# MAGIC: Ergodic Theory Lecture 6 - Continuous transformations of compact metric spaces 

Charles Walkden

February 28, 2013

In the previous lectures we studied:

- $(X, \mathscr{B}, \mu)$, a probability space.
- a measure preserving transformation $T: X \longrightarrow X$.

In this lecture, we fix a transformation $T: X \longrightarrow X$ and consider the space $\mathcal{M}(X, T)$ of all $T$-invariant probability measures.

In the previous lectures we studied:

- $(X, \mathscr{B}, \mu)$, a probability space.
- a measure preserving transformation $T: X \longrightarrow X$.

In this lecture, we fix a transformation $T: X \longrightarrow X$ and consider the space $\mathcal{M}(X, T)$ of all $T$-invariant probability measures.

In order to equip $\mathcal{M}(X, T)$ with some structure, we need some structure on $X$ and $T$.

In the previous lectures we studied:

- $(X, \mathscr{B}, \mu)$, a probability space.
- a measure preserving transformation $T: X \longrightarrow X$.

In this lecture, we fix a transformation $T: X \longrightarrow X$ and consider the space $\mathcal{M}(X, T)$ of all $T$-invariant probability measures.

In order to equip $\mathcal{M}(X, T)$ with some structure, we need some structure on $X$ and $T$. Throughout:

- $X=$ a compact metric space.
- $\mathscr{B}=$ the Borel $\sigma$-algebra (smallest $\sigma$-algebra that contains all open sets).
- $T: X \longrightarrow X$ a continuous transformation.

Let $C(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R} \mid f$ is continuous $\}$.

Let $C(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R} \mid f$ is continuous $\}$.
Define the uniform norm

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

Let $C(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R} \mid f$ is continuous $\}$.
Define the uniform norm

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

With this norm, $C(X, \mathbb{R})$ is a Banach space (a complete normed vector space).

Let $C(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R} \mid f$ is continuous $\}$.
Define the uniform norm

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

With this norm, $C(X, \mathbb{R})$ is a Banach space (a complete normed vector space).

Important fact:
$X$ compact metric $\Longrightarrow C(X, \mathbb{R})$ separable.

Let $C(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R} \mid f$ is continuous $\}$.
Define the uniform norm

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

With this norm, $C(X, \mathbb{R})$ is a Banach space (a complete normed vector space).

Important fact:
$X$ compact metric $\Longrightarrow C(X, \mathbb{R})$ separable.

## Recall:

A space is separable if there is a countable dense subset.

Definition
$\mathcal{M}(X)=\{\mu \mid \mu$ is a Borel probability measure $\}$.

Definition
$\mathcal{M}(X)=\{\mu \mid \mu$ is a Borel probability measure $\}$.
Proposition
$\mathcal{M}(X)$ is convex:

Definition
$\mathcal{M}(X)=\{\mu \mid \mu$ is a Borel probability measure $\}$.
Proposition
$\mathcal{M}(X)$ is convex:
$\mu_{1}, \mu_{2} \in \mathcal{M}(X), 0 \leq \alpha \leq 1 \Longrightarrow \alpha \mu_{1}+(1-\alpha) \mu_{2} \in \mathcal{M}(X)$


Definition
$\mathcal{M}(X)=\{\mu \mid \mu$ is a Borel probability measure $\}$.
Proposition
$\mathcal{M}(X)$ is convex:
$\mu_{1}, \mu_{2} \in \mathcal{M}(X), 0 \leq \alpha \leq 1 \Longrightarrow \alpha \mu_{1}+(1-\alpha) \mu_{2} \in \mathcal{M}(X)$


Proof.
Immediate from definitions.

## Weak-* topology

It will be important to equip $\mathcal{M}(X)$ with a topology.

## Weak-* topology

It will be important to equip $\mathcal{M}(X)$ with a topology. In fact, we will only need to see what it means for a sequence of measures to converge.

## Weak-* topology

It will be important to equip $\mathcal{M}(X)$ with a topology. In fact, we will only need to see what it means for a sequence of measures to converge.

Definition
Let $\mu_{n}, \mu \in \mathcal{M}(X)$. Then $\mu_{n} \rightharpoonup \mu$ if:

$$
\int f d \mu_{n} \longrightarrow \int f d \mu \forall f \in C(X, \mathbb{R})
$$

## Weak-* topology

It will be important to equip $\mathcal{M}(X)$ with a topology. In fact, we will only need to see what it means for a sequence of measures to converge.

Definition
Let $\mu_{n}, \mu \in \mathcal{M}(X)$. Then $\mu_{n} \rightharpoonup \mu$ if:

$$
\int f d \mu_{n} \longrightarrow \int f d \mu \forall f \in C(X, \mathbb{R})
$$

Remark
This does not say $\mu_{n}(B) \longrightarrow \mu(B) \forall B \in \mathscr{B}$.

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.
2. Recall that $\delta_{x}$ the Dirac measure at $x$, is defined by

$$
\delta_{x}(B)= \begin{cases}0 & \text { if } x \notin B ; \\ 1 & \text { if } x \in B\end{cases}
$$

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.
2. Recall that $\delta_{x}$ the Dirac measure at $x$, is defined by

$$
\delta_{x}(B)= \begin{cases}0 & \text { if } x \notin B \\ 1 & \text { if } x \in B\end{cases}
$$

There is a continuous embedding $X \hookrightarrow \mathcal{M}(X)$ given by $x \longmapsto \delta_{x}$.

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.
2. Recall that $\delta_{x}$ the Dirac measure at $x$, is defined by

$$
\delta_{x}(B)= \begin{cases}0 & \text { if } x \notin B \\ 1 & \text { if } x \in B\end{cases}
$$

There is a continuous embedding $X \hookrightarrow \mathcal{M}(X)$ given by $x \longmapsto \delta_{x}$. i.e. if $x_{n} \longrightarrow x$ then $\delta_{x_{n}} \rightharpoonup \delta_{x}$.

