MAGIC: Ergodic Theory Lecture 7 - Entropy

Charles Walkden

March 6, 2013

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?
Two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu), S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$ (i.e. $\left.\mu\left(\phi^{-1} B\right)=m(B) \forall B \in \mathcal{A}\right)$.

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?
Two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu), S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$ (i.e. $\left.\mu\left(\phi^{-1} B\right)=m(B) \forall B \in \mathcal{A}\right)$. It is natural to look for invariants.

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?
Two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu), S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$ (i.e. $\left.\mu\left(\phi^{-1} B\right)=m(B) \forall B \in \mathcal{A}\right)$. It is natural to look for invariants. To each mpt T we will associate a number - its entropy $h(T)$.

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?
Two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu), S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$ (i.e. $\left.\mu\left(\phi^{-1} B\right)=m(B) \forall B \in \mathcal{A}\right)$. It is natural to look for invariants. To each mpt T we will associate a number - its entropy $h(T)$. If S, T are isomorphic then $h(S)=h(T)$. (Conversely, if $h(S) \neq h(T)$ then S, T cannot be isomorphic.)

Introduction

A central problem in mathematics is the isomorphism problem: when are two objects in the same class "the same"?
Two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu), S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$ (i.e. $\left.\mu\left(\phi^{-1} B\right)=m(B) \forall B \in \mathcal{A}\right)$. It is natural to look for invariants. To each mpt T we will associate a number - its entropy $h(T)$. If S, T are isomorphic then $h(S)=h(T)$. (Conversely, if $h(S) \neq h(T)$ then S, T cannot be isomorphic.) Throughout, $\log =\log _{2}$.

Information and entropy of a partition

Information and entropy of a partition
Let (X, \mathcal{B}, μ) be a probability space.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

If we know that $x \in A_{j}$ then we have received some information.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

If we know that $x \in A_{j}$ then we have received some information.
If A_{j} is 'big' then we have received a 'small' amount of information.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

If we know that $x \in A_{j}$ then we have received some information.
If A_{j} is 'big' then we have received a 'small' amount of information.
If A_{j} is 'small' then we have received a 'large' amount of information.

Information and entropy of a partition

Let (X, \mathcal{B}, μ) be a probability space.
Suppose we are trying to locate a point $x \in X$ using a partition $\alpha=\left\{A_{j}\right\}$.

If we know that $x \in A_{j}$ then we have received some information.
If A_{j} is 'big' then we have received a 'small' amount of information.
If A_{j} is 'small' then we have received a 'large' amount of information.
This motivates defining the 'information function' as

$$
I(\alpha)(x)=\sum_{A \in \alpha} \chi_{A}(x) \phi(\mu(A))
$$

for an appropriate choice of function ϕ.

Suppose α and β are two partitions.

Suppose α and β are two partitions.
The join of α and β is the partition

$$
\alpha \vee \beta=\{A \cap B \mid A \in \alpha, B \in \beta\} .
$$

Suppose α and β are two partitions.
The join of α and β is the partition

$$
\alpha \vee \beta=\{A \cap B \mid A \in \alpha, B \in \beta\} .
$$

Suppose α and β are two partitions.
The join of α and β is the partition

$$
\alpha \vee \beta=\{A \cap B \mid A \in \alpha, B \in \beta\} .
$$

α, β are independent if $\mu(A \cap B)=\mu(A) \mu(B) \forall A \in \alpha, B \in \beta$.

It is natural to assume that if α, β are independent, then:

Information obtained
by knowing which
element of $\alpha \vee \beta$ we
are in

obtained from \alpha\end{array}\right|+\left|$$
\begin{array}{c}\text { Information } \\
\text { obtained from } \beta\end{array}
$$\right|\right.\)

It is natural to assume that if α, β are independent, then:

$$
\begin{aligned}
& \left|\begin{array}{c}
\text { Information obtained } \\
\text { by knowing which } \\
\text { element of } \alpha \vee \beta \text { we } \\
\text { are in }
\end{array}\right|=\left|\begin{array}{c}
\text { Information } \\
\text { obtained from } \alpha
\end{array}\right|+\left|\begin{array}{c}
\text { Information } \\
\text { obtained from } \beta
\end{array}\right| \\
& \phi(\mu(A \cap B))=\phi(\mu(A) \mu(B)) \quad=\quad \phi(\mu(A))
\end{aligned}
$$

It is natural to assume that if α, β are independent, then:
$\left|\begin{array}{c}\text { Information obtained } \\
\text { by knowing which } \\
\text { element of } \alpha \vee \beta \text { we } \\
\text { are in }\end{array}\right|=\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \alpha\end{array}\right|+\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \beta\end{array}\right|$

$\phi(\mu(A \cap B))=\phi(\mu(A) \mu(B)) \quad=\quad$| $\phi(\mu(A))$ |
| :---: |$+$| $\phi(\mu(B))$ |
| :--- |

This indicates we should take $\phi(t)=-\log t$.

