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In this lecture we discuss recurrence properties of measure

preserving transformations.

We will state Birkhoff’s Ergodic Theorem and study some simple

applications.



Recurrence

Birkhoff’s Ergodic Theorem implies that given an ergodic

measure-preserving transformation T of a probability space

(X ,B, µ) and a set A ∈ B with µ(A) > 0, the frequency with

which the orbit of almost every point lands in A is equal to µ(A).

We begin with a simpler theorem:

Poincaré’s Recurrence Theorem

Let T : X → X be a m.p.t. of a probability space (X ,B, µ). Let

A ∈ B, µ(A) > 0. Then the orbit of µ-a.e. point of A returns to A

infinitely often.

Proof (sketch):

Let

An =
⋃
k≥n

T−kA = {x ∈ X | the orbit of x lies in A at some time ≥ n} .
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Then

{x ∈ A | orbit of x returns to A i.o.} =
∞⋂

n=0

An ∩ A.

Now

A ⊂ A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ · · · . (1)

Moreover, T−nAn = A0. As T is a m.p.t. we have µ(An) = µ(A0).

Hence (1) implies:

A0 = A1 = · · · = An = · · · a.e.

Hence
∞⋂

n=0

An = A0 a.e.

Hence
∞⋂

n=0

An ∩ A = A0 ∩ A = A a.e.

�
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Remarks

1. Note that we hardly used anything in this proof!

‘Measure-preserving’ was used just once.

2. The assumption that X is a probability space is essential

(why?).

3. It is not true that the orbit of a.e. point in B lands in A i.o. if

B 6= A.

Before we discuss ergodic theorems we need the notion of

conditional expectation.
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Conditional Expectation

Let (X ,B, µ) be a probability space. Let A ⊂ B be a

sub-σ-algebra.

One can show (see notes) that there is a unique map

E(· | A) : L1(X ,B, µ) −→ L1(X ,A, µ)

such that∫
A

E(f |A) dµ =

∫
A

f dµ ∀f ∈ L1(X ,B, µ), ∀A ∈ A.

Idea: E(f |A) - the conditional expectation of f given A - is the

unique A-measurable function that best approximates f .
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Example

Let X = [0, 1], B = Borel σ-algebra.

Let A =
{
∅,X ,

[
0, 1

2

]
,
[

1
2 , 1
]}

.

1
2

10

1



Example

Let X = [0, 1], B = Borel σ-algebra.

Let A =
{
∅,X ,

[
0, 1

2

]
,
[

1
2 , 1
]}

.

1
2

10

1



Example

Let X = [0, 1], B = Borel σ-algebra.

Let A =
{
∅,X ,

[
0, 1

2

]
,
[

1
2 , 1
]}

.

1
2

10

1



Example

Let X = [0, 1], B = Borel σ-algebra.

Let A =
{
∅,X ,

[
0, 1

2

]
,
[

1
2 , 1
]}

.

1
2

10

1



Example

Let X = [0, 1], B = Borel σ-algebra.

Let A =
{
∅,X ,

[
0, 1

2

]
,
[

1
2 , 1
]}

.

1
2

10

1



Ergodic Theorems

An ergodic theorem concerns the limiting behaviour of sequences

of the form
1

n

n−1∑
j=0

f ◦ T j .

We get different ergodic theorems depending on

1. the class of function f (L1, L2, continuous,...)

2. the notion of convergence (a.e., L2-convergence, uniform, ...)

Here we state von Neumann’s (mean) Ergodic Theorem and

Birkhoff’s (pointwise) Ergodic Theorem.

Let T : X → X be a mpt of a probability space (X ,B, µ).

Let I =
{
B ∈ B | T−1B = B a.e.

}
be the sub σ-algebra of

invariant sets.

Note: if T is ergodic then I = {∅,X} a.e. and E (f | I) =
∫

f dµ.
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Von Neumann’s Ergodic Theorem

Let (X ,B, µ) be a probability space and let T : X → X be an mpt.

Let I denote the σ-algebra of invariant sets. Let f ∈ L2(X ,B, µ).

