MAGIC: Ergodic Theory Lecture 4 - Ergodicity and Mixing

Charles Walkden

February 13th 2013

Let T be a measurable transformation of the probability space (X, \mathcal{B}, μ). Recall that T is a measure preserving transformation (mpt) if, for all $B \in \mathcal{B}$, we have $\mu\left(T^{-1} B\right)=\mu(B)$.

Let T be a measurable transformation of the probability space (X, \mathcal{B}, μ). Recall that T is a measure preserving transformation (mpt) if, for all $B \in \mathcal{B}$, we have $\mu\left(T^{-1} B\right)=\mu(B)$.

In this lecture we define ergodicity.

Let T be a measurable transformation of the probability space (X, \mathcal{B}, μ). Recall that T is a measure preserving transformation (mpt) if, for all $B \in \mathcal{B}$, we have $\mu\left(T^{-1} B\right)=\mu(B)$.

In this lecture we define ergodicity.
We will also briefly discuss mixing properties that imply ergodicity.

Let T be a measurable transformation of the probability space (X, \mathcal{B}, μ). Recall that T is a measure preserving transformation (mpt) if, for all $B \in \mathcal{B}$, we have $\mu\left(T^{-1} B\right)=\mu(B)$.

In this lecture we define ergodicity.
We will also briefly discuss mixing properties that imply ergodicity.

Motivation: Birkhoff's Ergodic Theorem
Suppose:

- T is an ergodic measure-preserving transformation of a probability space (X, \mathcal{B}, μ),
- $f \in L^{1}(X, \mathcal{B}, \mu)$.

Let T be a measurable transformation of the probability space (X, \mathcal{B}, μ). Recall that T is a measure preserving transformation (mpt) if, for all $B \in \mathcal{B}$, we have $\mu\left(T^{-1} B\right)=\mu(B)$.

In this lecture we define ergodicity.
We will also briefly discuss mixing properties that imply ergodicity.

Motivation: Birkhoff's Ergodic Theorem
Suppose:

- T is an ergodic measure-preserving transformation of a probability space (X, \mathcal{B}, μ),
- $f \in L^{1}(X, \mathcal{B}, \mu)$.

Then

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu \mu \text {-a.e. } x \in X
$$

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B}
$$

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

i.e. the only T-invariant subsets are trivial.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

i.e. the only T-invariant subsets are trivial.

Remark
Ergodicity is an indecomposability assumption.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

i.e. the only T-invariant subsets are trivial.

Remark
Ergodicity is an indecomposability assumption. Suppose T is not ergodic. Then $\exists B \in \mathcal{B}$ with $0<\mu(B)<1$ such that $T^{-1} B=B$.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

i.e. the only T-invariant subsets are trivial.

Remark

Ergodicity is an indecomposability assumption. Suppose T is not ergodic. Then $\exists B \in \mathcal{B}$ with $0<\mu(B)<1$ such that $T^{-1} B=B$.
 $T: B \rightarrow B$ is a mpt of the probability space B with invariant probability measure $\frac{1}{\mu(B)} \mu(\cdot \cap B)$.

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is ergodic (or μ is an ergodic measure for T) if

$$
T^{-1} B=B, B \in \mathcal{B} \Longrightarrow \mu(B)=0 \text { or } 1
$$

i.e. the only T-invariant subsets are trivial.

Remark

Ergodicity is an indecomposability assumption. Suppose T is not ergodic. Then $\exists B \in \mathcal{B}$ with $0<\mu(B)<1$ such that $T^{-1} B=B$.
 $T: B \rightarrow B$ is a mpt of the probability space B with invariant probability measure $\frac{1}{\mu(B)} \mu(\cdot \cap B)$.
$T: B^{c} \rightarrow B^{c}$ is a mpt of the probability space B with invariant probability measure $\frac{1}{\mu\left(B^{c}\right)} \mu\left(\cdot \cap B^{c}\right)$.

Recall:
If $A, B \subset X$, then the symmetric difference $A \triangle B=(A \backslash B) \cup(B \backslash A)$.

Recall:

If $A, B \subset X$, then the symmetric difference
$A \triangle B=(A \backslash B) \cup(B \backslash A)$.

Recall:

If $A, B \subset X$, then the symmetric difference
$A \triangle B=(A \backslash B) \cup(B \backslash A)$.

Definition
We say $A=B$ a.e. or $A=B \bmod 0$ if $\mu(A \triangle B)=0$.