It is natural to assume that if α, β are independent, then:
$\left|\begin{array}{c}\text { Information obtained } \\
\text { by knowing which } \\
\text { element of } \alpha \vee \beta \text { we } \\
\text { are in }\end{array}\right|=\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \alpha\end{array}\right|+\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \beta\end{array}\right|$

$\phi(\mu(A \cap B))=\phi(\mu(A) \mu(B)) \quad=\quad$| $\phi(\mu(A))$ |
| :---: |$+$| $\phi(\mu(B))$ |
| :--- |

This indicates we should take $\phi(t)=-\log t$.

Definition

The information function of α is

$$
I(\alpha)(x)=-\sum_{A \in \alpha} \chi_{A}(x) \log \mu(A)
$$

It is natural to assume that if α, β are independent, then:
$\left|\begin{array}{c}\text { Information obtained } \\
\text { by knowing which } \\
\text { element of } \alpha \vee \beta \text { we } \\
\text { are in }\end{array}\right|=\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \alpha\end{array}\right|+\left|\begin{array}{c}\text { Information } \\
\text { obtained from } \beta\end{array}\right|$

$\phi(\mu(A \cap B))=\phi(\mu(A) \mu(B))=$| $\phi(\mu(A))$ |
| :---: |$+\quad \phi(\mu(B))$

This indicates we should take $\phi(t)=-\log t$.

Definition

The information function of α is

$$
I(\alpha)(x)=-\sum_{A \in \alpha} \chi_{A}(x) \log \mu(A)
$$

The entropy of α is the average amount of information:

$$
H(\alpha)=\int I(\alpha) d \mu=-\sum_{A \in \alpha} \mu(A) \log \mu(A)
$$

Conditional information \& entropy

Conditional information and entropy are useful generalisations of $I(\alpha), H(\alpha)$.

Conditional information \& entropy

Conditional information and entropy are useful generalisations of $I(\alpha), H(\alpha)$.
Let \mathcal{A} be a sub- σ-algebra.

Conditional information \& entropy

Conditional information and entropy are useful generalisations of $I(\alpha), H(\alpha)$.
Let \mathcal{A} be a sub- σ-algebra.
For example: if β is a partition then the set of all unions of elements of β is a σ-algebra (also denoted by β).

Conditional information \& entropy

Conditional information and entropy are useful generalisations of $I(\alpha), H(\alpha)$.
Let \mathcal{A} be a sub- σ-algebra.
For example: if β is a partition then the set of all unions of elements of β is a σ-algebra (also denoted by β).
How much information do we gain by knowing which element of α we are in, given we know which element of β we are in?

Recall conditional expectation:

$$
\mathbb{E}(\cdot \mid \mathcal{A}): L^{1}(X, \mathcal{B}, \mu) \longrightarrow L^{1}(X, \mathcal{A}, \mu)
$$

Recall conditional expectation:

$$
\mathbb{E}(\cdot \mid \mathcal{A}): L^{1}(X, \mathcal{B}, \mu) \longrightarrow L^{1}(X, \mathcal{A}, \mu)
$$

$\mathbb{E}(f \mid \mathcal{A})$ is determined by

1. $\mathbb{E}(f \mid \mathcal{A})$ is \mathcal{A}-measurable,
2. $\int_{A} \mathbb{E}(f \mid \mathcal{A}) d \mu=\int_{A} f d \mu \forall A \in \mathcal{A}$.

Recall conditional expectation:

$$
\mathbb{E}(\cdot \mid \mathcal{A}): L^{1}(X, \mathcal{B}, \mu) \longrightarrow L^{1}(X, \mathcal{A}, \mu)
$$

$\mathbb{E}(f \mid \mathcal{A})$ is determined by

1. $\mathbb{E}(f \mid \mathcal{A})$ is \mathcal{A}-measurable,
2. $\int_{A} \mathbb{E}(f \mid \mathcal{A}) d \mu=\int_{A} f d \mu \forall A \in \mathcal{A}$.
$\mathbb{E}(f \mid \mathcal{A})$ is the best \mathcal{A}-measurable approximation to f.

Consider the σ-algebra β generated by a partition β.

Consider the σ-algebra β generated by a partition β.

Consider the σ-algebra β generated by a partition β.

$$
\mathbb{E}(f \mid \beta)(x)=\sum_{B \in \beta} \chi_{B}(x) \frac{\int_{B} f d \mu}{\mu(B)}
$$

Consider the σ-algebra β generated by a partition β.

$$
\mathbb{E}(f \mid \beta)(x)=\sum_{B \in \beta} \chi_{B}(x) \frac{\int_{B} f d \mu}{\mu(B)}
$$

Let $A \in \mathcal{B}$. The conditional probability of A given a sub- σ-algebra \mathcal{A} is

$$
\mu(A \mid \mathcal{A})=\mathbb{E}\left(\chi_{A} \mid \mathcal{A}\right)
$$

Consider the σ-algebra β generated by a partition β.

$$
\mathbb{E}(f \mid \beta)(x)=\sum_{B \in \beta} \chi_{B}(x) \frac{\int_{B} f d \mu}{\mu(B)}
$$

Let $A \in \mathcal{B}$. The conditional probability of A given a sub- σ-algebra \mathcal{A} is

$$
\mu(A \mid \mathcal{A})=\mathbb{E}\left(\chi_{A} \mid \mathcal{A}\right)
$$

Note:

$$
\mu(A \mid \beta)=\sum_{B \in \beta} \chi_{B}(x) \frac{\mu(A \cap B)}{\mu(B)}
$$