Then
1

n

n−1∑
j=0

f ◦ T j −→ E(f | I) in L2.

Corollary

If, in addition, T is ergodic, then

1

n

n−1∑
j=0

f ◦ T j −→
∫

f dµ in L2.
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Sketch of a proof for von Neumann’s Ergodic Theorem

The mpt T of the probability space (X ,B, µ) gives an operator on

L2:

U : L2 → L2 : f 7→ f ◦ T .

This is an isometry as

〈Uf ,Ug〉 =

∫
f ◦Tg ◦ T dµ =

∫
(f g)◦T dµ =

∫
f g dµ = 〈f , g〉.

Von Neumann’s Ergodic Theorem can be phrased in terms of a

linear operator U on a Hilbert space H.

Let I = {v ∈ H | Uv = v} and let PI be orthogonal projection

onto I . We claim
1

n

n−1∑
j=0

U jv → PI v . (2)

Write H = I ⊕ {Uw − w | w ∈ H}. Use this decomposition to

prove (2).
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Birkhoff’s Ergodic Theorem

Let (X ,B, µ) be a probability space and let T : X → X be an mpt.

Let I denote the σ-algebra of invariant sets. Let f ∈ L1(X ,B, µ).

Then
1

n

n−1∑
j=0

f (T jx) −→ E(f | I)(x) µ-a.e.

Corollary

If, in addition, T is ergodic, then

1

n

n−1∑
j=0

f (T jx) −→
∫

f dµ µ-a.e.

The proof is hard analysis!
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probability space (X ,B, µ) and a set A of positive measure, a.e.

point of A returns to A infinitely often.

What is the expected first return time?
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Let T : X → X be an mpt of a probability space (X ,B, µ). Let

A ∈ B, µ(A) > 0.

Define

nA(x) = first return time to A = inf{n ≥ 1 | T nx ∈ A}.

Then Poincaré’s Recurrence Theorem says nA(x) <∞, µ-a.e.

x ∈ A.

Kac’s Lemma

Suppose T is an ergodic mpt of a probability space (X ,B, µ),

A ∈ B, µ(A) > 0. Then ∫
A

nA dµ = 1.

Remark
The expected return time of a point x ∈ A to A is

1

µ(A)

∫
A

nA dµ =
1

µ(A)
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Then Poincaré’s Recurrence Theorem says nA(x) <∞, µ-a.e.

x ∈ A.

Kac’s Lemma

Suppose T is an ergodic mpt of a probability space (X ,B, µ),

A ∈ B, µ(A) > 0. Then ∫
A

nA dµ = 1.

Remark
The expected return time of a point x ∈ A to A is

1

µ(A)

∫
A

nA dµ =
1

µ(A)
.



Proof (sketch):

By Birkhoff’s Ergodic Theorem, almost every point of X lands in

A. Let

An = {x ∈ A | the first return time of x to A is n}
= A ∩ T−1Ac ∩ · · · ∩ T−(n−1)Ac ∩ T−nA.

Then A =
⋃

n An a.e. Consider the following diagram
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As a.e. point of X eventually enters A, this diagram is a partition

of almost all of X .

Consider the nth tower:

An

T

T

T

An,0

An,1

An,2

An,n−1

Then An,0 = An

T−kAn,k = An,0

Hence µ(An,k) = µ(An,0)

= µ(An)

Note that nA(x) = n iff x ∈ An. (So the preceding diagram is

essentially the graph of nA.) Hence

1 = µ(X ) =
∞∑

n=1

n−1∑
k=0

µ(An,k) =
∞∑

n=1

n−1∑
k=0

µ(An)

=
∞∑

n=1

nµ(An) =

∫
A

nA(x) dµ. �
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Ehrenfest’s Example

We give an example to show that return times can be very large.

Suppose we have two urns:

I one urn contains 100 balls, numbered 1 to 100

I the other urn is empty.

Suppose we have a random number generator, picking each

number between 1 and 100 with probability 1
100 .

Each second a random number is chosen. The ball corresponding

to this number is then moved from one urn to the other.

