{ A \cap B \mid A \in \alpha, B \in \beta \}.$$

 α,β are independent if $\mu(A \cap B) = \mu(A)\mu(B) \ \forall A \in \alpha, B \in \beta$.

・ロト・日本・日本・日本・日本・日本

(ロ)、(型)、(E)、(E)、 E) の(の)

 $\phi(\mu(A \cap B)) = \phi(\mu(A)\mu(B)) = \phi(\mu(A)) + \phi(\mu(B))$

$$\begin{array}{c|c} \text{Information obtained} \\ \text{by knowing which} \\ \text{element of } \alpha \lor \beta \text{ we} \\ \text{are in} \end{array} \right| = \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \alpha \end{array} \right| + \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \beta \end{array} \right|$$

(ロ)、(型)、(E)、(E)、 E) のQの

 $\phi(\mu(A \cap B)) = \phi(\mu(A)\mu(B)) = \phi(\mu(A)) + \phi(\mu(B))$ This indicates we should take $\phi(t) = -\log t$.

$$\begin{array}{c|c} \text{Information obtained} \\ \text{by knowing which} \\ \text{element of } \alpha \lor \beta \text{ we} \\ \text{are in} \end{array} \right| = \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \alpha \end{array} \right| + \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \beta \end{array} \right|$$

 $\phi(\mu(A \cap B)) = \phi(\mu(A)\mu(B)) = \phi(\mu(A)) + \phi(\mu(B))$

This indicates we should take $\phi(t) = -\log t$.

Definition

The information function of $\boldsymbol{\alpha}$ is

$$I(lpha)(x) = -\sum_{A \in lpha} \chi_A(x) \log \mu(A).$$

$$\begin{array}{c|c} \text{Information obtained} \\ \text{by knowing which} \\ \text{element of } \alpha \lor \beta \text{ we} \\ \text{are in} \end{array} \right| = \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \alpha \end{array} \right| + \left| \begin{array}{c} \text{Information} \\ \text{obtained from } \beta \end{array} \right|$$

$$\phi(\mu(A \cap B)) = \phi(\mu(A)\mu(B)) = \phi(\mu(A)) + \phi(\mu(B))$$

This indicates we should take $\phi(t) = -\log t$.

Definition

The information function of $\boldsymbol{\alpha}$ is

$$I(\alpha)(x) = -\sum_{A \in \alpha} \chi_A(x) \log \mu(A).$$

The entropy of α is the average amount of information:

$$H(\alpha) = \int I(\alpha) d\mu = -\sum_{A \in \alpha} \mu(A) \log \mu(A).$$

Conditional information & entropy

Conditional information and entropy are useful generalisations of $I(\alpha)$, $H(\alpha)$.

Conditional information & entropy

Conditional information and entropy are useful generalisations of $I(\alpha)$, $H(\alpha)$. Let \mathcal{A} be a sub- σ -algebra.

(ロ)、(型)、(E)、(E)、 E) の(の)

Conditional information and entropy are useful generalisations of $I(\alpha)$, $H(\alpha)$.

Let \mathcal{A} be a sub- σ -algebra.

For example: if β is a partition then the set of all unions of elements of β is a σ -algebra (also denoted by β).

Conditional information and entropy are useful generalisations of $I(\alpha)$, $H(\alpha)$.

Let \mathcal{A} be a sub- σ -algebra.

For example: if β is a partition then the set of all unions of elements of β is a σ -algebra (also denoted by β).

How much information do we gain by knowing which element of α we are in, given we know which element of β we are in?

Recall conditional expectation:

$$\mathbb{E}(\cdot \mid \mathcal{A}) : L^1(X, \mathcal{B}, \mu) \longrightarrow L^1(X, \mathcal{A}, \mu).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Recall conditional expectation:

$$\mathbb{E}(\cdot \mid \mathcal{A}) : L^1(\mathcal{X}, \mathcal{B}, \mu) \longrightarrow L^1(\mathcal{X}, \mathcal{A}, \mu).$$

 $\mathbb{E}(f \mid \mathcal{A})$ is determined by

1. $\mathbb{E}(f \mid A)$ is A-measurable,

2.
$$\int_{A} \mathbb{E}(f \mid A) d\mu = \int_{A} f d\mu \ \forall A \in A.$$

Recall conditional expectation:

$$\mathbb{E}(\cdot \mid \mathcal{A}) : L^1(\mathcal{X}, \mathcal{B}, \mu) \longrightarrow L^1(\mathcal{X}, \mathcal{A}, \mu).$$

 $\mathbb{E}(f \mid \mathcal{A})$ is determined by

1. $\mathbb{E}(f \mid A)$ is A-measurable,

2.
$$\int_{\mathcal{A}} \mathbb{E}(f \mid \mathcal{A}) d\mu = \int_{\mathcal{A}} f d\mu \ \forall A \in \mathcal{A}.$$

 $\mathbb{E}(f|\mathcal{A})$ is the best \mathcal{A} -measurable approximation to f.