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.
2. Recall that $\delta_{x}$ the Dirac measure at $x$, is defined by

$$
\delta_{x}(B)= \begin{cases}0 & \text { if } x \notin B \\ 1 & \text { if } x \in B\end{cases}
$$

There is a continuous embedding $X \hookrightarrow \mathcal{M}(X)$ given by $x \longmapsto \delta_{x}$. i.e. if $x_{n} \longrightarrow x$ then $\delta_{x_{n}} \rightharpoonup \delta_{x}$.
(Let $f \in C(X, \mathbb{R})$. Then $\int f d \delta_{x_{n}}=f\left(x_{n}\right) \rightarrow f(x)=\int f d \delta_{x}$.)

## Remarks

1. One can write down a formula for a metric $\rho$ on $\mathcal{M}(X)$ such that $\mu_{n} \rightharpoonup \mu$ iff $\rho\left(\mu_{n}, \mu\right) \longrightarrow 0$.
2. Recall that $\delta_{x}$ the Dirac measure at $x$, is defined by

$$
\delta_{x}(B)= \begin{cases}0 & \text { if } x \notin B \\ 1 & \text { if } x \in B\end{cases}
$$

There is a continuous embedding $X \hookrightarrow \mathcal{M}(X)$ given by $x \longmapsto \delta_{x}$. i.e. if $x_{n} \longrightarrow x$ then $\delta_{x_{n}} \rightharpoonup \delta_{x}$.
(Let $f \in C(X, \mathbb{R})$. Then $\int f d \delta_{x_{n}}=f\left(x_{n}\right) \rightarrow f(x)=\int f d \delta_{x}$.)
Note that $1 / n \rightarrow 0$ as $n \rightarrow \infty$. Let $B=\{0\}$. Then $0=\delta_{1 / n}(B) \nrightarrow \delta_{0}(B)=1$.

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$.

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:
(1) linearity: $\mu\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \mu\left(f_{1}\right)+\lambda_{2} \mu\left(f_{2}\right)$

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:
(1) linearity: $\mu\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \mu\left(f_{1}\right)+\lambda_{2} \mu\left(f_{2}\right)$
(2) continuity/boundedness: $|\mu(f)| \leq\|f\|_{\infty}$

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:
(1) linearity: $\mu\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \mu\left(f_{1}\right)+\lambda_{2} \mu\left(f_{2}\right)$
(2) continuity/boundedness: $|\mu(f)| \leq\|f\|_{\infty}$
(3) positivity: $f \geq 0 \Longrightarrow \mu(f) \geq 0$

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:
(1) linearity: $\mu\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \mu\left(f_{1}\right)+\lambda_{2} \mu\left(f_{2}\right)$
(2) continuity/boundedness: $|\mu(f)| \leq\|f\|_{\infty}$
(3) positivity: $f \geq 0 \Longrightarrow \mu(f) \geq 0$
(4) normalised: $\mu(1)=1$.

## The Riesz Representation Theorem

Let $\mu \in \mathcal{M}(X)$. Then $\mu$ can be regarded as a functional

$$
\mu: C(X, \mathbb{R}) \longrightarrow \mathbb{R}: f \mapsto \int f d \mu
$$

Write $\mu(f)$ for $\int f d \mu$.
This functional satisfies the following properties:
(1) linearity: $\mu\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \mu\left(f_{1}\right)+\lambda_{2} \mu\left(f_{2}\right)$
(2) continuity/boundedness: $|\mu(f)| \leq\|f\|_{\infty}$
(3) positivity: $f \geq 0 \Longrightarrow \mu(f) \geq 0$
(4) normalised: $\mu(1)=1$.

The Riesz Representation Theorem says that any functional $C(X, \mathbb{R}) \rightarrow \mathbb{R}$ satisfying (1) - (4) is given by integration w.r.t. a suitable Borel probability measure:

Theorem:(Riesz Representation)
Let $\omega: C(X, \mathbb{R}) \longrightarrow \mathbb{R}$ be a functional satisfying
(1) linearity: $\omega\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \omega\left(f_{1}\right)+\lambda_{2} \omega\left(f_{2}\right)$
(2) continuity/boundedness: $|\omega(f)| \leq\|f\|_{\infty}$
(3)
(4)
positivity: $\quad f \geq 0 \Longrightarrow \omega(f) \geq 0$
normalised: $\quad \omega(1)=1$.

Theorem:(Riesz Representation)
Let $\omega: C(X, \mathbb{R}) \longrightarrow \mathbb{R}$ be a functional satisfying
(1) linearity: $\omega\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} \omega\left(f_{1}\right)+\lambda_{2} \omega\left(f_{2}\right)$
(2) continuity/boundedness: $|\omega(f)| \leq\|f\|_{\infty}$
(3)
(4)
positivity: $\quad f \geq 0 \Longrightarrow \omega(f) \geq 0$
normalised: $\quad \omega(1)=1$.

Then there exists a unique Borel probability measure $\mu \in \mathcal{M}(X)$
s.t. $\omega(f)=\int f d \mu$.

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle
$$

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X(=$ space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle
$$

The version of the Riesz Representation Theorem stated above tells us that:

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle .
$$

The version of the Riesz Representation Theorem stated above tells us that:

$$
\mathcal{M}(X)=C(X, \mathbb{R})^{*}
$$

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ ( $=$ space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle .
$$

The version of the Riesz Representation Theorem stated above tells us that:

$$
\mathcal{M}(X)=C(X, \mathbb{R})^{*} \cap \text { positive cone }
$$

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle
$$

The version of the Riesz Representation Theorem stated above tells us that:

$$
\begin{gathered}
\mathcal{M}(X)=C(X, \mathbb{R})^{*} \cap \text { positive cone } \\
\left\{\omega \in C(X, \mathbb{R})^{*} \mid f \geq 0 \Longrightarrow \omega(f) \geq 0\right\}
\end{gathered}
$$