Definition

The conditional information of α given \mathcal{A} is

$$
I(\alpha \mid \mathcal{A})(x)=-\sum_{A \in \alpha} \chi_{A}(x) \log \mu(A \mid \mathcal{A})(x)
$$

Definition

The conditional information of α given \mathcal{A} is

$$
I(\alpha \mid \mathcal{A})(x)=-\sum_{A \in \alpha} \chi_{A}(x) \log \mu(A \mid \mathcal{A})(x)
$$

The conditional entropy of α given \mathcal{A} is

$$
H(\alpha \mid \mathcal{A})=\int I(\alpha \mid \mathcal{A}) d \mu
$$

Definition

The conditional information of α given \mathcal{A} is

$$
I(\alpha \mid \mathcal{A})(x)=-\sum_{A \in \alpha} \chi_{A}(x) \log \mu(A \mid \mathcal{A})(x)
$$

The conditional entropy of α given \mathcal{A} is

$$
H(\alpha \mid \mathcal{A})=\int I(\alpha \mid \mathcal{A}) d \mu
$$

The basic identities:

$$
\begin{aligned}
I(\alpha \vee \beta \mid \gamma) & =I(\alpha \mid \gamma)+I(\beta \mid \alpha \vee \gamma) \\
H(\alpha \vee \beta \mid \gamma) & =H(\alpha \mid \gamma)+H(\beta \mid \alpha \vee \gamma)
\end{aligned}
$$

Definition
β is a refinement of α if every element of α is a union of elements of β.

Definition

β is a refinement of α if every element of α is a union of elements of β.

Definition

β is a refinement of α if every element of α is a union of elements of β.

Write $\alpha \leq \beta$.

Definition
β is a refinement of α if every element of α is a union of elements of β.

Write $\alpha \leq \beta$.
Facts

$$
\begin{aligned}
& \text { 1. } \beta \leq \gamma \quad \Longrightarrow \quad I(\alpha \vee \beta \mid \gamma)=I(\alpha \mid \gamma) \\
& H(\alpha \vee \beta \mid \gamma)=H(\alpha \mid \gamma)
\end{aligned}
$$

Definition
β is a refinement of α if every element of α is a union of elements of β.

Write $\alpha \leq \beta$.
Facts

$$
\begin{gathered}
\text { 1. } \beta \leq \gamma \quad \Longrightarrow \quad \begin{array}{c}
I(\alpha \vee \beta \mid \gamma)=I(\alpha \mid \gamma) \\
H(\alpha \vee \beta \mid \gamma)=H(\alpha \mid \gamma) \\
\text { 2. } \beta \leq \alpha
\end{array} \quad \Longrightarrow \quad \begin{array}{c}
I(\beta \mid \gamma) \leq I(\alpha \mid \gamma) \\
H(\beta \mid \gamma) \leq H(\alpha \mid \gamma)
\end{array}
\end{gathered}
$$

Definition
β is a refinement of α if every element of α is a union of elements of β.

Write $\alpha \leq \beta$.
Facts

$$
\begin{array}{ll}
\text { 1. } \beta \leq \gamma & \Longrightarrow
\end{array} \begin{gathered}
I(\alpha \vee \beta \mid \gamma)=I(\alpha \mid \gamma) \\
H(\alpha \vee \beta \mid \gamma)=H(\alpha \mid \gamma)
\end{gathered} \text { 2. } \beta \leq \alpha \quad \Longrightarrow \quad \begin{gathered}
\\
\text { 2. } \\
I(\beta \mid \gamma) \leq I(\alpha \mid \gamma) \\
H(\beta \mid \gamma) \leq H(\alpha \mid \gamma) \\
H(\alpha \mid \beta) \geq H(\alpha \mid \gamma)
\end{gathered}
$$

Definition

β is a refinement of α if every element of α is a union of elements of β.

α

β

Write $\alpha \leq \beta$.
Facts

$$
\begin{array}{ll}
\text { 1. } \beta \leq \gamma & \Longrightarrow
\end{array} \begin{gathered}
I(\alpha \vee \beta \mid \gamma)=I(\alpha \mid \gamma) \\
H(\alpha \vee \beta \mid \gamma)=H(\alpha \mid \gamma)
\end{gathered} \text { 2. } \beta \leq \alpha \quad \Longrightarrow \quad \begin{gathered}
I(\beta \mid \gamma) \leq I(\alpha \mid \gamma) \\
\\
\text { 3. } \beta \leq \gamma(\beta \mid \gamma) \leq H(\alpha \mid \gamma) \\
\text { 3. } \beta \leq \gamma \quad
\end{gathered} \quad \Longrightarrow \quad \begin{aligned}
& H(\alpha \mid \beta) \geq H(\alpha \mid \gamma)
\end{aligned}
$$

1,2 follow from the basic identities, 3 follows from Jensen's ineq.

Entropy of an mpt relative to a partition

We can now start to define the entropy $h(T)$ of an mpt T. We first define the entropy of T relative to a partition.
We need the following:

Entropy of an mpt relative to a partition

We can now start to define the entropy $h(T)$ of an mpt T.
We first define the entropy of T relative to a partition.
We need the following:

Subadditive lemma

Suppose $a_{n} \in \mathbb{R}$ is subadditive: $a_{n+m} \leq a_{n}+a_{m}$.
Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists and equals $\inf _{n} \frac{a_{n}}{n}$ (could be $-\infty$).