<□ > < @ > < E > < E > E のQ @

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\mathbb{E}(f \mid \beta)(x) = \sum_{B \in \beta} \chi_B(x) \frac{\int_B f \, d\mu}{\mu(B)}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\mathbb{E}(f \mid \beta)(x) = \sum_{B \in \beta} \chi_B(x) \frac{\int_B f \, d\mu}{\mu(B)}.$$

Let $A \in \mathcal{B}$. The conditional probability of A given a sub- σ -algebra \mathcal{A} is

$$\mu(\mathcal{A}|\mathcal{A}) = \mathbb{E}(\chi_{\mathcal{A}}|\mathcal{A}).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで
Consider the σ -algebra β generated by a partition β .

$$\mathbb{E}(f \mid \beta)(x) = \sum_{B \in \beta} \chi_B(x) \frac{\int_B f \, d\mu}{\mu(B)}.$$

Let $A \in \mathcal{B}$. The conditional probability of A given a sub- σ -algebra \mathcal{A} is

$$\mu(\mathcal{A}|\mathcal{A}) = \mathbb{E}(\chi_{\mathcal{A}}|\mathcal{A}).$$

Note:

$$\mu(A \mid \beta) = \sum_{B \in \beta} \chi_B(x) \frac{\mu(A \cap B)}{\mu(B)}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The conditional information of α given \mathcal{A} is

$$I(\alpha \mid \mathcal{A})(x) = -\sum_{A \in lpha} \chi_A(x) \log \mu(A \mid \mathcal{A})(x).$$

The conditional information of α given \mathcal{A} is

$$I(\alpha \mid \mathcal{A})(x) = -\sum_{A \in \alpha} \chi_A(x) \log \mu(A \mid \mathcal{A})(x).$$

The conditional entropy of α given \mathcal{A} is

$$H(\alpha \mid \mathcal{A}) = \int I(\alpha \mid \mathcal{A}) \, d\mu.$$

The conditional information of α given \mathcal{A} is

$$I(\alpha \mid \mathcal{A})(x) = -\sum_{A \in lpha} \chi_A(x) \log \mu(A \mid \mathcal{A})(x).$$

The conditional entropy of α given \mathcal{A} is

$$H(\alpha \mid \mathcal{A}) = \int I(\alpha \mid \mathcal{A}) \, d\mu.$$

The basic identities:

$$I(\alpha \lor \beta \mid \gamma) = I(\alpha \mid \gamma) + I(\beta \mid \alpha \lor \gamma)$$

$$H(\alpha \lor \beta \mid \gamma) = H(\alpha \mid \gamma) + H(\beta \mid \alpha \lor \gamma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 β is a *refinement* of α if every element of α is a union of elements of β .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Write $\alpha \leq \beta$.

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

Write $\alpha \leq \beta$.

Facts

1.
$$\beta \leq \gamma \implies I(\alpha \lor \beta \mid \gamma) = I(\alpha \mid \gamma)$$

 $H(\alpha \lor \beta \mid \gamma) = H(\alpha \mid \gamma)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

Write $\alpha \leq \beta$.

Facts

1.
$$\beta \leq \gamma \implies I(\alpha \lor \beta \mid \gamma) = I(\alpha \mid \gamma)$$

 $H(\alpha \lor \beta \mid \gamma) = H(\alpha \mid \gamma)$
2. $\beta \leq \alpha \implies I(\beta \mid \gamma) \leq I(\alpha \mid \gamma)$
 $H(\beta \mid \gamma) \leq H(\alpha \mid \gamma)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

Write $\alpha \leq \beta$.