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle
$$

The version of the Riesz Representation Theorem stated above tells us that:

$$
\begin{aligned}
& \mathcal{M}(X)=C(X, \mathbb{R})^{*} \cap \text { positive cone } \cap \text { unit ball } \\
& \left\{\omega \in C(X, \mathbb{R})^{*} \mid f \geq 0 \Longrightarrow \omega(f) \geq 0\right\}
\end{aligned}
$$

## Connections with functional analysis

Let $X$ be a (real) Hilbert space, $X^{*}$ the dual of $X$ (= space of continuous linear functionals $X \rightarrow \mathbb{R}$ ).
The Riesz Representation Theorem (in the context of Hilbert spaces) tells us that $X$ and $X^{*}$ are naturally isomorphic via the map

$$
X \longrightarrow X^{*}: x \longmapsto\langle x, \cdot\rangle .
$$

The version of the Riesz Representation Theorem stated above tells us that:

$$
\begin{aligned}
& \mathcal{M}(X)=C(X, \mathbb{R})^{*} \cap \text { positive cone } \cap \text { unit ball } \\
& \left\{\omega \in C(X, \mathbb{R})^{*} \mid f \geq 0 \Longrightarrow \omega(f) \geq 0\right\} \\
& \left\{\omega \in C(X, \mathbb{R})^{*}| | \omega \mid=1\right\}
\end{aligned}
$$

If we allow 'signed' measures then we get a natural isomorphism

$$
\mathcal{M}_{\text {signed }}(X)=C(X, \mathbb{R})^{*}
$$

If we allow 'signed' measures then we get a natural isomorphism

$$
\mathcal{M}_{\text {signed }}(X)=C(X, \mathbb{R})^{*}
$$

Recall:
Alaoglu's theorem: Let $X$ be a Banach space. Then the unit ball in $X^{*}$ is weak-* compact.

If we allow 'signed' measures then we get a natural isomorphism

$$
\mathcal{M}_{\text {signed }}(X)=C(X, \mathbb{R})^{*}
$$

Recall:
Alaoglu's theorem: Let $X$ be a Banach space. Then the unit ball in $X^{*}$ is weak-* compact.

Corollary
$\mathcal{M}(X)$ is weak-* compact.

If we allow 'signed' measures then we get a natural isomorphism

$$
\mathcal{M}_{\text {signed }}(X)=C(X, \mathbb{R})^{*}
$$

## Recall:

Alaoglu's theorem: Let $X$ be a Banach space. Then the unit ball in $X^{*}$ is weak-* compact.

Corollary
$\mathcal{M}(X)$ is weak-* compact.
Proof.
Use $\mathcal{M}(X)=C(X, \mathbb{R})^{*} \cap$ positive cone $\cap$ unit ball. The unit ball in $C(X, \mathbb{R})^{*}$ is weak-* compact by Alaoglu's theorem. The positive cone on $C(X, \mathbb{R})^{*}$ is weak-* closed.

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation.

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation. Then $T$ induces a map on $\mathcal{M}(X)$

$$
\begin{aligned}
T_{*}: \mathcal{M}(X) & \longrightarrow \mathcal{M}(X), \\
T_{*} \mu(B) & =\mu\left(T^{-1} B\right) .
\end{aligned}
$$

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation. Then $T$ induces a map on $\mathcal{M}(X)$

$$
\begin{aligned}
T_{*}: \mathcal{M}(X) & \longrightarrow \mathcal{M}(X) \\
T_{*} \mu(B) & =\mu\left(T^{-1} B\right) .
\end{aligned}
$$

## Remark

Hence $\mu$ is $T$-invariant if and only if $T_{*} \mu=\mu$.

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation. Then $T$ induces a map on $\mathcal{M}(X)$

$$
\begin{aligned}
T_{*}: \mathcal{M}(X) & \longrightarrow \mathcal{M}(X) \\
T_{*} \mu(B) & =\mu\left(T^{-1} B\right) .
\end{aligned}
$$

## Remark

Hence $\mu$ is $T$-invariant if and only if $T_{*} \mu=\mu$.
Definition

$$
\text { Let } \begin{aligned}
\mathcal{M}(X, T) & =\{\text { all } T \text {-invariant measures }\} \\
& =\left\{\mu \in \mathcal{M}(X) \mid T_{*} \mu=\mu\right\}
\end{aligned}
$$

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation. Then $T$ induces a map on $\mathcal{M}(X)$

$$
\begin{aligned}
T_{*}: \mathcal{M}(X) & \longrightarrow \mathcal{M}(X), \\
T_{*} \mu(B) & =\mu\left(T^{-1} B\right) .
\end{aligned}
$$

## Remark

Hence $\mu$ is $T$-invariant if and only if $T_{*} \mu=\mu$.
Definition

$$
\text { Let } \begin{aligned}
\mathcal{M}(X, T) & =\{\text { all } T \text {-invariant measures }\} \\
& =\left\{\mu \in \mathcal{M}(X) \mid T_{*} \mu=\mu\right\}
\end{aligned}
$$

We want to investigate the structure of $\mathcal{M}(X, T)$.

## Invariant Measures for continuous transformations

Let $X$ be a compact metric space and $T: X \rightarrow X$ a continuous transformation. Then $T$ induces a map on $\mathcal{M}(X)$

$$
\begin{aligned}
T_{*}: \mathcal{M}(X) & \longrightarrow \mathcal{M}(X) \\
T_{*} \mu(B) & =\mu\left(T^{-1} B\right) .
\end{aligned}
$$

## Remark

Hence $\mu$ is $T$-invariant if and only if $T_{*} \mu=\mu$.

## Definition

$$
\text { Let } \begin{aligned}
\mathcal{M}(X, T) & =\{\text { all } T \text {-invariant measures }\} \\
& =\left\{\mu \in \mathcal{M}(X) \mid T_{*} \mu=\mu\right\}
\end{aligned}
$$

We want to investigate the structure of $\mathcal{M}(X, T)$. First we need to integrate with respect to $T_{*} \mu$.