Recall:

If $A, B \subset X$, then the symmetric difference
$A \triangle B=(A \backslash B) \cup(B \backslash A)$.

Definition

We say $A=B$ a.e. or $A=B \bmod 0$ if $\mu(A \triangle B)=0$. Note:
$A=B$ a.e. $\Longrightarrow \mu(A)=\mu(B)$.

Lemma
T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)
The following gives a useful criterion for ergodicity.

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)
The following gives a useful criterion for ergodicity.

Proposition

Let T be a mpt of a probability space (X, \mathcal{B}, μ). Then the followng are equivalent

1. T is ergodic.

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)
The following gives a useful criterion for ergodicity.

Proposition

Let T be a mpt of a probability space (X, \mathcal{B}, μ). Then the followng are equivalent

1. T is ergodic.
2. "The only T-invariant functions are constant"

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)
The following gives a useful criterion for ergodicity.

Proposition

Let T be a mpt of a probability space (X, \mathcal{B}, μ). Then the followng are equivalent

1. T is ergodic.
2. "The only T-invariant functions are constant"

$$
f \in L^{1}(X, \mathcal{B}, \mu), f \circ T=f \mu \text {-a.e. } \Longrightarrow f=\text { const. } \mu \text {-a.e. }
$$

Lemma

T is ergodic \Leftrightarrow if $T^{-1} B=B \mu$-a.e. then $\mu(B)=0$ or 1 .

Proof.

In notes. (Philosophy: in measure theory, sets of measure zero don't matter.)
The following gives a useful criterion for ergodicity.

Proposition

Let T be a mpt of a probability space (X, \mathcal{B}, μ). Then the followng are equivalent

1. T is ergodic.
2. "The only T-invariant functions are constant" $f \in L^{1}(X, \mathcal{B}, \mu), f \circ T=f \mu$-a.e. $\Longrightarrow f=$ const. μ-a.e.

Remark: We can replace L^{1} in 2 . by L^{2}.

Proof: (sketch)

Proof: (sketch)
(2 $\Longrightarrow 1)$ Suppose $B \in \mathcal{B}$ is T-invariant: $T^{-1} B=B$. We want to show $\mu(B)=0$ or 1 . Let $f=\chi_{B}$.

Proof: (sketch)
(2 $\Longrightarrow 1)$ Suppose $B \in \mathcal{B}$ is T-invariant: $T^{-1} B=B$. We want to show $\mu(B)=0$ or 1 . Let $f=\chi_{B}$. Then

$$
f \circ T=\chi_{B} \circ T=\chi_{T^{-1} B}=\chi_{B}=f .
$$

Hence $\chi_{B}=$ constant μ-a.e.

Proof: (sketch)

(2 $\Longrightarrow 1)$ Suppose $B \in \mathcal{B}$ is T-invariant: $T^{-1} B=B$. We want to show $\mu(B)=0$ or 1 . Let $f=\chi_{B}$. Then

$$
f \circ T=\chi_{B} \circ T=\chi_{T^{-1} B}=\chi_{B}=f .
$$

Hence $\chi_{B}=$ constant μ-a.e.
Hence $\mu(B)=\int \chi_{B} d \mu=0$ or 1 .

Proof: (sketch)

(2 $\Longrightarrow 1)$ Suppose $B \in \mathcal{B}$ is T-invariant: $T^{-1} B=B$. We want to show $\mu(B)=0$ or 1 . Let $f=\chi_{B}$. Then

$$
f \circ T=\chi_{B} \circ T=\chi_{T^{-1} B}=\chi_{B}=f .
$$

Hence $\chi_{B}=$ constant μ-a.e.
Hence $\mu(B)=\int \chi_{B} d \mu=0$ or 1 .

Using Fourier Series to prove ergodicity

Using Fourier Series to prove ergodicity

Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \in \mathbb{R}$ and define the circle rotation $T x=x+\alpha \bmod 1$. We have seen that T preserves Lebesgue measure μ.

Using Fourier Series to prove ergodicity

Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \in \mathbb{R}$ and define the circle rotation $T x=x+\alpha \bmod 1$. We have seen that T preserves Lebesgue measure μ.

Proposition
T is ergodic w.r.t. Lebesgue measure $\Longleftrightarrow \alpha \notin \mathbb{Q}$.