62 14
3 5

6
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We would expect the system to settle down to about 50 balls in

each urn, subject to some fluctuations.

It would appear unlikely that all 100 balls should ever return to the

first urn.

However, Poincaré’s Recurrence Theorem tells us that this will,

almost surely, happen and Kac’s Lemma tells us how long we

should expect to wait.

We model the system as a shift of finite type on 101 symbols with

an appropriate Markov measure.

Regard xj ∈ {0, 1, . . . , 100} as the number of balls in the first urn

after j seconds.
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However, Poincaré’s Recurrence Theorem tells us that this will,

almost surely, happen and Kac’s Lemma tells us how long we

should expect to wait.

We model the system as a shift of finite type on 101 symbols with

an appropriate Markov measure.

Regard xj ∈ {0, 1, . . . , 100} as the number of balls in the first urn

after j seconds.



As the number of balls in the first urn either increases or decreases

by 1, (xj)
∞
j=0 ∈ Σ+

A where

A =



0 1 0 . . . . . . . . 0

1 0 1
. . .

...

0 1 0 1
. . .

...
...

. . . 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . . . . . . 0 1 0


.

The probability of there being i balls in the first urn is

pi =
1

2100

(
100

i

)
=

# of configurations of i balls

total # of configurations of balls
.
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From state i we can

I move to state i − 1 - this has probability Pi ,i−1 = i
100

I move to state i + 1 - this has probability Pi ,i+1 = 100−i
100 .

Let P = (Pij) a stochastic matrix.

One can easily check pP = p.

Hence we get a Markov measure µP .

Let A = [100] - a cylinder of length 1. This represents there being

100 balls in the first urn. By Kac’s Lemma, the expected first

return time to A is

1

µP(A)
= 2100 seconds

= 4× 1022 years

= about 3× 1012 × age of the Universe!

Open problem: how are return times distributed? We would expect

a Poisson distribution. This is known for a number of examples

(hyperbolic dynamics,...)
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Normality of numbers

Let r ≥ 2 be a fixed integer base. Recall that every x ∈ [0, 1] can

be expanded as a base r “decimal”:

x =
∞∑
j=1

xj

r j
; xj ∈ {0, 1, . . . , r − 1}.

This expansion is unique unless the sequence (xj)
∞
j=1 ends in

infinitely repeated 0s or (r − 1)s.

Definition
x ∈ [0, 1] is (simply) normal in base r if it has a unique base r

expansion and for each digit k ∈ {0, 1, . . . , r − 1}, the frequency

with which the digit k occurs in the base r expansion of x is 1
r .
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Proposition

Lebesgue-a.e. x ∈ [0, 1] is simultaneously normal in every base

r ≥ 2.

Proof:

Let µ = Lebesgue measure.

Fix r ≥ 2 and define Tr : [0, 1]→ [0, 1] by Trx = rx mod 1.

Then µ is an ergodic invariant probability measure for Tr .

Note: If

x =
∞∑
j=1

xj

r j

then

xj = k ⇔ T j−1x ∈
[
k

r
,
k + 1

r

)
.
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Hence

freq. with which k occurs = lim
n→∞

1

n
card{1 ≤ j ≤ n | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ[ k
r
, k+1

r )(T jx)

= µ

[
k

r
,
k + 1

r

)
µ-a.e.

=
1

r
µ-a.e.

Hence µ-a.e. x ∈ [0, 1] is normal in base r .

Taking the union of the exceptional sets of measure zero gives

µ-a.e. x ∈ [0, 1] is normal in every base r ≥ 2. �

Remark
It is easy to give an example of an x ∈ [0, 1] that is (simply)

normal in a given base r . However, there is no known example of

an x that is simultaneously normal in every base.
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Continued fractions

Let Tx = 1
x mod 1 be the continued fraction map. Recall:

1. If x =
1

x0 +
1

x1 +
1

x2 + . . .

then Tx =
1

x1 +
1

x2 +
1

x3 + . . .

.

2. T is ergodic w.r.t. Gauss’ measure µ:

µ(B) =
1

log 2

∫
B

dx

1 + x
.