Facts

1.
$$\beta \leq \gamma \implies I(\alpha \lor \beta \mid \gamma) = I(\alpha \mid \gamma)$$

 $H(\alpha \lor \beta \mid \gamma) = H(\alpha \mid \gamma)$
2. $\beta \leq \alpha \implies I(\beta \mid \gamma) \leq I(\alpha \mid \gamma)$
 $H(\beta \mid \gamma) \leq H(\alpha \mid \gamma)$
3. $\beta \leq \gamma \implies H(\alpha \mid \beta) \geq H(\alpha \mid \gamma)$

 β is a $\mathit{refinement}$ of α if every element of α is a union of elements of $\beta.$

Write $\alpha \leq \beta$.

Facts

1,2

1.
$$\beta \leq \gamma \implies I(\alpha \lor \beta \mid \gamma) = I(\alpha \mid \gamma)$$

 $H(\alpha \lor \beta \mid \gamma) = H(\alpha \mid \gamma)$
2. $\beta \leq \alpha \implies I(\beta \mid \gamma) \leq I(\alpha \mid \gamma)$
 $H(\beta \mid \gamma) \leq H(\alpha \mid \gamma)$
3. $\beta \leq \gamma \implies H(\alpha \mid \beta) \geq H(\alpha \mid \gamma)$
follow from the basic identities, 3 follows from Jensen's ineq.

Entropy of an mpt relative to a partition

We can now start to define the entropy h(T) of an mpt T. We first define the entropy of T relative to a partition. We need the following:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entropy of an mpt relative to a partition

We can now start to define the entropy h(T) of an mpt T. We first define the entropy of T relative to a partition. We need the following:

Subadditive lemma

Suppose $a_n \in \mathbb{R}$ is subadditive: $a_{n+m} \leq a_n + a_m$.

Then
$$\lim_{n\to\infty} \frac{a_n}{n}$$
 exists and equals $\inf_n \frac{a_n}{n}$ (could be $-\infty$).

Let $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ be an mpt. Let α be a finite or countable partition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ be an mpt. Let α be a finite or countable partition. Define $T^{-1}\alpha = \{T^{-1}A \mid A \in \alpha\}$ - a countable partition.

Let $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ be an mpt. Let α be a finite or countable partition. Define $T^{-1}\alpha = \{T^{-1}A \mid A \in \alpha\}$ - a countable partition. Note:

$$H(T^{-1}\alpha) = -\sum_{A \in \alpha} \mu(T^{-1}A) \log \mu(T^{-1}A)$$
$$= -\sum_{A \in \alpha} \mu(A) \log \mu(A)$$
$$= H(\alpha).$$

Let $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ be an mpt. Let α be a finite or countable partition. Define $T^{-1}\alpha = \{T^{-1}A \mid A \in \alpha\}$ - a countable partition. Note:

$$H(T^{-1}\alpha) = -\sum_{A \in \alpha} \mu(T^{-1}A) \log \mu(T^{-1}A)$$
$$= -\sum_{A \in \alpha} \mu(A) \log \mu(A)$$
$$= H(\alpha).$$

Define

$$H_n(\alpha) = H\left(\bigvee_{j=0}^{n-1} T^{-j}\alpha\right).$$

$$H_{n+m}(\alpha) = H\left(\bigvee_{j=0}^{n+m-1} T^{-j}\alpha\right)$$

$$\begin{aligned} H_{n+m}(\alpha) &= H\left(\bigvee_{j=0}^{n+m-1}T^{-j}\alpha\right) \\ &\stackrel{\text{basic}}{=} H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\middle|\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) \end{aligned}$$

$$\begin{aligned} H_{n+m}(\alpha) &= H\left(\bigvee_{j=0}^{n+m-1} T^{-j}\alpha\right) \\ \stackrel{\text{basic}}{\stackrel{\text{identity}}{=}} & H\left(\bigvee_{j=0}^{n-1} T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1} T^{-j}\alpha \middle| \bigvee_{j=0}^{n-1} T^{-j}\alpha\right) \\ &\leq H\left(\bigvee_{j=0}^{n-1} T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1} T^{-j}\alpha\right) \end{aligned}$$

$$\begin{aligned} H_{n+m}(\alpha) &= H\left(\bigvee_{j=0}^{n+m-1}T^{-j}\alpha\right) \\ \stackrel{\text{basic}}{=} & H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\middle|\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) \\ &\leq & H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\right) \\ &= & H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(T^{-n}\bigvee_{j=0}^{m-1}T^{-j}\alpha\right) \end{aligned}$$