Using Fourier Series to prove ergodicity

Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \in \mathbb{R}$ and define the circle rotation $T x=x+\alpha \bmod 1$. We have seen that T preserves Lebesgue measure μ.

Proposition
T is ergodic w.r.t. Lebesgue measure $\Longleftrightarrow \alpha \notin \mathbb{Q}$.

Proof:
\Longrightarrow Suppose $\alpha=\frac{p}{q}, p, q \in \mathbb{Z}$ with $q \neq 0$.

Using Fourier Series to prove ergodicity

Let $X=\mathbb{R} / \mathbb{Z}$. Fix $\alpha \in \mathbb{R}$ and define the circle rotation $T x=x+\alpha \bmod 1$. We have seen that T preserves Lebesgue measure μ.

Proposition
T is ergodic w.r.t. Lebesgue measure $\Longleftrightarrow \alpha \notin \mathbb{Q}$.

Proof:
\Longrightarrow Suppose $\alpha=\frac{p}{q}, p, q \in \mathbb{Z}$ with $q \neq 0$. Let $f(x)=\exp (2 \pi i q x)$. Then f is non-constant and

$$
\begin{aligned}
f(T x) & =\exp \left(2 \pi i q\left(x+\frac{p}{q}\right)\right)=\exp (2 \pi i(q x+p)) \\
& =\exp (2 \pi i q x)=f(x)
\end{aligned}
$$

so f is T-invariant. Hence T is not ergodic.
\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$.
\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$. Let $f \in L^{2}$ be T-invariant: $f \circ T=f$ a.e.
\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$. Let $f \in L^{2}$ be T-invariant: $f \circ T=f$ a.e. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$. Let $f \in L^{2}$ be T-invariant: $f \circ T=f$ a.e. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n(x+\alpha)}=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n \alpha} e^{2 \pi i n x}
$$

\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$. Let $f \in L^{2}$ be T-invariant: $f \circ T=f$ a.e. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n(x+\alpha)}=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n \alpha} e^{2 \pi i n x}
$$

Comparing Fourier coefficients gives

$$
c_{n}=c_{n} e^{2 \pi i n \alpha}
$$

\Longleftarrow Suppose $\alpha \notin \mathbb{Q}$. Let $f \in L^{2}$ be T-invariant: $f \circ T=f$ a.e. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n(x+\alpha)}=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n \alpha} e^{2 \pi i n x}
$$

Comparing Fourier coefficients gives

$$
c_{n}=c_{n} e^{2 \pi i n \alpha}
$$

If $n \neq 0$, then $\exp (2 \pi i n \alpha) \neq 1$ (as α irrational). Hence: $n \neq 0 \Longrightarrow c_{n}=0$. Hence f has Fourier series c_{0}, i.e. f is constant a.e.

Recall: The Riemann-Lebesgue Lemma.

Recall: The Riemann-Lebesgue Lemma. If $f \in L^{2}$ has Fourier series $\sum c_{n} e^{2 \pi i n x}$ then $c_{n} \rightarrow 0$ as $|n| \rightarrow \infty$.

Recall: The Riemann-Lebesgue Lemma. If $f \in L^{2}$ has Fourier series $\sum c_{n} e^{2 \pi i n x}$ then $c_{n} \rightarrow 0$ as $|n| \rightarrow \infty$.

In higher dimensions this is:

Recall: The Riemann-Lebesgue Lemma. If $f \in L^{2}$ has Fourier series $\sum c_{n} e^{2 \pi i n x}$ then $c_{n} \rightarrow 0$ as $|n| \rightarrow \infty$.

In higher dimensions this is: If $f \in L^{2}$ has Fourier series

$$
\sum_{n \in \mathbb{Z}^{k}} c_{n} e^{2 \pi i\langle n, x\rangle}
$$

then $c_{n} \rightarrow 0$ as $\|n\| \rightarrow \infty$.

The doubling map

Proposition
The doubling map $T x=2 x$ mod 1 is ergodic w.r.t. Lebesgue measure.

The doubling map

Proposition
The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.

Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.

The doubling map

Proposition

The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.
Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.
Then $f \circ T^{p}=f$ a.e. $\forall p>0$.

