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Let T be a measurable transformation of the probability space

(X ,B, µ). Recall that T is a measure preserving transformation

(mpt) if, for all B ∈ B, we have µ(T−1B) = µ(B).

In this lecture we define ergodicity.

We will also briefly discuss mixing properties that imply ergodicity.

Motivation: Birkhoff’s Ergodic Theorem

Suppose:

I T is an ergodic measure-preserving transformation of a

probability space (X ,B, µ),

I f ∈ L1(X ,B, µ).

Then
1

n

n−1∑
j=0

f (T jx) −→
∫

f dµ µ-a.e. x ∈ X .
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Definition
A mpt T of a probability space (X ,B, µ) is ergodic (or µ is an

ergodic measure for T ) if

T−1B = B,B ∈ B =⇒ µ(B) = 0 or 1

i.e. the only T -invariant subsets are trivial.

Remark
Ergodicity is an indecomposability assumption. Suppose T is not

ergodic. Then ∃B ∈ B with 0 < µ(B) < 1 such that T−1B = B.

B
Bc

3
k

T
T

T : B → B is a mpt of the proba-

bility space B with invariant prob-

ability measure 1
µ(B)µ( · ∩ B).

T : Bc → Bc is a mpt of the prob-

ability space B with invariant prob-

ability measure 1
µ(Bc )µ( · ∩ Bc).
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Recall:
If A,B ⊂ X , then the symmetric difference

A4 B = (A\B) ∪ (B\A).

A

B

A ∩ B

Definition
We say A = B a.e. or A = B mod 0 if µ(A4 B) = 0. Note:

A = B a.e. =⇒ µ(A) = µ(B).
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Lemma
T is ergodic ⇔ if T−1B = B µ-a.e. then µ(B) = 0 or 1.

Proof.
In notes. (Philosophy: in measure theory, sets of measure zero

don’t matter.)

The following gives a useful criterion for ergodicity.

Proposition

Let T be a mpt of a probability space (X ,B, µ). Then the

followng are equivalent

1. T is ergodic.

2. “The only T -invariant functions are constant”

f ∈ L1(X ,B, µ), f ◦ T = f µ-a.e. =⇒ f = const. µ-a.e.

Remark: We can replace L1 in 2. by L2.
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Proof: (sketch)

(2 =⇒ 1) Suppose B ∈ B is T -invariant: T−1B = B. We want to

show µ(B) = 0 or 1. Let f = χB . Then

f ◦ T = χB ◦ T = χT−1B = χB = f .

Hence χB = constant µ-a.e.

Hence µ(B) =
∫
χB dµ = 0 or 1.
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Using Fourier Series to prove ergodicity

Let X = R/Z. Fix α ∈ R and define the circle rotation

Tx = x + α mod 1. We have seen that T preserves Lebesgue

measure µ.

Proposition

T is ergodic w.r.t. Lebesgue measure ⇐⇒ α /∈ Q.

Proof:

=⇒ Suppose α = p
q , p, q ∈ Z with q 6= 0. Let

f (x) = exp(2πiqx). Then f is non-constant and

f (Tx) = exp

(
2πiq

(
x +

p

q

))
= exp(2πi(qx + p))

= exp(2πiqx) = f (x)

so f is T -invariant. Hence T is not ergodic.
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⇐= Suppose α /∈ Q.

Let f ∈ L2 be T -invariant: f ◦ T = f a.e.

Let f have Fourier series

∞∑
n=−∞

cne2πinx

Then f ◦ T has Fourier series

∞∑
n=−∞

cne2πin(x+α) =
∞∑

n=−∞
cne2πinαe2πinx .

Comparing Fourier coefficients gives

cn = cne2πinα.

If n 6= 0, then exp(2πinα) 6= 1 (as α irrational). Hence:

n 6= 0 =⇒ cn = 0. Hence f has Fourier series c0, i.e. f is

constant a.e.

�
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Recall: The Riemann-Lebesgue Lemma.

If f ∈ L2 has Fourier

series
∑

cne2πinx then cn → 0 as |n| → ∞.

In higher dimensions this is: If f ∈ L2 has Fourier series∑
n∈Zk

cne2πi〈n,x〉

then cn → 0 as ‖n‖ → ∞.
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The doubling map

Proposition

The doubling map Tx = 2x mod 1 is ergodic w.r.t. Lebesgue

measure.

Proof Suppose f ∈ L2 is T -invariant: f ◦ T = f a.e.

Then f ◦ T p = f a.e. ∀p > 0. Let f have Fourier series
∞∑

n=−∞
cne2πinx .

Then f ◦ T p has Fourier series
∞∑

n=−∞
cne2πi2pnx .

Comparing Fourier coefficients: c2pn = cn ∀n ∈ Z, p > 0.