$$\begin{split} H_{n+m}(\alpha) &= H\left(\bigvee_{j=0}^{n+m-1}T^{-j}\alpha\right) \\ \stackrel{\text{basic}}{\stackrel{\text{identity}}{=}} H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\middle|\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) \\ &\leq H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\right) \\ &= H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(T^{-n}\bigvee_{j=0}^{m-1}T^{-j}\alpha\right) \\ &= H_n(\alpha) + H_m(\alpha). \end{split}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

$$\begin{aligned} H_{n+m}(\alpha) &= H\left(\bigvee_{j=0}^{n+m-1}T^{-j}\alpha\right) \\ \stackrel{\text{basic}}{\stackrel{\text{identity}}{=}} &H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\middle|\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) \\ &\leq H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(\bigvee_{j=n}^{n+m-1}T^{-j}\alpha\right) \\ &= H\left(\bigvee_{j=0}^{n-1}T^{-j}\alpha\right) + H\left(T^{-n}\bigvee_{j=0}^{m-1}T^{-j}\alpha\right) \\ &= H_n(\alpha) + H_m(\alpha). \end{aligned}$$

Hence $H_n(\alpha)$ is subadditive.

<□ > < @ > < E > < E > E のQ @

$$h_{\mu}(T,\alpha) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j}\alpha\right)$$

$$h_{\mu}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right) = \text{entropy of } T \text{ relative to } \alpha.$$

<□ > < @ > < E > < E > E のQ @

$$h_{\mu}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right) = \text{entropy of } T \text{ relative to } \alpha.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks

1. By sub-additivity, $H_n(\alpha) \le nH(\alpha)$. Hence $0 \le h_\mu(T, \alpha) \le H(\alpha)$.

$$h_{\mu}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right) = \text{entropy of } T \text{ relative to } \alpha.$$

Remarks

- 1. By sub-additivity, $H_n(\alpha) \le nH(\alpha)$. Hence $0 \le h_\mu(T, \alpha) \le H(\alpha)$.
- Using the basic identities and the Increasing Martingale Theorem, we can obtain the following alternative formula for h_μ(T, α):

$$h_{\mu}(T, \alpha) = H\left(\alpha \mid \bigvee_{j=1}^{\infty} T^{-j}\alpha\right)$$

$$h_{\mu}(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right) = \text{entropy of } T \text{ relative to } \alpha.$$

Remarks

- 1. By sub-additivity, $H_n(\alpha) \le nH(\alpha)$. Hence $0 \le h_\mu(T, \alpha) \le H(\alpha)$.
- Using the basic identities and the Increasing Martingale Theorem, we can obtain the following alternative formula for h_μ(T, α):

$$h_{\mu}(T,\alpha) = H\left(\alpha \mid \bigvee_{j=1}^{\infty} T^{-j}\alpha\right) = \lim_{n \to \infty} H\left(\alpha \mid \bigvee_{j=1}^{n} T^{-j}\alpha\right)$$

'Entropy = average amount of information from the present, given the past'

Entropy of an mpt

Let T be an mpt of a probability space (X, \mathcal{B}, μ) .

Let T be an mpt of a probability space (X, \mathcal{B}, μ) . Then the entropy of T is:

$$h_{\mu}(T) = \sup \left\{ h_{\mu}(T, \alpha) \middle| \begin{array}{c} \alpha \text{ is a finite or countable} \\ \text{partition s.t. } H(\alpha) < \infty \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let T be an mpt of a probability space (X, \mathcal{B}, μ) . Then the entropy of T is:

$$h_{\mu}(T) = \sup \left\{ h_{\mu}(T, \alpha) \middle| \begin{array}{c} \alpha \text{ is a finite or countable} \\ \text{partition s.t. } H(\alpha) < \infty \end{array} \right\}$$

Potential problem: working from the definitions, this quantity seems impossible to calculate!

Let T be an mpt of the probability space (X, \mathcal{B}, μ) .

Let T be an mpt of the probability space (X, \mathcal{B}, μ) .

Definition

A finite or countable partition α is a *generator* for ${\cal T}$ if ${\cal T}$ is invertible and

$$\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let T be an mpt of the probability space (X, \mathcal{B}, μ) .

Definition

A finite or countable partition α is a *generator* for ${\cal T}$ if ${\cal T}$ is invertible and

$$\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}$$

(i.e. \mathcal{B} is the smallest σ -algebra that contains all elements of all the partitions $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).

Let T be an mpt of the probability space (X, \mathcal{B}, μ) .