## Lemma 1

$$
\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu .
$$

## Lemma 1

$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then

Lemma 1
$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then
$\int \chi_{B} d\left(T_{*} \mu\right)$

Lemma 1
$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then
$\int \chi_{B} d\left(T_{*} \mu\right)=T_{*} \mu(B)$

Lemma 1
$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then

$$
\int \chi_{B} d\left(T_{*} \mu\right)=T_{*} \mu(B)=\mu\left(T^{-1} B\right)
$$

Lemma 1
$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then
$\int \chi_{B} d\left(T_{*} \mu\right)=T_{*} \mu(B)=\mu\left(T^{-1} B\right)=\int \chi_{T^{-1} B} d \mu$

Lemma 1
$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then

$$
\begin{array}{r}
\int \chi_{B} d\left(T_{*} \mu\right)=T_{*} \mu(B)=\mu\left(T^{-1} B\right)=\int \chi_{T^{-1} B} d \mu=\int \chi_{B} \circ T d \mu \\
\text { (easy check that } \left.\chi_{T^{-1} B}=\chi_{B} \circ T\right) .
\end{array}
$$

## Lemma 1

$\int f d\left(T_{*} \mu\right)=\int f \circ T d \mu$.
Proof.
Take $f=\chi_{B}$. Then
$\int \chi_{B} d\left(T_{*} \mu\right)=T_{*} \mu(B)=\mu\left(T^{-1} B\right)=\int \chi_{T^{-1} B} d \mu=\int \chi_{B} \circ T d \mu$
(easy check that $\chi_{T^{-1} B}=\chi_{B} \circ T$ ).
Hence the lemma is true for linear combinations of characteristic functions, hence for positive measurable functions, hence for integrable functions.

The following gives a useful condition for checking whether a measure is $T$-invariant.

The following gives a useful condition for checking whether a measure is $T$-invariant.

Lemma 2
Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

The following gives a useful condition for checking whether a measure is $T$-invariant.

Lemma 2
Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

Proof.
$\Longrightarrow$ :

$$
\int f \circ T d \mu
$$

The following gives a useful condition for checking whether a measure is $T$-invariant.

## Lemma 2

Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

Proof.
$\qquad$

$$
\int f \circ T d \mu \neq \int f d\left(T_{*} \mu\right)
$$

Lemma 1

The following gives a useful condition for checking whether a measure is $T$-invariant.

## Lemma 2

Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

Proof.
$\Longrightarrow$ :

$$
\int f \circ T d \mu \underset{\neq}{=}=\int f d\left(T_{*} \mu\right) \underset{\neq}{=} f f d \mu
$$

The following gives a useful condition for checking whether a measure is $T$-invariant.

## Lemma 2

Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

Proof.
$\Longrightarrow$ :

$$
\int f \circ T d \mu \underset{\sim}{=}=\int f d\left(T_{*} \mu\right) \underset{\neq}{=} f f d \mu
$$

$\Longleftarrow$ : Use Lemma 1 to rewrite (1) as

$$
\left(T_{*} \mu\right)(f)=\mu(f) \forall f \in C(X, \mathbb{R})
$$

The following gives a useful condition for checking whether a measure is $T$-invariant.

## Lemma 2

Let $T$ be a continuous transformation of a compact metric space. Then

$$
\begin{equation*}
\mu=\mathcal{M}(X, T) \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \quad \forall f \in C(X, \mathbb{R}) \tag{1}
\end{equation*}
$$

Proof.
$\Longrightarrow$ :

$$
\int f \circ T d \mu \underset{\sim}{=}=\int f d\left(T_{*} \mu\right) \underset{\neq}{=} f f d \mu
$$

$\Longleftarrow$ : Use Lemma 1 to rewrite (1) as

$$
\left(T_{*} \mu\right)(f)=\mu(f) \forall f \in C(X, \mathbb{R})
$$

By uniqueness in the Riesz Representation theorem, $T_{*} \mu=\mu$.

## Existence of invariant measures

We show that continuous transformation of a compact metric space always has at least one invariant measure.

## Existence of invariant measures

We show that continuous transformation of a compact metric space always has at least one invariant measure. (Typically there will be uncountably many. This is the case for example for the doubling map, hyperbolic toral automorphism etc.)

## Existence of invariant measures

We show that continuous transformation of a compact metric space always has at least one invariant measure. (Typically there will be uncountably many. This is the case for example for the doubling map, hyperbolic toral automorphism etc.)

Theorem
$\mathcal{M}(X, T) \neq \emptyset$.

Proof that $\mathcal{M}(X, T) \neq \emptyset$

## Proof that $\mathcal{M}(X, T) \neq \emptyset$

First note that $T_{*}: \mathcal{M}(X) \rightarrow \mathcal{M}(X)$ is weak-* continuous.

## Proof that $\mathcal{M}(X, T) \neq \emptyset$

First note that $T_{*}: \mathcal{M}(X) \rightarrow \mathcal{M}(X)$ is weak-* continuous. To see this, suppose $\mu_{n} \rightharpoonup \mu$. We want to show $T_{*} \mu_{n} \rightharpoonup T_{*} \mu$.

## Proof that $\mathcal{M}(X, T) \neq \emptyset$

First note that $T_{*}: \mathcal{M}(X) \rightarrow \mathcal{M}(X)$ is weak-* continuous. To see this, suppose $\mu_{n} \rightharpoonup \mu$. We want to show $T_{*} \mu_{n} \rightharpoonup T_{*} \mu$.

Let $f \in C(X, \mathbb{R})$. Note $f \circ T \in C(X, \mathbb{R})$. Then

$$
\int f d\left(T_{*} \mu_{n}\right)=\int f \circ T d \mu_{n} \rightarrow \int f \circ T d \mu=\int f d\left(T_{*} \mu\right) .
$$

## Proof that $\mathcal{M}(X, T) \neq \emptyset$

First note that $T_{*}: \mathcal{M}(X) \rightarrow \mathcal{M}(X)$ is weak-* continuous. To see this, suppose $\mu_{n} \rightharpoonup \mu$. We want to show $T_{*} \mu_{n} \rightharpoonup T_{*} \mu$.