Suppose n 6= 0. Then 2pn→∞ as p →∞. By the Riemann-

Lebesgue lemma: cn = c2pn → 0. Hence cn = 0 ∀n 6= 0.

Hence f has Fourier series c0 so f is constant a.e. Hence T is
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Toral endomorphisms

Let X = Rk/Zk and A be a k × k integer matrix s.t. det A 6= 0.

Define T : X → X by Tx = Ax mod 1. We know that T preserves

Lebesgue measure.

Proposition

T is ergodic w.r.t. Lebesgue measure ⇐⇒ A has no roots of

unity as eigenvalues.
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Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability

space (X ,B, µ). Suppose A is an algebra that generates B. We

show how to prove ergodicity by approximating invariant sets

T−1B = B by sets in A.

Key Technical Lemma

Suppose: (X ,B, µ) is a probability space, A an algebra that

generates B. Let B ∈ B. Suppose there exists k > 0 such that

µ(B)µ(I ) ≤ kµ(B ∩ I ) ∀I ∈ A.

Then µ(B) = 0 or 1.

Idea: approximate Bc by an element A ∈ A. Then

µ(B)µ(Bc) ≈ µ(B)µ(A) ≤ kµ(B ∩ A) ≈ kµ(B ∩ Bc) = 0. Hence

µ(B) = 0 or 1.
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The doubling map
Let A be the algebra of dyadic intervals, µ = Lebesgue measure.

Example: I = [2/4, 3/4], J = [0, 1/2].

µ(I ∩ J) = 0, µ(I ∩ T−1J) = 1/4, µ(I ∩ T−2J) = 1/8,

µ(I ∩ T−3J) = 1/8.

If n is large enough then µ(I ∩ T−nJ) = µ(I )µ(J) for all dyadic

intervals I , J.
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Let B ∈ B. Suppose T−1B = B. Then T−nB = B ∀n ≥ 0.

Let I ∈ A be a dyadic interval.

Approximate B by a finite union of dyadic intervals: i.e. choose

J ∈ A s.t. µ(B) ≈ µ(J) (more precisely: µ(B 4 J) < ε).

Then T−nB ≈ T−nJ as µ is T -invariant. Hence

µ(B ∩ I ) = µ(T−nB ∩ I )

≈ µ(T−nJ ∩ I )

≈ µ(J)µ(I ) if n large

≈ µ(B)µ(I )

Hence µ(B) = 0 or 1 by the technical lemma.
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Bernoulli Shifts

Let Σk =
{

(xj)
∞
j=0 | xj ∈ {1, . . . , k}

}
be the full one-sided k-shift.

Let σ : Σk → Σk : (σx)j = xj+1 be the shift map.

Recall cylinder sets

[i0, . . . , in−1] = {(xj)
∞
j=0 | xj = ij , 0 ≤ j ≤ n − 1}.

Let p = (p1, . . . , pk) be a probability vector. Recall the p-Bernoulli

measure µp defined on cylinders by

µp[i0, . . . , in−1] = pi0 . . . pin−1 .
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Proposition

σ is ergodic w.r.t. µp.

Proof (sketch): Let A denote the algebra of finite unions of

cylinders. Then A generates B. Let I = [i0, . . . , ip], J = [j0, . . . , jr ]

be two cylinders.Then for n > p, we have

µp(I ∩ σ−nJ) = pi0 . . . pip pj0 . . . pjr

= µp(I )µp(J).

Hence ∀I , J ∈ A, µp(I ∩ σ−nJ) = µp(I )µp(J) provided n is

sufficiently large.

The same proof as for the doubling map then works.
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The continued fraction map
Let T : [0, 1]→ [0, 1] be the continued fraction map

Tx = 1
x mod 1.

Write

1

x0 +
1

x1 +
1

x2 + . . .

= [x0, x1, x2, . . . ]

Then T [x0, x1, x2, . . . ] = [x1, x2, . . . ].

Recall Gauss’ measure

µ(B) =
1

log 2

∫
B

dx

1 + x

We know that µ is T -invariant.

Proposition

T is ergodic w.r.t. µ.
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Let I (x0, . . . , xn) = {x ∈ (0, 1) | x has ct’d frac. exp. starting

x0, . . . , xn}

Call I (x0, . . . , xn) the cylinder of rank n that contains x .
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Let x = [x0, x1, x2, . . . ].

The nth partial convergent is

[x0, x1, . . . , xn] =
Pn

Qn
−→ x .

Fact: ∃c ,C > 0 such that for all cylinders of rank n containing x

c

Q2
n

≤ µ(I (x0, . . . , xn)) ≤ C

Q2
n

.

From this, one can show there exists C ′ > 0 s.t. if B ∈ B and I is

a cylinder, then µ(B)µ(I ) ≤ C ′µ(B ∩ I ).