Definition

A finite or countable partition α is a *generator* for ${\cal T}$ if ${\cal T}$ is invertible and

$$\bigvee_{=-(n-1)}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}$$

(i.e. \mathcal{B} is the smallest σ -algebra that contains all elements of all the partitions $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$). We say that α is a *strong generator* if

$$\bigvee_{j=0}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ -a.e. pair of points:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ -a.e. pair of points: for μ -a.e. $x, y \in X$, $\exists n \text{ s.t. } x, y$ are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha$ (resp. $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ -a.e. pair of points: for μ -a.e. $x, y \in X$, $\exists n \text{ s.t. } x, y$ are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha$ (resp. $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).

Recall:

$$h_{\mu}(T) = \sup h_{\mu}(T, \alpha)$$

where the supremum is taken over all partitions of finite entropy.

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ -a.e. pair of points: for μ -a.e. $x, y \in X$, $\exists n \text{ s.t. } x, y$ are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha$ (resp. $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).

Recall:

$$h_{\mu}(T) = \sup h_{\mu}(T, \alpha)$$

where the supremum is taken over all partitions of finite entropy.

Sinai's theorem tells us that this supremum is acheived when α is a generator or a strong generator.

Let α be a finite or countable partition with $H(\alpha) < \infty$.

Let α be a finite or countable partition with $H(\alpha) < \infty$. Suppose either:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \blacktriangleright T is invertible and α is a generator, or
- α is a strong generator.

Let α be a finite or countable partition with $H(\alpha) < \infty$. Suppose either:

- T is invertible and α is a generator, or
- α is a strong generator.

Then $h_{\mu}(T) = h_{\mu}(T, \alpha)$.

Let α be a finite or countable partition with $H(\alpha) < \infty$. Suppose either:

- T is invertible and α is a generator, or
- α is a strong generator.

Then $h_{\mu}(T) = h_{\mu}(T, \alpha)$.

This allows us to calculate the entropy of many of our favourite examples.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We work in the one-sided setting. Analogous results hold for the two-sided case.

We work in the one-sided setting. Analogous results hold for the two-sided case.

Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_A^+ . Let σ be the shift map.

We work in the one-sided setting. Analogous results hold for the two-sided case.

Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_A^+ . Let σ be the shift map.

Let $P = (P_{ij})$ be a stochastic matrix compatible with A.

We work in the one-sided setting. Analogous results hold for the two-sided case.

Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_A^+ . Let σ be the shift map. Let $P = (P_{ii})$ be a stochastic matrix compatible with A.

Let $p = (p_1 \dots, p_k)$ be the unique probability left-eigenvector:

$$pP = p.$$

We work in the one-sided setting. Analogous results hold for the two-sided case.

Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_A^+ . Let σ be the shift map. Let $P = (P_{ij})$ be a stochastic matrix compatible with A. Let $p = (p_1 \dots, p_k)$ be the unique probability left-eigenvector:

$$pP = p$$

Recall that the Markov measure μ_P is defined on cylinder sets by:

$$\mu_{P}[i_{o},\ldots,i_{n-1}]=p_{i_{0}}P_{i_{0}i_{1}}\ldots P_{i_{n-2}i_{n-1}}$$

We work in the one-sided setting. Analogous results hold for the two-sided case.

Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_A^+ . Let σ be the shift map. Let $P = (P_{ij})$ be a stochastic matrix compatible with A. Let $p = (p_1 \dots, p_k)$ be the unique probability left-eigenvector:

$$pP = p$$

Recall that the Markov measure μ_P is defined on cylinder sets by:

$$\mu_{P}[i_{o},\ldots,i_{n-1}]=p_{i_{0}}P_{i_{0}i_{1}}\ldots P_{i_{n-2}i_{n-1}}.$$

Let $\alpha = \{[1], \ldots, [k]\}$ denote the partition of Σ_A^+ into cylinders of length 1.

Easy check: $H(\alpha) < \infty$ Easy check: $\alpha_n = \bigvee_{j=0}^{n-1} \sigma^{-j} \alpha = \{[i_o, \dots, i_{n-1}]\}\$ = the partition of Σ_A^+ into cylinders of length n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Easy check:
$$H(\alpha) < \infty$$

Easy check: $\alpha_n = \bigvee_{j=0}^{n-1} \sigma^{-j} \alpha = \{[i_o, \dots, i_{n-1}]\}\$
= the partition of Σ_A^+
into cylinders of length n

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Hence α is a strong generator, as α_n separates points.

