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In the previous lectures we studied:

I (X ,B, µ), a probability space.

I a measure preserving transformation T : X −→ X .

In this lecture, we fix a transformation T : X −→ X and consider

the space M(X ,T ) of all T -invariant probability measures.

In order to equip M(X ,T ) with some structure, we need some

structure on X and T . Throughout:

I X = a compact metric space.

I B = the Borel σ-algebra (smallest σ-algebra that contains all

open sets).

I T : X −→ X a continuous transformation.
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Let C (X ,R) = {f : X −→ R | f is continuous}.

Define the uniform norm

‖f ‖ = sup
x∈X
|f (x)| .

With this norm, C (X ,R) is a Banach space (a complete normed

vector space).

Important fact:

X compact metric =⇒ C (X ,R) separable.

Recall:
A space is separable if there is a countable dense subset.
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Definition
M(X ) = {µ | µ is a Borel probability measure}.

Proposition

M(X ) is convex:

µ1, µ2 ∈M(X ), 0 ≤ α ≤ 1 =⇒ αµ1 + (1− α)µ2 ∈M(X )

µ1

µ2

Proof.
Immediate from definitions.



Definition
M(X ) = {µ | µ is a Borel probability measure}.

Proposition

M(X ) is convex:

µ1, µ2 ∈M(X ), 0 ≤ α ≤ 1 =⇒ αµ1 + (1− α)µ2 ∈M(X )

µ1

µ2

Proof.
Immediate from definitions.



Definition
M(X ) = {µ | µ is a Borel probability measure}.

Proposition

M(X ) is convex:

µ1, µ2 ∈M(X ), 0 ≤ α ≤ 1 =⇒ αµ1 + (1− α)µ2 ∈M(X )

µ1

µ2

Proof.
Immediate from definitions.



Definition
M(X ) = {µ | µ is a Borel probability measure}.

Proposition

M(X ) is convex:

µ1, µ2 ∈M(X ), 0 ≤ α ≤ 1 =⇒ αµ1 + (1− α)µ2 ∈M(X )

µ1

µ2

Proof.
Immediate from definitions.



Weak-* topology

It will be important to equip M(X ) with a topology.

In fact, we

will only need to see what it means for a sequence of measures to

converge.

Definition
Let µn, µ ∈M(X ). Then µn ⇀ µ if:∫

f dµn −→
∫

f dµ ∀f ∈ C (X ,R).

Remark
This does not say µn(B) −→ µ(B) ∀B ∈ B.
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Remarks

1. One can write down a formula for a metric ρ on M(X ) such

that µn ⇀ µ iff ρ(µn, µ) −→ 0.

2. Recall that δx the Dirac measure at x , is defined by

δx(B) =

{
0 if x /∈ B;

1 if x ∈ B.

There is a continuous embedding X ↪→M(X ) given by

x 7−→ δx . i.e. if xn −→ x then δxn ⇀ δx .

(Let f ∈ C (X ,R). Then
∫

f dδxn = f (xn)→ f (x) =
∫

f dδx .)

Note that 1/n→ 0 as n→∞. Let B = {0}. Then

0 = δ1/n(B) 6→ δ0(B) = 1.
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The Riesz Representation Theorem

Let µ ∈M(X ).

Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:

(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞

(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.

The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



The Riesz Representation Theorem

Let µ ∈M(X ). Then µ can be regarded as a functional

µ : C (X ,R) −→ R : f 7→
∫

f dµ.

Write µ(f ) for
∫

f dµ.

This functional satisfies the following properties:
(1) linearity: µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

(2) continuity/boundedness: |µ(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ µ(f ) ≥ 0

(4) normalised: µ(1) = 1.
The Riesz Representation Theorem says that any functional

C (X ,R)→ R satisfying (1) - (4) is given by integration w.r.t. a

suitable Borel probability measure:



Theorem:(Riesz Representation)

Let ω : C (X ,R) −→ R be a functional satisfying
(1) linearity: ω(λ1f1 + λ2f2) = λ1ω(f1) + λ2ω(f2)

(2) continuity/boundedness: |ω(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ ω(f ) ≥ 0

(4) normalised: ω(1) = 1.

Then there exists a unique Borel probability measure µ ∈M(X )

s.t. ω(f ) =
∫

f dµ.



Theorem:(Riesz Representation)

Let ω : C (X ,R) −→ R be a functional satisfying
(1) linearity: ω(λ1f1 + λ2f2) = λ1ω(f1) + λ2ω(f2)

(2) continuity/boundedness: |ω(f )| ≤ ‖f ‖∞
(3) positivity: f ≥ 0 =⇒ ω(f ) ≥ 0

(4) normalised: ω(1) = 1.

Then there exists a unique Borel probability measure µ ∈M(X )

s.t. ω(f ) =
∫

f dµ.



Connections with functional analysis

Let X be a (real) Hilbert space, X ∗ the dual of X (= space of

continuous linear functionals X → R).