By the technical lemma, T is ergodic wrt µ.
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Mixing

Recall Birkhoff’s Ergodic Theorem: Let T be an ergodic mpt of

(X ,B, µ) and let f ∈ L1(X ,B, µ). Then

1

n

n−1∑
j=0

f (T jx)→
∫

f dµ µ-a.e. (1)

Corollary

Let T be a mpt of (X ,B, µ). Then

T is ergodic⇔ ∀A,B ∈ B, 1

n

n−1∑
j=0

µ(T−jA ∩ B)→ µ(A)µ(B).
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Different notions of convergence

Let an ∈ R. Then:

1. an converges to a if an → a,

2. an absolutely Cesàro converges to a if

1

n

n−1∑
j=0

|aj − a| → 0,

3. an Cesàro converges to a if

1

n

n−1∑
j=0

aj → a.

Then
(1) ⇒ (2) ⇒ (3).

6⇐ 6⇐
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Different types of mixing

Let T be a mpt of (X ,B, µ).

1. T is strong-mixing if ∀A,B ∈ B

µ(T−nA ∩ B)→ µ(A)µ(B).

2. T is weak-mixing if ∀A,B ∈ B

1

n

n−1∑
j=0

∣∣µ(T−jA ∩ B)− µ(A)µ(B)
∣∣→ 0.

3. T is ergodic if ∀A,B ∈ B

1

n

n−1∑
j=0

µ(T−jA ∩ B)→ µ(A)µ(B).

Note: strong-mixing ⇒ weak-mixing ⇒ ergodic.

There are examples to show that neither of these inequalities can

be reversed.
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Mixing as an independence condition

Recall from probability theory that two events A,B ∈ B are

independent if

µ(A ∩ B) = µ(A)µ(B).

Mixing and ergodicity can be viewed as an asymptotic

independence condition.

Consider two events A,B ∈ B.

Then T−nA can be viewed as the event A happening at time n.

Thus T is strong-mixing if and only if the events T−nA and B

become independent as n→∞.

T is weak-mixing (or ergodic) if the events T−nA,B become

independent as n→∞ in the absolute Cesàro (or Cesàro) sense.
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Mixing as an independence condition

Recall from probability theory that two events A,B ∈ B are

independent if

µ(A ∩ B) = µ(A)µ(B).

Mixing and ergodicity can be viewed as an asymptotic

independence condition.

Consider two events A,B ∈ B.

Then T−nA can be viewed as the event A happening at time n.

Thus T is strong-mixing if and only if the events T−nA and B

become independent as n→∞.

T is weak-mixing (or ergodic) if the events T−nA,B become

independent as n→∞ in the absolute Cesàro (or Cesàro) sense.
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Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X ,B, µ). Define

the linear operator

U : L2(X ,B, µ)→ L2(X ,B, µ) : f 7→ f ◦ T .

Then

〈Uf ,Ug〉 =

∫
f ◦T g ◦ T dµ =

∫
(f ḡ)◦T dµ =

∫
f ḡ dµ = 〈f , g〉.

Hence U is an isometry of L2(X ,B, µ).

Note:

1 is a simple eigenvalue of U ⇔ f ◦T = f imples f =const a.e. ⇔
T is ergodic.

Theorem
T is weak-mixing ⇔ 1 is the only eigenvalue for U.
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Examples of weak-mixing

Using Fourier series, one can easily prove:

Proposition

The doubling map Tx = 2x mod 1 is weak-mixing (wrt Lebesgue

measure).

Proposition

An irrational circle rotation Tx = x + α mod 1 is ergodic but not

weak-mixing (wrt Lebesgue measure).

Indeed, let f (x) = e2πix . Then

f (Tx) = e2π(x+α) = e2πiαf (x)

so that e2πiα is an eigenvalue.
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f (Tx) = e2π(x+α) = e2πiαf (x)

so that e2πiα is an eigenvalue.
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Bernoulli

There is a natural notion of two mpts S ,T being

measure-theoretically isomorphic. (Essentially: there is a

measure-preserving map φ such that S ◦ φ = φ ◦ T .)

Definition
A mpt T of a probability space (X ,B, µ) is Bernoulli if it is

isomorphic to a Bernoulli (p1, . . . , pk)-shift.

Example

The doubling map equipped with Lebesgue measrure is Bernoulli.

It is isomorphic to the Bernoulli (1/2, 1/2)-shift via the coding

map π : Σ2 → [0, 1], π((xj)) =
∑∞

j=0
xj

2j+1 .
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Hierachies of mixing

Let T be a (non-invertible) mpt of (X ,B, µ).

Then

Bernoulli ⇒ Strong-mixing ⇒ Weak-mixing ⇒ Ergodic.

(And none of these implications can be reversed.)

There are many other forms of mixing (mild-mixing, r -fold mixing)

that can be fitted in to this scheme.
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Next lecture

In the next lecture we look at Birkhoff’s Ergodic Theorem and

recurrence.