Easy check:
$$H(\alpha) < \infty$$

Easy check: $\alpha_n = \bigvee_{j=0}^{n-1} \sigma^{-j} \alpha = \{[i_o, \dots, i_{n-1}]\}\$
= the partition of Σ_A^+
into cylinders of length n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence α is a strong generator, as α_n separates points. Hence we can apply Sinai's theorem:

$$H\left(\bigvee_{j=o}^{n-1}\sigma^{-j}\alpha\right)$$

= $-\sum_{i_o,\dots,i_{n-1}}\mu[i_0,\dots,i_{n-1}]\log\mu[i_0,\dots,i_{n-1}]$

Easy check:
$$H(\alpha) < \infty$$

Easy check: $\alpha_n = \bigvee_{j=0}^{n-1} \sigma^{-j} \alpha = \{[i_o, \dots, i_{n-1}]\}$
= the partition of Σ_A^+
into cylinders of length n

Hence α is a strong generator, as α_n separates points. Hence we can apply Sinai's theorem:

$$H\left(\bigvee_{j=o}^{n-1} \sigma^{-j} \alpha\right)$$

= $-\sum_{i_o,...,i_{n-1}} \mu[i_0,...,i_{n-1}] \log \mu[i_0,...,i_{n-1}]$
= $-\sum_{i_o,...,i_{n-1}} p_{i_0} P_{i_0 i_1} \dots P_{i_{n-2} i_{n-1}} \log(p_{i_0} P_{i_0 i_1} \dots P_{i_{n-2} i_{n-1}})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Easy check:
$$H(\alpha) < \infty$$

Easy check: $\alpha_n = \bigvee_{j=0}^{n-1} \sigma^{-j} \alpha = \{[i_o, \dots, i_{n-1}]\}$
= the partition of Σ_A^+
into cylinders of length n

Hence α is a strong generator, as α_n separates points. Hence we can apply Sinai's theorem:

$$\mathcal{H}\left(\bigvee_{j=o}^{n-1} \sigma^{-j} \alpha\right)$$

$$= -\sum_{i_{o},...,i_{n-1}} \mu[i_{0},...,i_{n-1}] \log \mu[i_{0},...,i_{n-1}]$$

$$= -\sum_{i_{o},...,i_{n-1}} p_{i_{0}} P_{i_{0}i_{1}} \dots P_{i_{n-2}i_{n-1}} \log(p_{i_{0}} P_{i_{0}i_{1}} \dots P_{i_{n-2}i_{n-1}})$$

$$= -\sum_{i_{o},...,i_{n-1}} p_{i_{0}} \log p_{i_{0}} \dots (n-1) \sum_{i,j} p_{i_{j}} \log P_{i_{j}}.$$

$$h_{\mu}(\sigma) \stackrel{\text{Sinai}}{=} h_{\mu}(\sigma, \alpha)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

$$h_{\mu}(\sigma) \stackrel{\text{Sinai}}{=} h_{\mu}(\sigma, \alpha)$$
$$= \lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$h_{\mu}(\sigma) \stackrel{\text{Sinai}}{=} h_{\mu}(\sigma, \alpha)$$

=
$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)$$

=
$$-\sum_{i,j} p_i P_{ij} \log P_{ij}.$$

Remark

If μ is the Bernoulli- (p_1, \ldots, p_k) measure then

$$h_{\mu}(\sigma) = -\sum_{i} p_i \log p_i.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$h_{\mu}(\sigma) \stackrel{\text{Sinai}}{=} h_{\mu}(\sigma, \alpha)$$

=
$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)$$

=
$$-\sum_{i,j} p_i P_{ij} \log P_{ij}.$$

Remark

If μ is the Bernoulli- (p_1, \ldots, p_k) measure then

$$h_{\mu}(\sigma) = -\sum_{i} p_{i} \log p_{i}.$$

If μ is the Bernoulli- $(1/k,\ldots,1/k)$ measure then

$$h_{\mu}(\sigma) = \log k.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.

(ロ)、(型)、(E)、(E)、 E) の(の)

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.

For English:

 $P_{\mathbf{Q}\mathbf{U}}$ should be near 1 as a **Q** is highly likely to be followed by **U**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 P_{FZ} should be near 0 as F is unlikely to be followed by Z.

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure. For English:

 P_{QU} should be near 1 as a Q is highly likely to be followed by U P_{FZ} should be near 0 as F is unlikely to be followed by Z. Experimentally, one can estimate

h(English) = 1.6

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure. For English:

 P_{QU} should be near 1 as a Q is highly likely to be followed by U P_{FZ} should be near 0 as F is unlikely to be followed by Z. Experimentally, one can estimate

$$h(\text{English}) = 1.6$$

Note that the Bernoulli $(\frac{1}{26}, \ldots, \frac{1}{26})$ -measure has entropy log 26 = 4.7.