3. Gauss’ measure µ and Lebesgue measure λ are equivalent:

they have the same sets of measure zero.
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Proposition

For Lebesgue a.e. x ∈ [0, 1], the frequency with which digit k ∈ N
occurs in the continued fraction expansion of x is

1
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.
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Hence:
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As Gauss’ measure and Lebesgue measure are equivalent, this
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�



Hence:

freq. with which k occurs = lim
n→∞

1

n
card{0 ≤ j ≤ n − 1 | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ( 1
k+1

, 1
k ](T

jx)

=

∫
χ( 1

k+1
, 1
k ] dµ µ-a.e.

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x
µ-a.e

=
1

log 2
log

[
(k + 1)2

k(k + 2)

]
µ-a.e.

As Gauss’ measure and Lebesgue measure are equivalent, this

holds Lebesgue a.e.

�



Hence:

freq. with which k occurs = lim
n→∞

1

n
card{0 ≤ j ≤ n − 1 | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ( 1
k+1

, 1
k ](T

jx)

=

∫
χ( 1

k+1
, 1
k ] dµ µ-a.e.

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x
µ-a.e

=
1

log 2
log

[
(k + 1)2

k(k + 2)

]
µ-a.e.

As Gauss’ measure and Lebesgue measure are equivalent, this

holds Lebesgue a.e.

�



Hence:

freq. with which k occurs = lim
n→∞

1

n
card{0 ≤ j ≤ n − 1 | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ( 1
k+1

, 1
k ](T

jx)

=

∫
χ( 1

k+1
, 1
k ] dµ µ-a.e.

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x
µ-a.e

=
1

log 2
log

[
(k + 1)2

k(k + 2)

]
µ-a.e.

As Gauss’ measure and Lebesgue measure are equivalent, this

holds Lebesgue a.e.

�



Hence:

freq. with which k occurs = lim
n→∞

1

n
card{0 ≤ j ≤ n − 1 | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ( 1
k+1

, 1
k ](T

jx)

=

∫
χ( 1

k+1
, 1
k ] dµ µ-a.e.

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x
µ-a.e

=
1

log 2
log

[
(k + 1)2

k(k + 2)

]
µ-a.e.

As Gauss’ measure and Lebesgue measure are equivalent, this

holds Lebesgue a.e.

�



Hence:

freq. with which k occurs = lim
n→∞

1

n
card{0 ≤ j ≤ n − 1 | xj = k}

= lim
n→∞

1

n

n−1∑
j=0

χ( 1
k+1

, 1
k ](T

jx)

=

∫
χ( 1

k+1
, 1
k ] dµ µ-a.e.

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x
µ-a.e

=
1

log 2
log

[
(k + 1)2

k(k + 2)

]
µ-a.e.

As Gauss’ measure and Lebesgue measure are equivalent, this

holds Lebesgue a.e.

�



Proposition

For Lebesgue a.e. x ∈ [0, 1]

1. the arithmetic mean of the continued fraction digits of x is

infinite:
1

n
(x0 + x1 + · · ·+ xn−1) −→∞ a.e.

2. the geometric mean of the continued fraction digits of x is:

n
√

x0 . . . xn−1 −→
∞∏

k=1

(
1 +

1

k(k + 2)

) log k
log 2

<∞ a.e.
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Proof.

1. is an exercise

2. Define f (x) = log k for x ∈
(

1
k+1 ,

1
k

]
. Then

1

n
(log x0+ · · · + log xn−1) =

1

n

n−1∑
j=0

f (T jx)

−→
∫

f dµ µ-a.e.

=
1

log 2

∫
f (x)

1 + x
dµ µ-a.e.

=
1

log 2

∞∑
k=1

∫ 1
k

1
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1 + x
dx µ-a.e.
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Next lecture

Given a measure-preserving transformation T of a probability space

(X ,B, µ), we have been asking whether the given measure µ is

invariant, and if so, if it is ergodic.

Is it the case that a given transformation of a measure space

(X ,B) possesses an ergodic measure?

In the next lecture, we study this question in the context of

continuous transformations of compact metric spaces.
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