Let $f \in C(X, \mathbb{R})$. Note $f \circ T \in C(X, \mathbb{R})$. Then

$$
\int f d\left(T_{*} \mu_{n}\right)=\int f \circ T d \mu_{n} \rightarrow \int f \circ T d \mu=\int f d\left(T_{*} \mu\right) .
$$

## Theorem (Schauder-Tychonoff fixed point theorem)

Let $K$ be a compact convex subset of a locally convex space. Let $T: K \rightarrow K$ be continuous. Then $T$ has a fixed point in $K$.
$\mathcal{M}(X)$ is a compact convex subset of the locally convex space $C(X, \mathbb{R})^{*}$. The map $T_{*}$ is continuous and maps $\mathcal{M}(X)$ to itself.

Hence there exists $\mu \in \mathcal{M}(X)$ such that $T_{*} \mu=\mu$, i.e. $\mu \in \mathcal{M}(X, T)$.

## Other properties of $M(X, T)$

$\mathcal{M}(X, T)$ enjoys some other properties:

## Other properties of $M(X, T)$

$\mathcal{M}(X, T)$ enjoys some other properties:
Theorem

1. $M(X, T)$ is convex $\left(\mu_{1}, \mu_{2} \in \mathcal{M}(X, T), 0 \leq \alpha \leq 1 \Longrightarrow\right.$ $\left.\alpha \mu_{1}+(1-\alpha) \mu_{2} \in \mathcal{M}(X, T)\right)$.
2. $\mathcal{M}(X, T)$ is weak-* compact.

## Other properties of $M(X, T)$

$\mathcal{M}(X, T)$ enjoys some other properties:
Theorem

1. $M(X, T)$ is convex $\left(\mu_{1}, \mu_{2} \in \mathcal{M}(X, T), 0 \leq \alpha \leq 1 \Longrightarrow\right.$ $\left.\alpha \mu_{1}+(1-\alpha) \mu_{2} \in \mathcal{M}(X, T)\right)$.
2. $\mathcal{M}(X, T)$ is weak-* compact.

Proof.
Unravel the definitions!

## Ergodic measures for continuous transformations

We want to characterise the ergodic measures in $\mathcal{M}(X, T)$. We will do this using the convexity of $\mathcal{M}(X, T)$.

## Ergodic measures for continuous transformations

We want to characterise the ergodic measures in $\mathcal{M}(X, T)$. We will do this using the convexity of $\mathcal{M}(X, T)$.

## Extremal points in convex sets

Let $Y$ be a subset of a vector space.
Recall: $Y$ is convex if $\forall y_{1}, y_{2} \in Y, 0 \leq \alpha \leq 1$ we have $\alpha y_{1}+(1-\alpha) y_{2} \in Y$.

## Ergodic measures for continuous transformations

We want to characterise the ergodic measures in $\mathcal{M}(X, T)$. We will do this using the convexity of $\mathcal{M}(X, T)$.

Extremal points in convex sets
Let $Y$ be a subset of a vector space.
Recall: $Y$ is convex if $\forall y_{1}, y_{2} \in Y, 0 \leq \alpha \leq 1$ we have $\alpha y_{1}+(1-\alpha) y_{2} \in Y$.


Definition
A point $y \in Y$ is said to be extremal if it cannot be written as a convex combination of another two points in $Y$,

## Definition

A point $y \in Y$ is said to be extremal if it cannot be written as a convex combination of another two points in $Y$, i.e.
$y$ extremal $\Longleftrightarrow \quad \begin{gathered}y=\alpha y_{1}+(1-\alpha) y_{2} \\ \text { for } 0<\alpha<1, y_{1}, y_{2} \in Y\end{gathered} \quad$ implies $y_{1}=y_{2}=y$.

## Definition

A point $y \in Y$ is said to be extremal if it cannot be written as a convex combination of another two points in $Y$, i.e.
$y$ extremal $\Longleftrightarrow \quad \begin{gathered}y=\alpha y_{1}+(1-\alpha) y_{2} \\ \text { for } 0<\alpha<1, y_{1}, y_{2} \in Y\end{gathered} \quad$ implies $y_{1}=y_{2}=y$.
Let $\operatorname{Ext}(Y)=\{$ extremal points $\}$.

## Examples

$Y=$ unit square


## Examples

$Y=$ unit square


## Examples

## $Y=$ unit square



## Examples

$Y=$ unit square


## Examples

$Y=$ unit square

$\operatorname{Ext}(Y)=\{$ four corners $\}$

## Examples

$Y=$ unit square
$Y=$ unit disc

$\operatorname{Ext}(Y)=\{$ four corners $\}$

## Examples

$Y=$ unit square
$Y=$ unit disc

$\operatorname{Ext}(Y)=\{$ four corners $\}$

## Examples

$Y=$ unit square

$\operatorname{Ext}(Y)=\{$ four corners $\}$
$Y=$ unit disc

$\operatorname{Ext}(Y)=\{$ boundary $\}$

## Examples

$Y=$ unit square

$\operatorname{Ext}(Y)=\{$ four corners $\}$
$Y=$ unit disc

$\operatorname{Ext}(Y)=\{$ boundary $\}$

## Remark

The geometric intuition that the extremal points lie on the boundary fails in infinite dimensions.

## Definition

Let $Z$ be any subset of a vector space. Then the convex hull of $Z$, $\operatorname{Cov}(Z)$, is the smallest closed convex set containing $Z$.

## Definition

Let $Z$ be any subset of a vector space. Then the convex hull of $Z$, $\operatorname{Cov}(Z)$, is the smallest closed convex set containing $Z$.

## Example

## Definition

Let $Z$ be any subset of a vector space. Then the convex hull of $Z$, $\operatorname{Cov}(Z)$, is the smallest closed convex set containing $Z$.

## Example

## Definition

Let $Z$ be any subset of a vector space. Then the convex hull of $Z$, $\operatorname{Cov}(Z)$, is the smallest closed convex set containing $Z$.