Let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be an mpt.
Let α be a finite or countable partition.

Let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be an mpt.
Let α be a finite or countable partition.
Define $T^{-1} \alpha=\left\{T^{-1} A \mid A \in \alpha\right\}$ - a countable partition.

Let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be an mpt.
Let α be a finite or countable partition.
Define $T^{-1} \alpha=\left\{T^{-1} A \mid A \in \alpha\right\}$ - a countable partition.
Note:

$$
\begin{aligned}
H\left(T^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(T^{-1} A\right) \log \mu\left(T^{-1} A\right) \\
& =-\sum_{A \in \alpha} \mu(A) \log \mu(A) \\
& =H(\alpha)
\end{aligned}
$$

Let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be an mpt.
Let α be a finite or countable partition.
Define $T^{-1} \alpha=\left\{T^{-1} A \mid A \in \alpha\right\}$ - a countable partition.
Note:

$$
\begin{aligned}
H\left(T^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(T^{-1} A\right) \log \mu\left(T^{-1} A\right) \\
& =-\sum_{A \in \alpha} \mu(A) \log \mu(A) \\
& =H(\alpha)
\end{aligned}
$$

Define

$$
H_{n}(\alpha)=H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)
$$

Then
$H_{n+m}(\alpha)=H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right)$

Then

$$
\left.\begin{array}{rl}
H_{n+m}(\alpha) & =H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right) \\
& \begin{array}{c}
\text { basic } \\
\text { identity } \\
=
\end{array}
\end{array} \quad H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha \mid \bigvee_{j=0}^{n-1} T^{-j} \alpha\right)\right) ~ l
$$

Then

$$
\begin{aligned}
H_{n+m}(\alpha) & =H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right) \\
& \stackrel{\substack{\text { basic } \\
\text { identity }}}{=} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha \mid \bigvee_{j=0}^{n-1} T^{-j} \alpha\right) \\
& \leq H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
H_{n+m}(\alpha) & =H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right) \\
& \stackrel{\substack{\text { basic } \\
\text { identity }}}{=} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha \mid \bigvee_{j=0}^{n-1} T^{-j} \alpha\right) \\
& \leq H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha\right) \\
& =H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(T^{-n} \bigvee_{j=0}^{m-1} T^{-j} \alpha\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
H_{n+m}(\alpha) & =H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right) \\
& \stackrel{\substack{\text { basic } \\
\text { identity }}}{=} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha \bigvee_{j=0}^{n-1} T^{-j} \alpha\right) \\
& \leq H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha\right) \\
& =H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(T^{-n} \bigvee_{j=0}^{m-1} T^{-j} \alpha\right) \\
& =H_{n}(\alpha)+H_{m}(\alpha) .
\end{aligned}
$$

Then

$$
\begin{aligned}
H_{n+m}(\alpha) & =H\left(\bigvee_{j=0}^{n+m-1} T^{-j} \alpha\right) \\
& \stackrel{\substack{\text { basic } \\
\text { identity }}}{=} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha \mid \bigvee_{j=0}^{n-1} T^{-j} \alpha\right) \\
& \leq H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(\bigvee_{j=n}^{n+m-1} T^{-j} \alpha\right) \\
& =H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)+H\left(T^{-n} \bigvee_{j=0}^{m-1} T^{-j} \alpha\right) \\
& =H_{n}(\alpha)+H_{m}(\alpha) .
\end{aligned}
$$

Hence $H_{n}(\alpha)$ is subadditive.

By the subadditive lemma, we can define

$$
h_{\mu}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)
$$

By the subadditive lemma, we can define

$$
h_{\mu}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)=\text { entropy of } T \text { relative to } \alpha .
$$

By the subadditive lemma, we can define
$h_{\mu}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)=$ entropy of T relative to α.

Remarks

1. By sub-additivity, $H_{n}(\alpha) \leq n H(\alpha)$. Hence $0 \leq h_{\mu}(T, \alpha) \leq H(\alpha)$.

By the subadditive lemma, we can define
$h_{\mu}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)=$ entropy of T relative to α.

Remarks

1. By sub-additivity, $H_{n}(\alpha) \leq n H(\alpha)$. Hence

$$
0 \leq h_{\mu}(T, \alpha) \leq H(\alpha)
$$

2. Using the basic identities and the Increasing Martingale Theorem, we can obtain the following alternative formula for $h_{\mu}(T, \alpha)$:

$$
h_{\mu}(T, \alpha)=H\left(\alpha \mid \bigvee_{j=1}^{\infty} T^{-j} \alpha\right)
$$

By the subadditive lemma, we can define

$$
h_{\mu}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} \alpha\right)=\text { entropy of } T \text { relative to } \alpha .
$$

Remarks

1. By sub-additivity, $H_{n}(\alpha) \leq n H(\alpha)$. Hence

$$
0 \leq h_{\mu}(T, \alpha) \leq H(\alpha)
$$

2. Using the basic identities and the Increasing Martingale Theorem, we can obtain the following alternative formula for $h_{\mu}(T, \alpha)$:

$$
h_{\mu}(T, \alpha)=H\left(\alpha \mid \bigvee_{j=1}^{\infty} T^{-j} \alpha\right)=\lim _{n \rightarrow \infty} H\left(\alpha \mid \bigvee_{j=1}^{n} T^{-j} \alpha\right)
$$

'Entropy $=$ average amount of information from the present, given the past'

Entropy of an mpt

Let T be an mpt of a probability space (X, \mathcal{B}, μ).