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure. For English:

 P_{QU} should be near 1 as a Q is highly likely to be followed by U P_{FZ} should be near 0 as F is unlikely to be followed by Z. Experimentally, one can estimate

$$h(\text{English}) = 1.6$$

Note that the Bernoulli $(\frac{1}{26}, \ldots, \frac{1}{26})$ -measure has entropy log 26 = 4.7.

This suggests that there is a lot of redundancy in English (good for error-correcting!). See Shannon's book on Information Theory.

Recall that two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ are *(measure-theoretically) isomorphic* if there exists a bimeasurable bijection $\phi : X \to Y$ such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ are *(measure-theoretically) isomorphic* if there exists a bimeasurable bijection $\phi : X \to Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$.

Recall that two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ are *(measure-theoretically) isomorphic* if there exists a bimeasurable bijection $\phi : X \to Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$. Entropy is invariant under isomorphism:

Recall that two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ are *(measure-theoretically) isomorphic* if there exists a bimeasurable bijection $\phi : X \to Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1} = m$. Entropy is invariant under isomorphism:

Theorem

If T, S are isomorphic then $h_{\mu}(T) = h_m(S)$.

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X.

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$H_{\mu}(\phi^{-1}\alpha) = -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A)$$

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$
Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$

More generally

$$H_{\mu}\left(\bigvee_{j=0}^{n-1}T^{-j}(\phi^{-1}\alpha)
ight)$$

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$

More generally

$$H_{\mu}\left(\bigvee_{j=0}^{n-1}T^{-j}(\phi^{-1}\alpha)\right) = H_{\mu}\left(\phi^{-1}\bigvee_{j=0}^{n-1}S^{-j}\alpha\right)$$

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$

More generally

$$H_{\mu}\left(\bigvee_{j=0}^{n-1}T^{-j}(\phi^{-1}\alpha)\right) = H_{\mu}\left(\phi^{-1}\bigvee_{j=0}^{n-1}S^{-j}\alpha\right) = H_{m}\left(\bigvee_{j=0}^{n-1}S^{-j}\alpha\right)$$

.

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$

More generally

$$H_{\mu}\left(\bigvee_{j=0}^{n-1}T^{-j}(\phi^{-1}\alpha)\right) = H_{\mu}\left(\phi^{-1}\bigvee_{j=0}^{n-1}S^{-j}\alpha\right) = H_{m}\left(\bigvee_{j=0}^{n-1}S^{-j}\alpha\right)$$

.

Hence $h_{\mu}(T, \phi^{-1}\alpha) = h_m(S, \alpha)$.

Let α be a finite or countable partition of Y with $H_m(\alpha) < \infty$. Then $\phi^{-1}\alpha = \{\phi^{-1}A \mid A \in \alpha\}$ is a partition of X. Note that

$$\begin{aligned} H_{\mu}(\phi^{-1}\alpha) &= -\sum_{A\in\alpha} \mu(\phi^{-1}A)\log\mu(\phi^{-1}A) \\ &= -\sum_{A\in\alpha} m(A)\log m(A) = H_{m}(\alpha). \end{aligned}$$

More generally

$$H_{\mu}\left(\bigvee_{j=0}^{n-1}T^{-j}(\phi^{-1}\alpha)\right) = H_{\mu}\left(\phi^{-1}\bigvee_{j=0}^{n-1}S^{-j}\alpha\right) = H_{m}\left(\bigvee_{j=0}^{n-1}S^{-j}\alpha\right)$$

Hence $h_{\mu}(T, \phi^{-1}\alpha) = h_m(S, \alpha)$. Hence $h_{\mu}(T) = h_m(S)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

.

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ .

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ .

・ロト・日本・モート モー うへぐ

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ . Define $\phi : \Sigma_2 = \{(x_j)_{i=0}^{\infty} \mid x_j \in \{0, 1\}\} \to [0, 1]$ by

$$\phi(x_0,x_1,\ldots)=\sum_{j=0}^{\infty}\frac{x_j}{2^{j+1}}.$$

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ . Define $\phi : \Sigma_2 = \{(x_j)_{i=0}^{\infty} \mid x_j \in \{0, 1\}\} \to [0, 1]$ by

$$\phi(x_0,x_1,\ldots)=\sum_{j=0}^{\infty}\frac{x_j}{2^{j+1}}.$$

Then

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ . Define $\phi : \Sigma_2 = \{(x_j)_{i=0}^{\infty} \mid x_j \in \{0, 1\}\} \to [0, 1]$ by

$$\phi(x_0,x_1,\ldots)=\sum_{j=0}^{\infty}\frac{x_j}{2^{j+1}}.$$

Then

•
$$\phi\sigma = T\phi$$
,

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ . Define $\phi : \Sigma_2 = \{(x_j)_{i=0}^{\infty} \mid x_j \in \{0, 1\}\} \to [0, 1]$ by

$$\phi(x_0,x_1,\ldots)=\sum_{j=0}^{\infty}\frac{x_j}{2^{j+1}}.$$

Then

$$\blacktriangleright \phi \sigma = T \phi,$$

▶ φ is a bijection, except on the countable set of points which have non-unique base 2 expansions,

Let $Tx = 2x \mod 1$ be the doubling map with Lebesgue measure λ . Let $\sigma : \Sigma_2 \to \Sigma_2$ be the full one-sided 2-shift with the Bernoulli-(1/2, 1/2) measure μ . Define $\phi : \Sigma_2 = \{(x_j)_{i=0}^{\infty} \mid x_j \in \{0, 1\}\} \to [0, 1]$ by

$$\phi(x_0,x_1,\ldots)=\sum_{j=0}^{\infty}\frac{x_j}{2^{j+1}}.$$

Then

$$\blacktriangleright \phi \sigma = T \phi,$$

- ▶ φ is a bijection, except on the countable set of points which have non-unique base 2 expansions,
- λ = μφ⁻¹ (clear on dyadic intervals, follows for all sets by the Kolmogorov Extension Theorem).

Hence $Tx = 2x \mod 1$ with Lebesgue measure λ and the full one-sided 2-shift σ with the Bernoulli-(1/2, 1/2) measure μ are isomorphic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence $Tx = 2x \mod 1$ with Lebesgue measure λ and the full one-sided 2-shift σ with the Bernoulli-(1/2, 1/2) measure μ are isomorphic.

Hence

$$h_{\lambda}(T) = \log 2 = h_{\mu}(\sigma).$$

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

However, for two-sided aperiodic shifts of finite type equipped with a Bernoulli or Markov measure, then the answer is yes

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

However, for two-sided aperiodic shifts of finite type equipped with a Bernoulli or Markov measure, then the answer is yes

Theorem (Ornstein)

2-sided Bernoulli shifts with the same entropy are isomorphic.

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

However, for two-sided aperiodic shifts of finite type equipped with a Bernoulli or Markov measure, then the answer is yes

Theorem (Ornstein)

2-sided Bernoulli shifts with the same entropy are isomorphic.

Theorem (Ornstein and Friedman)

2-sided aperiodic Markov shifts with the same entropy are isomorphic.

Given two mpts $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$, $S : (Y, \mathcal{A}, m) \to (Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

However, for two-sided aperiodic shifts of finite type equipped with a Bernoulli or Markov measure, then the answer is yes

Theorem (Ornstein)

2-sided Bernoulli shifts with the same entropy are isomorphic.

Theorem (Ornstein and Friedman)

2-sided aperiodic Markov shifts with the same entropy are isomorphic.

(The one-sided case is far more subtle.)

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is *Bernoulli* if it is isomorphic to a shift σ with some Bernoulli- (p_1, \ldots, p_k) measure.

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is *Bernoulli* if it is isomorphic to a shift σ with some Bernoulli- (p_1, \ldots, p_k) measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is *Bernoulli* if it is isomorphic to a shift σ with some Bernoulli- (p_1, \ldots, p_k) measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

In general, a mpt that exhibits some form of 'hyperbolicity' is, when equipped with a suitable measure, Bernoulli.

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is *Bernoulli* if it is isomorphic to a shift σ with some Bernoulli- (p_1, \ldots, p_k) measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

In general, a mpt that exhibits some form of 'hyperbolicity' is, when equipped with a suitable measure, Bernoulli.

For example, hyperbolic toral automorphisms are Bernoulli.

Next lecture

Entropy has been defined in a purely measure-theoretic setting.

There is a topological analogue in the setting of continuous transformations of compact metric spaces: topological entropy.

We will define this and study the connections between measure-theoretic and topological entropy.