## Example

## Definition

Let $Z$ be any subset of a vector space. Then the convex hull of $Z$, $\operatorname{Cov}(Z)$, is the smallest closed convex set containing $Z$.

## Example



Theorem:(Krein-Milman)
Let $X$ be a topological vector space on which $X^{*}$ separates points. Let $K \subset X$ be a compact convex subset. Then $K$ is the convex hull of its extremal points:

$$
K=\operatorname{Cov}(\operatorname{Ext}(K))
$$

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure.

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)
Theorem 3:
$\mu \in \mathcal{M}(X, T)$ is ergodic if and only if $\mu \in \mathcal{M}(X, T)$ is extremal.

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)
Theorem 3:
$\mu \in \mathcal{M}(X, T)$ is ergodic if and only if $\mu \in \mathcal{M}(X, T)$ is extremal.
Corollary
A continuous transformation of a compact metric has at least one ergodic measure.

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)
Theorem 3:
$\mu \in \mathcal{M}(X, T)$ is ergodic if and only if $\mu \in \mathcal{M}(X, T)$ is extremal.
Corollary
A continuous transformation of a compact metric has at least one ergodic measure.
Thm $\Longrightarrow$ Corollary: By Krein-Milman, $\mathcal{M}(X, T)=\operatorname{Cov}(\operatorname{Ext}(\mathcal{M}(X, T)))$.

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)
Theorem 3:
$\mu \in \mathcal{M}(X, T)$ is ergodic if and only if $\mu \in \mathcal{M}(X, T)$ is extremal.
Corollary
A continuous transformation of a compact metric has at least one ergodic measure.
Thm $\Longrightarrow$ Corollary: By Krein-Milman, $\mathcal{M}(X, T)=\operatorname{Cov}(\operatorname{Ext}(\mathcal{M}(X, T)))$. As $\mathcal{M}(X, T) \neq \emptyset$, we have that $\operatorname{Ext}(\mathcal{M}(X, T)) \neq \emptyset$.

## Existence of Ergodic Measures

Let $T$ be a continuous transformation of a compact metric space $X$. Then we know that $\mathcal{M}(X, T) \neq \emptyset$, i.e. there is at least one $T$-invariant measure. Is there an ergodic measure?
(Recall that $\mu \in \mathcal{M}(X, T)$ is ergodic $\Leftrightarrow$ no non-trivial $T$-invariant subsets, i.e. $T^{-1} B=B, B \in \mathscr{B}$ implies $\mu(B)=0$ or 1.)
Theorem 3:
$\mu \in \mathcal{M}(X, T)$ is ergodic if and only if $\mu \in \mathcal{M}(X, T)$ is extremal.
Corollary
A continuous transformation of a compact metric has at least one ergodic measure.
Thm $\Longrightarrow$ Corollary: By Krein-Milman, $\mathcal{M}(X, T)=\operatorname{Cov}(\operatorname{Ext}(\mathcal{M}(X, T)))$. As $\mathcal{M}(X, T) \neq \emptyset$, we have that $\operatorname{Ext}(\mathcal{M}(X, T)) \neq \emptyset$. By the Theorem, these are precisely the ergodic measures.

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication.
(Unusually, this is the easier direction!)

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication.
(Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication. (Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.
$\mu$ not ergodic $\Longrightarrow \exists B \in \mathscr{B}, 0<\mu(B)<1$, s.t. $T^{-1}(B)=B$.

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication. (Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.
$\mu$ not ergodic $\Longrightarrow \exists B \in \mathscr{B}, 0<\mu(B)<1$, s.t. $T^{-1}(B)=B$.
Let $\alpha=\mu(B)$. Define probability measures

$$
\mu_{1}(\cdot)=\frac{\mu(\cdot \cap B)}{\mu(B)}, \quad \mu_{2}(\cdot)=\frac{\mu\left(\cdot \cap B^{c}\right)}{\mu\left(B^{c}\right)} .
$$

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication. (Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.
$\mu$ not ergodic $\Longrightarrow \exists B \in \mathscr{B}, 0<\mu(B)<1$, s.t. $T^{-1}(B)=B$.
Let $\alpha=\mu(B)$. Define probability measures

$$
\mu_{1}(\cdot)=\frac{\mu(\cdot \cap B)}{\mu(B)}, \quad \mu_{2}(\cdot)=\frac{\mu\left(\cdot \cap B^{c}\right)}{\mu\left(B^{c}\right)} .
$$

As $T^{-1} B=B$, it is easy to check $\mu_{1}, \mu_{2} \in \mathcal{M}(X, T)$.

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication.
(Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.
$\mu$ not ergodic $\Longrightarrow \exists B \in \mathscr{B}, 0<\mu(B)<1$, s.t. $T^{-1}(B)=B$.
Let $\alpha=\mu(B)$. Define probability measures

$$
\mu_{1}(\cdot)=\frac{\mu(\cdot \cap B)}{\mu(B)}, \quad \mu_{2}(\cdot)=\frac{\mu\left(\cdot \cap B^{c}\right)}{\mu\left(B^{c}\right)} .
$$

As $T^{-1} B=B$, it is easy to check $\mu_{1}, \mu_{2} \in \mathcal{M}(X, T)$.
Clearly, $\mu=\alpha \mu_{1}+(1-\alpha) \mu_{2}$.

Proof of Theorem: Note: we only make use of the $\Leftarrow$ implication.
(Unusually, this is the easier direction!)
We prove the contrapositive: $\mu$ not ergodic $\Rightarrow \mu$ not extremal.
$\mu$ not ergodic $\Longrightarrow \exists B \in \mathscr{B}, 0<\mu(B)<1$, s.t. $T^{-1}(B)=B$.
Let $\alpha=\mu(B)$. Define probability measures

$$
\mu_{1}(\cdot)=\frac{\mu(\cdot \cap B)}{\mu(B)}, \quad \mu_{2}(\cdot)=\frac{\mu\left(\cdot \cap B^{c}\right)}{\mu\left(B^{c}\right)} .
$$

As $T^{-1} B=B$, it is easy to check $\mu_{1}, \mu_{2} \in \mathcal{M}(X, T)$.
Clearly, $\mu=\alpha \mu_{1}+(1-\alpha) \mu_{2}$.
As $\mu_{1} \neq \mu_{2}$, we see that $\mu$ is not extremal.