The Riesz Representation Theorem (in the context of Hilbert

spaces) tells us that X and X ∗ are naturally isomorphic via the map

X −→ X ∗ : x 7−→ 〈x , · 〉 .

The version of the Riesz Representation Theorem stated above

tells us that:
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If we allow ‘signed’ measures then we get a natural isomorphism

Msigned(X ) = C (X ,R)∗.

Recall:
Alaoglu’s theorem: Let X be a Banach space. Then the unit ball

in X ∗ is weak-* compact.

Corollary

M(X ) is weak-* compact.

Proof.
Use M(X ) = C (X ,R)∗ ∩ positive cone∩ unit ball. The unit ball in

C (X ,R)∗ is weak-* compact by Alaoglu’s theorem. The positive

cone on C (X ,R)∗ is weak-* closed.
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Invariant Measures for continuous transformations

Let X be a compact metric space and T : X → X a continuous

transformation.

Then T induces a map on M(X )

T∗ :M(X ) −→ M(X ),

T∗µ(B) = µ(T−1B).

Remark
Hence µ is T -invariant if and only if T∗µ = µ.

Definition

Let M(X ,T ) = {all T -invariant measures}
= {µ ∈M(X ) | T∗µ = µ}.

We want to investigate the structure of M(X ,T ). First we need

to integrate with respect to T∗µ.
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The following gives a useful condition for checking whether a

measure is T -invariant.

Lemma 2
Let T be a continuous transformation of a compact metric space.

Then

µ =M(X ,T )⇐⇒
∫

f ◦ T dµ =

∫
f dµ ∀f ∈ C (X ,R). (1)

Proof.
=⇒:

⇐=: Use Lemma 1 to rewrite (1) as

(T∗µ)(f ) = µ(f ) ∀f ∈ C (X ,R).

By uniqueness in the Riesz Representation theorem, T∗µ = µ.
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Existence of invariant measures

We show that continuous transformation of a compact metric

space always has at least one invariant measure.

(Typically there

will be uncountably many. This is the case for example for the

doubling map, hyperbolic toral automorphism etc.)

Theorem
M(X ,T ) 6= ∅.
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Proof that M(X , T ) 6= ∅

First note that T∗ :M(X )→M(X ) is weak-∗ continuous. To see

this, suppose µn ⇀ µ. We want to show T∗µn ⇀ T∗µ.

Let f ∈ C (X ,R). Note f ◦ T ∈ C (X ,R). Then∫
f d(T∗µn) =

∫
f ◦ T dµn →

∫
f ◦ T dµ =

∫
f d(T∗µ).

Theorem (Schauder-Tychonoff fixed point theorem)

Let K be a compact convex subset of a locally convex space. Let

T : K → K be continuous. Then T has a fixed point in K .

M(X ) is a compact convex subset of the locally convex space

C (X ,R)∗. The map T∗ is continuous and maps M(X ) to itself.

Hence there exists µ ∈M(X ) such that T∗µ = µ, i.e.

µ ∈M(X ,T ).
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Other properties of M(X , T )

M(X ,T ) enjoys some other properties:

Theorem

1. M(X ,T ) is convex (µ1, µ2 ∈M(X ,T ), 0 ≤ α ≤ 1 =⇒
αµ1 + (1− α)µ2 ∈M(X ,T )).

2. M(X ,T ) is weak-* compact.

Proof.
Unravel the definitions!
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Ergodic measures for continuous transformations

We want to characterise the ergodic measures in M(X ,T ). We

will do this using the convexity of M(X ,T ).

Extremal points in convex sets

Let Y be a subset of a vector space.

Recall: Y is convex if ∀y1, y2 ∈ Y , 0 ≤ α ≤ 1 we have

αy1 + (1− α)y2 ∈ Y .

y1

y2
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Definition
A point y ∈ Y is said to be extremal if it cannot be written as a

convex combination of another two points in Y ,

i.e.

y extremal ⇐⇒ y = αy1 + (1− α)y2

for 0 < α < 1, y1, y2 ∈ Y
implies y1 = y2 = y .

Let Ext(Y ) = {extremal points}.
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Examples

Y = unit square

Y = unit disc

Ext(Y ) = {four corners} Ext(Y ) = {boundary}

Remark
The geometric intuition that the extremal points lie on the

boundary fails in infinite dimensions.
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Definition
Let Z be any subset of a vector space. Then the convex hull of Z ,

Cov(Z ), is the smallest closed convex set containing Z .

Example

Theorem:(Krein-Milman)

Let X be a topological vector space on which X ∗ separates points.

Let K ⊂ X be a compact convex subset.

Then K is the convex hull

of its extremal points:

K = Cov(Ext(K )).
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Existence of Ergodic Measures

Let T be a continuous transformation of a compact metric space

X . Then we know that M(X ,T ) 6= ∅, i.e. there is at least one

T -invariant measure.

Is there an ergodic measure?