Entropy of an mpt

Let T be an mpt of a probability space (X, \mathcal{B}, μ).
Then the entropy of T is:

$$
h_{\mu}(T)=\sup \left\{\begin{array}{l|l}
h_{\mu}(T, \alpha) & \begin{array}{l}
\alpha \text { is a finite or countable } \\
\text { partition s.t. } H(\alpha)<\infty
\end{array}
\end{array}\right\}
$$

Entropy of an mpt

Let T be an mpt of a probability space (X, \mathcal{B}, μ).
Then the entropy of T is:

$$
h_{\mu}(T)=\sup \left\{\begin{array}{l|l}
h_{\mu}(T, \alpha) & \begin{array}{l}
\alpha \text { is a finite or countable } \\
\text { partition s.t. } H(\alpha)<\infty
\end{array}
\end{array}\right\}
$$

Potential problem: working from the definitions, this quantity seems impossible to calculate!

Generators and Sinai's Theorem

Let T be an mpt of the probability space (X, \mathcal{B}, μ).

Generators and Sinai's Theorem

Let T be an mpt of the probability space (X, \mathcal{B}, μ).
Definition
A finite or countable partition α is a generator for T if T is invertible and

$$
\bigvee_{j=-(n-1)}^{n-1}
$$

Generators and Sinai's Theorem

Let T be an mpt of the probability space (X, \mathcal{B}, μ).
Definition
A finite or countable partition α is a generator for T if T is invertible and

$$
\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}
$$

(i.e. \mathcal{B} is the smallest σ-algebra that contains all elements of all the partitions $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).

Generators and Sinai's Theorem

Let T be an mpt of the probability space (X, \mathcal{B}, μ).

Definition

A finite or countable partition α is a generator for T if T is invertible and

$$
\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}
$$

(i.e. \mathcal{B} is the smallest σ-algebra that contains all elements of all the partitions $\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha$).
We say that α is a strong generator if

$$
\bigvee_{j=0}^{n-1} T^{-j} \alpha \nearrow \mathcal{B}
$$

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ-a.e. pair of points:

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ-a.e. pair of points: for μ-a.e. $x, y \in X, \exists n$ s.t. x, y are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha\left(\right.$ resp. $\left.\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha\right)$.

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ-a.e. pair of points: for μ-a.e. $x, y \in X, \exists n$ s.t. x, y are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha\left(\right.$ resp. $\left.\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha\right)$.

Recall:

$$
h_{\mu}(T)=\sup h_{\mu}(T, \alpha)
$$

where the supremum is taken over all partitions of finite entropy.

Remark

To check whether a partition α is a strong generator (resp. generator) it is sufficient to show it separates μ-a.e. pair of points: for μ-a.e. $x, y \in X, \exists n$ s.t. x, y are in different elements of the partition $\bigvee_{j=0}^{n-1} T^{-j} \alpha\left(\right.$ resp. $\left.\bigvee_{j=-(n-1)}^{n-1} T^{-j} \alpha\right)$.

Recall:

$$
h_{\mu}(T)=\sup h_{\mu}(T, \alpha)
$$

where the supremum is taken over all partitions of finite entropy.
Sinai's theorem tells us that this supremum is acheived when α is a generator or a strong generator.

Theorem: (Sinai)
Let α be a finite or countable partition with $H(\alpha)<\infty$.

Theorem: (Sinai)
Let α be a finite or countable partition with $H(\alpha)<\infty$. Suppose either:

- T is invertible and α is a generator, or
- α is a strong generator.

Theorem: (Sinai)
Let α be a finite or countable partition with $H(\alpha)<\infty$. Suppose either:

- T is invertible and α is a generator, or
- α is a strong generator.

Then $h_{\mu}(T)=h_{\mu}(T, \alpha)$.

Theorem: (Sinai)

Let α be a finite or countable partition with $H(\alpha)<\infty$. Suppose either:

- T is invertible and α is a generator, or
- α is a strong generator.

Then $h_{\mu}(T)=h_{\mu}(T, \alpha)$.

This allows us to calculate the entropy of many of our favourite examples.

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.
Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_{A}^{+}. Let σ be the shift map.

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.
Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_{A}^{+}. Let σ be the shift map.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix compatible with A.