Example: the North-South Map
Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.

Example: the North-South Map
Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:

## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


## Example: the North-South Map

Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


Example: the North-South Map
Let $X \subset \mathbb{R}^{2}$ be the circle of radius 1 and centre $(0,1)$. Let $N=$ north pole $=(0,2)$ and $S=$ south pole $=(0,0)$.
Define a map $T: X \longrightarrow X$ as indicated:


Then $N, S$ are fixed points under $T$. Hence $\delta_{N}, \delta_{S} \in \mathcal{M}(X, T)$. We calculate $\mathcal{M}(X, T)$.

Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle $)=0$.

Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:

Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Let $\mu \in \mathcal{M}(X, T)$.
We claim: $\mu$ (right semicircle) $=0$.
Choose any $x \in$ right semicircle. Let $I=[x, T x)$ be the arc of the semicircle:


Then the right semicircle is the disjoint union $\bigcup_{n=-\infty}^{\infty} T^{-n} I$.

As $\mu$ is $T$-invariant:

As $\mu$ is $T$-invariant:

$$
1 \geq \mu(\text { right semicircle })
$$

As $\mu$ is $T$-invariant:

$$
1 \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right)
$$

As $\mu$ is $T$-invariant:

$$
\begin{aligned}
1 & \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right) \\
& =\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} l\right)
\end{aligned}
$$

As $\mu$ is $T$-invariant:

$$
\begin{aligned}
1 & \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right) \\
& =\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} l\right)
\end{aligned}
$$

disjoint union

As $\mu$ is $T$-invariant:

$$
\begin{aligned}
1 & \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right) \\
& =\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} I\right)=\sum_{n=-\infty}^{\infty} \mu(I)
\end{aligned}
$$

disjoint union

As $\mu$ is $T$-invariant:

$$
1 \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} /\right)
$$

$$
=\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} I\right)=\sum_{n=-\infty}^{\infty} \mu(I)
$$

disjoint union

Hence $\mu(I)=0$. Hence $\mu($ right semicircle $)=0$.

As $\mu$ is $T$-invariant:
$1 \geq \mu($ right semicircle $)=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right)$

$$
=\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} I\right)=\sum_{n=-\infty}^{\infty} \mu(I)
$$

disjoint union

Hence $\mu(I)=0$. Hence $\mu$ (right semicircle $)=0$. Similarly, $\mu($ left semicircle $)=0$.

As $\mu$ is $T$-invariant:

$$
\begin{aligned}
1 & \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right) \\
& =\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} I\right)=\sum_{n=-\infty}^{\infty} \mu(I)
\end{aligned}
$$

disjoint union

Hence $\mu(I)=0$. Hence $\mu$ (right semicircle) $=0$. Similarly, $\mu($ left semicircle $)=0$. Hence $\mu$ is supported on $N, S$ and

$$
\mathcal{M}(X, T)=\left\{\alpha \delta_{N}+(1-\alpha) \delta_{S} \mid 0 \leq \alpha \leq 1\right\}
$$

As $\mu$ is $T$-invariant:

$$
\begin{aligned}
1 & \geq \mu(\text { right semicircle })=\mu\left(\bigcup_{n=-\infty}^{\infty} T^{-n} I\right) \\
& =\sum_{n=-\infty}^{\infty} \mu\left(T^{-n} I\right)=\sum_{n=-\infty}^{\infty} \mu(I)
\end{aligned}
$$

disjoint union
Hence $\mu(I)=0$. Hence $\mu$ (right semicircle $)=0$. Similarly, $\mu($ left semicircle $)=0$. Hence $\mu$ is supported on $N, S$ and

$$
\mathcal{M}(X, T)=\left\{\alpha \delta_{N}+(1-\alpha) \delta_{S} \mid 0 \leq \alpha \leq 1\right\}
$$

This has extremal points $\delta_{N}, \delta_{S}$, which are precisely the ergodic measures.

## Remark

Our intuition - which is necessarily finite dimensional! - suggests that the extremal points of a convex set $K$ lie on the boundary of $K$.

## Remark

Our intuition - which is necessarily finite dimensional! - suggests that the extremal points of a convex set $K$ lie on the boundary of K.

Whilst this is true for finite dimensional sets, it it not true of infinite dimensional sets.

## Remark

Our intuition - which is necessarily finite dimensional! - suggests that the extremal points of a convex set $K$ lie on the boundary of K.

Whilst this is true for finite dimensional sets, it it not true of infinite dimensional sets.

## Example

Let $T$ be the doubling map $X \longrightarrow X$. Then $\mathcal{M}(X, T)$ is infinite dimensional. The ergodic measures are precisely the extremal points of $\mathcal{M}(X, T)$. However, the set of ergodic measures is also weak-* dense in $\mathcal{M}(X, T)$.

## Unique Ergodicity

## Definition

Let $T$ be a continuous transformation of a compact metric space $X$.

## Unique Ergodicity

## Definition

Let $T$ be a continuous transformation of a compact metric space $X$. We say that $T$ is uniquely ergodic if $\mathcal{M}(X, T)$ consists of exactly one $T$-invariant measure.

## Unique Ergodicity

## Definition

Let $T$ be a continuous transformation of a compact metric space $X$. We say that $T$ is uniquely ergodic if $\mathcal{M}(X, T)$ consists of exactly one $T$-invariant measure.

Remark
If $\mathcal{M}(X, T)=\{\mu\}$, then $\mu$ is necessarily ergodic (it's an extremal point).

## Unique Ergodicity

## Definition

Let $T$ be a continuous transformation of a compact metric space $X$. We say that $T$ is uniquely ergodic if $\mathcal{M}(X, T)$ consists of exactly one $T$-invariant measure.