(Recall that µ ∈M(X ,T ) is ergodic ⇔ no non-trivial T -invariant

subsets, i.e. T−1B = B,B ∈ B implies µ(B) = 0 or 1.)

Theorem 3:
µ ∈M(X ,T ) is ergodic if and only if µ ∈M(X ,T ) is extremal.

Corollary

A continuous transformation of a compact metric has at least one

ergodic measure.

Thm =⇒ Corollary: By Krein-Milman,

M(X ,T ) = Cov(Ext(M(X ,T ))). As M(X ,T ) 6= ∅, we have

that Ext(M(X ,T )) 6= ∅. By the Theorem, these are precisely the

ergodic measures.
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Proof of Theorem: Note: we only make use of the ⇐ implication.

(Unusually, this is the easier direction!)

We prove the contrapositive: µ not ergodic ⇒ µ not extremal.

µ not ergodic =⇒ ∃B ∈ B, 0 < µ(B) < 1, s.t. T−1(B) = B.

Let α = µ(B). Define probability measures

µ1( · ) = µ( · ∩B)
µ(B) , µ2( · ) = µ( · ∩Bc )

µ(Bc ) .

As T−1B = B, it is easy to check µ1, µ2 ∈M(X ,T ).

Clearly, µ = αµ1 + (1− α)µ2.

As µ1 6= µ2, we see that µ is not extremal. �
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Example: the North-South Map

Let X ⊂ R2 be the circle of radius 1 and centre (0, 1). Let

N = north pole = (0, 2) and S = south pole = (0, 0).

Define a map T : X −→ X as indicated:

Then N, S are fixed points under T . Hence δN , δS ∈M(X ,T ).

We calculate M(X ,T ).
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Let µ ∈M(X ,T ).

We claim: µ(right semicircle) = 0.

Choose any x ∈ right semicircle. Let I = [x ,Tx) be the arc of the

semicircle:

Then the right semicircle is the disjoint union
⋃∞

n=−∞ T−nI .
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As µ is T -invariant:

Hence µ(I ) = 0. Hence µ(right semicircle) = 0. Similarly,

µ(left semicircle) = 0. Hence µ is supported on N, S and

M(X ,T ) = {αδN + (1− α)δS | 0 ≤ α ≤ 1}

This has extremal points δN , δS , which are precisely the ergodic

measures.
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Remark
Our intuition - which is necessarily finite dimensional! - suggests

that the extremal points of a convex set K lie on the boundary of

K .

Whilst this is true for finite dimensional sets, it it not true of

infinite dimensional sets.

Example

Let T be the doubling map X −→ X . Then M(X ,T ) is infinite

dimensional. The ergodic measures are precisely the extremal

points of M(X ,T ). However, the set of ergodic measures is also

weak-* dense in M(X ,T ).
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Unique Ergodicity

Definition
Let T be a continuous transformation of a compact metric space

X .

We say that T is uniquely ergodic if M(X ,T ) consists of

exactly one T -invariant measure.

Remark
If M(X ,T ) = {µ}, then µ is necessarily ergodic (it’s an extremal

point).

Unique ergodicity implies the following strong convergence result.
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Theorem:(Oxtoby’s Ergodic Theorem)

Let T : X −→ X be a continuous transformation of a compact

metric space. Then the following are equivalent

1. T is uniquely ergodic.

2. For all f ∈ C (X ,R), there is a constant c(f ), s.t.

1

n

n−1∑
j=0

f (T jx) −→ c(f ) (2)

uniformly as n→∞.

Remark
Thus unique ergodicity holds iff we have uniform convergence

∀x ∈ X in the ergodic theorem (for continuous observables).
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Example

Irrational circle rotations are uniquely ergodic: Let X = R/Z. Fix

α /∈ Q and define

T : X −→ X : x 7→ x + α mod 1

We know µ = Lebesgue measure ∈M(X ,T ). We sketch why µ

is the only T -invariant measure.

Let ek(x) = e2πikx , k ∈ Z. Let also m =M(X ,T ). Then∫
ek ◦ T dm

‖

=
∫

ek dm

‖∫
e2πik(x+α) dm

‖

∫
e2πikx dm

e2πikα
∫

e2πikx dm
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α /∈ Q and define

T : X −→ X : x 7→ x + α mod 1
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Now e2πikα 6= 1 unless k = 0. Hence
∫

e2πikx dm = 0 for k 6= 0.

Let f ∈ C (X ,R) have Fourier series
∑∞
−∞ cne2πinx .Then∫

f dm =
∞∑
−∞

cn

∫
e2πinx dm = c0 =

∫
f dµ

By the Riesz Representation theorem, m = µ. �
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Next lecture

In the next lecture we study the classification problem in ergodic:

when are two measure-preserving transformations ‘the same’?

We introduce an isomorphism invariant, the entropy hµ(T ) of a

measure-preserving transformation, which turns out to be of

independent interest.

We show how to calculate entropy for a number of examples.
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