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.
Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_{A}^{+}. Let σ be the shift map.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix compatible with A.
Let $p=\left(p_{1} \ldots, p_{k}\right)$ be the unique probability left-eigenvector:

$$
p P=p
$$

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.
Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_{A}^{+}. Let σ be the shift map.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix compatible with A.
Let $p=\left(p_{1} \ldots, p_{k}\right)$ be the unique probability left-eigenvector:

$$
p P=p
$$

Recall that the Markov measure μ_{P} is defined on cylinder sets by:

$$
\mu_{P}\left[i_{o}, \ldots, i_{n-1}\right]=p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}}
$$

Example: Markov measures for shifts of finite type

We work in the one-sided setting. Analogous results hold for the two-sided case.
Let A be an aperiodic $k \times k$ matrix with corresponding one-sided shift of finite type Σ_{A}^{+}. Let σ be the shift map.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix compatible with A.
Let $p=\left(p_{1} \ldots, p_{k}\right)$ be the unique probability left-eigenvector:

$$
p P=p
$$

Recall that the Markov measure μ_{P} is defined on cylinder sets by:

$$
\mu_{P}\left[i_{o}, \ldots, i_{n-1}\right]=p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}}
$$

Let $\alpha=\{[1], \ldots,[k]\}$ denote the partition of Σ_{A}^{+}into cylinders of length 1.

Easy check:

$$
H(\alpha)<\infty
$$

Easy check:

$$
H(\alpha)<\infty
$$

Easy check: $\quad \alpha_{n}=\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha=\left\{\left[i_{o}, \ldots, i_{n-1}\right]\right\}$
$=$ the partition of Σ_{A}^{+} into cylinders of length n

Easy check:

$$
H(\alpha)<\infty
$$

Easy check: $\alpha_{n}=\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha=\left\{\left[i_{o}, \ldots, i_{n-1}\right]\right\}$
$=$ the partition of Σ_{A}^{+} into cylinders of length n

Hence α is a strong generator, as α_{n} separates points.

Easy check:

$$
H(\alpha)<\infty
$$

Easy check: $\quad \alpha_{n}=\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha=\left\{\left[i_{o}, \ldots, i_{n-1}\right]\right\}$
$=$ the partition of Σ_{A}^{+} into cylinders of length n

Hence α is a strong generator, as α_{n} separates points.
Hence we can apply Sinai's theorem:

$$
\begin{aligned}
& H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right) \\
& \quad=\quad-\sum_{i_{0}, \ldots, i_{n-1}} \mu\left[i_{0}, \ldots, i_{n-1}\right] \log \mu\left[i_{0}, \ldots, i_{n-1}\right]
\end{aligned}
$$

Easy check: $H(\alpha)<\infty$
Easy check: $\quad \alpha_{n}=\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha=\left\{\left[i_{o}, \ldots, i_{n-1}\right]\right\}$
$=$ the partition of Σ_{A}^{+} into cylinders of length n

Hence α is a strong generator, as α_{n} separates points.
Hence we can apply Sinai's theorem:

$$
\begin{aligned}
& H\left(\begin{array}{l}
\left.\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)
\end{array}\right. \\
& \quad=\quad-\sum_{i_{0}, \ldots, i_{n-1}} \mu\left[i_{0}, \ldots, i_{n-1}\right] \log \mu\left[i_{0}, \ldots, i_{n-1}\right] \\
& \quad=\quad-\sum_{i_{0}, \ldots, i_{n-1}} p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}} \log \left(p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}}\right)
\end{aligned}
$$

Easy check: $H(\alpha)<\infty$
Easy check: $\quad \alpha_{n}=\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha=\left\{\left[i_{o}, \ldots, i_{n-1}\right]\right\}$
$=$ the partition of Σ_{A}^{+} into cylinders of length n

Hence α is a strong generator, as α_{n} separates points.
Hence we can apply Sinai's theorem:

$$
\begin{aligned}
& H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right) \\
& \quad=\quad-\sum_{i_{0}, \ldots, i_{n-1}} \mu\left[i_{0}, \ldots, i_{n-1}\right] \log \mu\left[i_{0}, \ldots, i_{n-1}\right] \\
& \quad=\quad-\sum_{i_{0}, \ldots, i_{n-1}} p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}} \log \left(p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-2} i_{n-1}}\right) \\
& \underset{i}{\text { rearranging }}=-\sum_{i} p_{i} \log p_{i}-(n-1) \sum_{i, j} p_{i} P_{i j} \log P_{i j} .
\end{aligned}
$$

Hence

$$
h_{\mu}(\sigma) \stackrel{\text { Sinai }}{=} h_{\mu}(\sigma, \alpha)
$$

Hence

$$
\begin{aligned}
h_{\mu}(\sigma) & \stackrel{\text { Sinai }}{=} h_{\mu}(\sigma, \alpha) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
h_{\mu}(\sigma) & \stackrel{\text { Sinai }}{=} h_{\mu}(\sigma, \alpha) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right) \\
& =-\sum_{i, j} p_{i} P_{i j} \log P_{i j} .
\end{aligned}
$$

Remark
If μ is the $\operatorname{Bernoulli}-\left(p_{1}, \ldots, p_{k}\right)$ measure then

$$
h_{\mu}(\sigma)=-\sum_{i} p_{i} \log p_{i}
$$

Hence

$$
\begin{aligned}
h_{\mu}(\sigma) & \stackrel{\text { Sinai }}{=} h_{\mu}(\sigma, \alpha) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \sigma^{-j} \alpha\right) \\
& =-\sum_{i, j} p_{i} P_{i j} \log P_{i j} .
\end{aligned}
$$

Remark
If μ is the $\operatorname{Bernoulli}-\left(p_{1}, \ldots, p_{k}\right)$ measure then

$$
h_{\mu}(\sigma)=-\sum_{i} p_{i} \log p_{i}
$$

If μ is the Bernoulli- $(1 / k, \ldots, 1 / k)$ measure then

$$
h_{\mu}(\sigma)=\log k
$$

Example

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.