## Remark

If $\mathcal{M}(X, T)=\{\mu\}$, then $\mu$ is necessarily ergodic (it's an extremal point).
Unique ergodicity implies the following strong convergence result.

Theorem:(Oxtoby's Ergodic Theorem)
Let $T: X \longrightarrow X$ be a continuous transformation of a compact metric space. Then the following are equivalent

Theorem:(Oxtoby's Ergodic Theorem)
Let $T: X \longrightarrow X$ be a continuous transformation of a compact metric space. Then the following are equivalent

1. $T$ is uniquely ergodic.

## Theorem:(Oxtoby's Ergodic Theorem)

Let $T: X \longrightarrow X$ be a continuous transformation of a compact metric space. Then the following are equivalent

1. $T$ is uniquely ergodic.
2. For all $f \in C(X, \mathbb{R})$, there is a constant $c(f)$, s.t.

$$
\begin{equation*}
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow c(f) \tag{2}
\end{equation*}
$$

uniformly as $n \rightarrow \infty$.

## Theorem:(Oxtoby's Ergodic Theorem)

Let $T: X \longrightarrow X$ be a continuous transformation of a compact metric space. Then the following are equivalent

1. $T$ is uniquely ergodic.
2. For all $f \in C(X, \mathbb{R})$, there is a constant $c(f)$, s.t.

$$
\begin{equation*}
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow c(f) \tag{2}
\end{equation*}
$$

uniformly as $n \rightarrow \infty$.

## Remark

Thus unique ergodicity holds iff we have uniform convergence $\forall x \in X$ in the ergodic theorem (for continuous observables).

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

We know $\mu=$ Lebesgue measure $\in \mathcal{M}(X, T)$. We sketch why $\mu$ is the only $T$-invariant measure.

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

We know $\mu=$ Lebesgue measure $\in \mathcal{M}(X, T)$. We sketch why $\mu$ is the only $T$-invariant measure.
Let $e_{k}(x)=e^{2 \pi i k x}, k \in \mathbb{Z}$. Let also $m=\mathcal{M}(X, T)$.

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

We know $\mu=$ Lebesgue measure $\in \mathcal{M}(X, T)$. We sketch why $\mu$ is the only $T$-invariant measure.
Let $e_{k}(x)=e^{2 \pi i k x}, k \in \mathbb{Z}$. Let also $m=\mathcal{M}(X, T)$. Then

$$
\int e_{k} \circ T d m \quad=\quad \int e_{k} d m
$$

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

We know $\mu=$ Lebesgue measure $\in \mathcal{M}(X, T)$. We sketch why $\mu$ is the only $T$-invariant measure.
Let $e_{k}(x)=e^{2 \pi i k x}, k \in \mathbb{Z}$. Let also $m=\mathcal{M}(X, T)$. Then

$$
\begin{array}{ccc}
\int e_{k} \circ T d m & = & \int e_{k} d m \\
\| & \| \\
\int e^{2 \pi i k(x+\alpha)} d m & & \int e^{2 \pi i k x} d m
\end{array}
$$

## Example

Irrational circle rotations are uniquely ergodic: Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \notin \mathbb{Q}$ and define

$$
T: X \longrightarrow X: x \mapsto x+\alpha \bmod 1
$$

We know $\mu=$ Lebesgue measure $\in \mathcal{M}(X, T)$. We sketch why $\mu$ is the only $T$-invariant measure.
Let $e_{k}(x)=e^{2 \pi i k x}, k \in \mathbb{Z}$. Let also $m=\mathcal{M}(X, T)$. Then

$$
\begin{array}{cc}
\int e_{k} \circ T d m & = \\
\| & \int e_{k} d m \\
\int e^{2 \pi i k(x+\alpha)} d m & \| \\
\| & \int e^{2 \pi i k x} d m \\
e^{2 \pi i k \alpha} \int e^{2 \pi i k x} d m &
\end{array}
$$

Now $e^{2 \pi i k \alpha} \neq 1$ unless $k=0$. Hence $\int e^{2 \pi i k x} d m=0$ for $k \neq 0$.

Now $e^{2 \pi i k \alpha} \neq 1$ unless $k=0$. Hence $\int e^{2 \pi i k x} d m=0$ for $k \neq 0$. Let $f \in C(X, \mathbb{R})$ have Fourier series $\sum_{-\infty}^{\infty} c_{n} e^{2 \pi i n x}$.

Now $e^{2 \pi i k \alpha} \neq 1$ unless $k=0$. Hence $\int e^{2 \pi i k x} d m=0$ for $k \neq 0$. Let $f \in C(X, \mathbb{R})$ have Fourier series $\sum_{-\infty}^{\infty} c_{n} e^{2 \pi i n x}$. Then

$$
\int f d m=\sum_{-\infty}^{\infty} c_{n} \int e^{2 \pi i n x} d m=c_{0}=\int f d \mu
$$

Now $e^{2 \pi i k \alpha} \neq 1$ unless $k=0$. Hence $\int e^{2 \pi i k x} d m=0$ for $k \neq 0$. Let $f \in C(X, \mathbb{R})$ have Fourier series $\sum_{-\infty}^{\infty} c_{n} e^{2 \pi i n x}$. Then

$$
\int f d m=\sum_{-\infty}^{\infty} c_{n} \int e^{2 \pi i n x} d m=c_{0}=\int f d \mu
$$

By the Riesz Representation theorem, $m=\mu$.

Next lecture

## Next lecture

In the next lecture we study the classification problem in ergodic: when are two measure-preserving transformations 'the same'?

## Next lecture

In the next lecture we study the classification problem in ergodic: when are two measure-preserving transformations 'the same'?

We introduce an isomorphism invariant, the entropy $h_{\mu}(T)$ of a measure-preserving transformation, which turns out to be of independent interest.

## Next lecture

In the next lecture we study the classification problem in ergodic: when are two measure-preserving transformations 'the same'?

We introduce an isomorphism invariant, the entropy $h_{\mu}(T)$ of a measure-preserving transformation, which turns out to be of independent interest.

We show how to calculate entropy for a number of examples.