Example

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.
For English:
$P_{\mathbf{Q U}}$ should be near 1 as a \mathbf{Q} is highly likely to be followed by \mathbf{U} $P_{\text {FZ }}$ should be near 0 as \mathbf{F} is unlikely to be followed by \mathbf{Z}.

Example

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.
For English:
$P_{\mathbf{Q U}}$ should be near 1 as a \mathbf{Q} is highly likely to be followed by \mathbf{U}
$P_{\mathbf{F Z}}$ should be near 0 as \mathbf{F} is unlikely to be followed by \mathbf{Z}.
Experimentally, one can estimate

$$
h(\text { English })=1.6
$$

Example

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.
For English:
$P_{\mathbf{Q U}}$ should be near 1 as a \mathbf{Q} is highly likely to be followed by \mathbf{U}
$P_{\text {FZ }}$ should be near 0 as \mathbf{F} is unlikely to be followed by \mathbf{Z}.
Experimentally, one can estimate

$$
h(\text { English })=1.6
$$

Note that the Bernoulli $\left(\frac{1}{26}, \ldots, \frac{1}{26}\right)$-measure has entropy $\log 26=4.7$.

Example

We can model a language (written in the Roman alphabet) as a shift on 26 symbols (corresponding to the 26 letters in the alphabet) with an appropriate Markov measure.
For English:
$P_{\mathbf{Q U}}$ should be near 1 as a \mathbf{Q} is highly likely to be followed by \mathbf{U}
$P_{\text {FZ }}$ should be near 0 as \mathbf{F} is unlikely to be followed by \mathbf{Z}.
Experimentally, one can estimate

$$
h(\text { English })=1.6
$$

Note that the Bernoulli $\left(\frac{1}{26}, \ldots, \frac{1}{26}\right)$-measure has entropy $\log 26=4.7$.
This suggests that there is a lot of redundancy in English (good for error-correcting!). See Shannon's book on Information Theory.

Entropy as an invariant

Recall that two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are (measure-theoretically) isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

Entropy as an invariant

Recall that two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$, $S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are (measure-theoretically) isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$.

Entropy as an invariant

Recall that two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are (measure-theoretically) isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$.
Entropy is invariant under isomorphism:

Entropy as an invariant

Recall that two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ are (measure-theoretically) isomorphic if there exists a bimeasurable bijection $\phi: X \rightarrow Y$ such that

commutes (up to sets of measure zero) and $\mu \circ \phi^{-1}=m$.
Entropy is invariant under isomorphism:
Theorem
If T, S are isomorphic then $h_{\mu}(T)=h_{m}(S)$.

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$.

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
H_{\mu}\left(\phi^{-1} \alpha\right)=-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right)
$$

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

More generally

$$
H_{\mu}\left(\bigvee_{j=0}^{n-1} T^{-j}\left(\phi^{-1} \alpha\right)\right)
$$

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

More generally

$$
H_{\mu}\left(\bigvee_{j=0}^{n-1} T^{-j}\left(\phi^{-1} \alpha\right)\right)=H_{\mu}\left(\phi^{-1} \bigvee_{j=0}^{n-1} S^{-j} \alpha\right)
$$

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

More generally

$$
H_{\mu}\left(\bigvee_{j=0}^{n-1} T^{-j}\left(\phi^{-1} \alpha\right)\right)=H_{\mu}\left(\phi^{-1} \bigvee_{j=0}^{n-1} S^{-j} \alpha\right)=H_{m}\left(\bigvee_{j=0}^{n-1} S^{-j} \alpha\right)
$$

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

More generally
$H_{\mu}\left(\bigvee_{j=0}^{n-1} T^{-j}\left(\phi^{-1} \alpha\right)\right)=H_{\mu}\left(\phi^{-1} \bigvee_{j=0}^{n-1} S^{-j} \alpha\right)=H_{m}\left(\bigvee_{j=0}^{n-1} S^{-j} \alpha\right)$.
Hence $h_{\mu}\left(T, \phi^{-1} \alpha\right)=h_{m}(S, \alpha)$.

Proof.

Let α be a finite or countable partition of Y with $H_{m}(\alpha)<\infty$. Then $\phi^{-1} \alpha=\left\{\phi^{-1} A \mid A \in \alpha\right\}$ is a partition of X.
Note that

$$
\begin{aligned}
H_{\mu}\left(\phi^{-1} \alpha\right) & =-\sum_{A \in \alpha} \mu\left(\phi^{-1} A\right) \log \mu\left(\phi^{-1} A\right) \\
& =-\sum_{A \in \alpha} m(A) \log m(A)=H_{m}(\alpha)
\end{aligned}
$$

More generally
$H_{\mu}\left(\bigvee_{j=0}^{n-1} T^{-j}\left(\phi^{-1} \alpha\right)\right)=H_{\mu}\left(\phi^{-1} \bigvee_{j=0}^{n-1} S^{-j} \alpha\right)=H_{m}\left(\bigvee_{j=0}^{n-1} S^{-j} \alpha\right)$.
Hence $h_{\mu}\left(T, \phi^{-1} \alpha\right)=h_{m}(S, \alpha)$. Hence $h_{\mu}(T)=h_{m}(S)$.

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ.

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the Bernoulli-($1 / 2,1 / 2$) measure μ.

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the
Bernoulli- $(1 / 2,1 / 2)$ measure μ.
Define $\phi: \Sigma_{2}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\} \rightarrow[0,1]$ by

$$
\phi\left(x_{0}, x_{1}, \ldots\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the
Bernoulli- $(1 / 2,1 / 2)$ measure μ.
Define $\phi: \Sigma_{2}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\} \rightarrow[0,1]$ by

$$
\phi\left(x_{0}, x_{1}, \ldots\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

Then

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the
Bernoulli- $(1 / 2,1 / 2)$ measure μ.
Define $\phi: \Sigma_{2}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\} \rightarrow[0,1]$ by

$$
\phi\left(x_{0}, x_{1}, \ldots\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

Then

- $\phi \sigma=T \phi$,

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the
Bernoulli- $(1 / 2,1 / 2)$ measure μ.
Define $\phi: \Sigma_{2}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\} \rightarrow[0,1]$ by

$$
\phi\left(x_{0}, x_{1}, \ldots\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

Then

- $\phi \sigma=T \phi$,
- ϕ is a bijection, except on the countable set of points which have non-unique base 2 expansions,

Example: the doubling map and the full 2-shift

Let $T x=2 x \bmod 1$ be the doubling map with Lebesgue measure
λ. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the full one-sided 2 -shift with the
Bernoulli- $(1 / 2,1 / 2)$ measure μ.
Define $\phi: \Sigma_{2}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\} \rightarrow[0,1]$ by

$$
\phi\left(x_{0}, x_{1}, \ldots\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

Then

- $\phi \sigma=T \phi$,
- ϕ is a bijection, except on the countable set of points which have non-unique base 2 expansions,
- $\lambda=\mu \phi^{-1}$ (clear on dyadic intervals, follows for all sets by the Kolmogorov Extension Theorem).

Hence $T x=2 x \bmod 1$ with Lebesgue measure λ and the full one-sided 2 -shift σ with the Bernoulli-($1 / 2,1 / 2$) measure μ are isomorphic.

Hence $T x=2 x \bmod 1$ with Lebesgue measure λ and the full one-sided 2 -shift σ with the Bernoulli-($1 / 2,1 / 2$) measure μ are isomorphic.

Hence

$$
h_{\lambda}(T)=\log 2=h_{\mu}(\sigma)
$$

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.
However, for two-sided aperiodic shifts of finite type equipped with a Bernoulli or Markov measure, then the answer is yes

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.
However, for two-sided aperiodic shifts of finite type equipped with
a Bernoulli or Markov measure, then the answer is yes
Theorem (Ornstein)
2-sided Bernoulli shifts with the same entropy are isomorphic.

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.
However, for two-sided aperiodic shifts of finite type equipped with
a Bernoulli or Markov measure, then the answer is yes
Theorem (Ornstein)
2-sided Bernoulli shifts with the same entropy are isomorphic.
Theorem (Ornstein and Friedman)
2-sided aperiodic Markov shifts with the same entropy are isomorphic.

How complete an invariant is entropy?

Given two mpts $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$,
$S:(Y, \mathcal{A}, m) \rightarrow(Y, \mathcal{A}, m)$ with the same entropy, is it necessarily true that they are isomorphic?

In general, the answer is no.
However, for two-sided aperiodic shifts of finite type equipped with
a Bernoulli or Markov measure, then the answer is yes
Theorem (Ornstein)
2-sided Bernoulli shifts with the same entropy are isomorphic.
Theorem (Ornstein and Friedman)
2-sided aperiodic Markov shifts with the same entropy are isomorphic.
(The one-sided case is far more subtle.)

Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition
A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a shift σ with some Bernoulli- $\left(p_{1}, \ldots, p_{k}\right)$ measure.

Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a shift σ with some $\operatorname{Bernoulli-~}\left(p_{1}, \ldots, p_{k}\right)$ measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a shift σ with some $\operatorname{Bernoulli-~}\left(p_{1}, \ldots, p_{k}\right)$ measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

In general, a mpt that exhibits some form of 'hyperbolicity' is, when equipped with a suitable measure, Bernoulli.

Bernoulli systems

Being isomorphic to a Bernoulli shift is a useful and desirable property for a mpt to possess.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a shift σ with some $\operatorname{Bernoulli-~}\left(p_{1}, \ldots, p_{k}\right)$ measure.

Example

We have already seen that the doubling map with Lebesgue measure is Bernoulli.

In general, a mpt that exhibits some form of 'hyperbolicity' is, when equipped with a suitable measure, Bernoulli.

For example, hyperbolic toral automorphisms are Bernoulli.

Next lecture

Next lecture

Entropy has been defined in a purely measure-theoretic setting.
There is a topological analogue in the setting of continuous transformations of compact metric spaces: topological entropy.

We will define this and study the connections between measure-theoretic and topological entropy.