The doubling map

Proposition

The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.
Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.
Then $f \circ T^{p}=f$ a.e. $\forall p>0$. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

The doubling map

Proposition

The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.
Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.
Then $f \circ T^{p}=f$ a.e. $\forall p>0$. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T^{p}$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i 2^{p} n x}
$$

The doubling map

Proposition

The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.
Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.
Then $f \circ T^{p}=f$ a.e. $\forall p>0$. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T^{p}$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i 2^{p} n x}
$$

Comparing Fourier coefficients: $c_{2 p_{n}}=c_{n} \forall n \in \mathbb{Z}, p>0$.

The doubling map

Proposition

The doubling map $T x=2 x \bmod 1$ is ergodic w.r.t. Lebesgue measure.

Proof Suppose $f \in L^{2}$ is T-invariant: $f \circ T=f$ a.e.
Then $f \circ T^{p}=f$ a.e. $\forall p>0$. Let f have Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

Then $f \circ T^{p}$ has Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i 2^{p} n x}
$$

Comparing Fourier coefficients: $c_{2 p_{n}}=c_{n} \forall n \in \mathbb{Z}, p>0$. Suppose $n \neq 0$. Then $2^{p} n \rightarrow \infty$ as $p \rightarrow \infty$. By the RiemannLebesgue lemma: $c_{n}=c_{2^{p} n} \rightarrow 0$. Hence $c_{n}=0 \forall n \neq 0$. Hence f has Fourier series c_{0} so f is constant a.e. Hence T is aroodir

Toral endomorphisms

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ and A be a $k \times k$ integer matrix s.t. $\operatorname{det} A \neq 0$. Define $T: X \rightarrow X$ by $T x=A x \bmod 1$. We know that T preserves Lebesgue measure.

Toral endomorphisms

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ and A be a $k \times k$ integer matrix s.t. $\operatorname{det} A \neq 0$. Define $T: X \rightarrow X$ by $T x=A x \bmod 1$. We know that T preserves Lebesgue measure.

Proposition
T is ergodic w.r.t. Lebesgue measure $\Longleftrightarrow A$ has no roots of unity as eigenvalues.

Toral endomorphisms

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ and A be a $k \times k$ integer matrix s.t. $\operatorname{det} A \neq 0$. Define $T: X \rightarrow X$ by $T x=A x \bmod 1$. We know that T preserves Lebesgue measure.

Proposition
T is ergodic w.r.t. Lebesgue measure $\Longleftrightarrow A$ has no roots of unity as eigenvalues.

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Key Technical Lemma
Suppose: (X, \mathcal{B}, μ) is a probability space, \mathcal{A} an algebra that generates \mathcal{B}. Let $B \in \mathcal{B}$.

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Key Technical Lemma

Suppose: (X, \mathcal{B}, μ) is a probability space, \mathcal{A} an algebra that generates \mathcal{B}. Let $B \in \mathcal{B}$. Suppose there exists $k>0$ such that

$$
\mu(B) \mu(I) \leq k \mu(B \cap I) \forall I \in \mathcal{A} .
$$

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Key Technical Lemma

Suppose: (X, \mathcal{B}, μ) is a probability space, \mathcal{A} an algebra that generates \mathcal{B}. Let $B \in \mathcal{B}$. Suppose there exists $k>0$ such that

$$
\mu(B) \mu(I) \leq k \mu(B \cap I) \forall I \in \mathcal{A} .
$$

Then $\mu(B)=0$ or 1 .

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Key Technical Lemma

Suppose: (X, \mathcal{B}, μ) is a probability space, \mathcal{A} an algebra that generates \mathcal{B}. Let $B \in \mathcal{B}$. Suppose there exists $k>0$ such that

$$
\mu(B) \mu(I) \leq k \mu(B \cap I) \forall I \in \mathcal{A} .
$$

Then $\mu(B)=0$ or 1 .
Idea: approximate B^{c} by an element $A \in \mathcal{A}$.

Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Suppose \mathcal{A} is an algebra that generates \mathcal{B}. We show how to prove ergodicity by approximating invariant sets $T^{-1} B=B$ by sets in \mathcal{A}.

Key Technical Lemma

Suppose: (X, \mathcal{B}, μ) is a probability space, \mathcal{A} an algebra that generates \mathcal{B}. Let $B \in \mathcal{B}$. Suppose there exists $k>0$ such that

$$
\mu(B) \mu(I) \leq k \mu(B \cap I) \forall I \in \mathcal{A} .
$$

Then $\mu(B)=0$ or 1 .
Idea: approximate B^{c} by an element $A \in \mathcal{A}$. Then
$\mu(B) \mu\left(B^{c}\right) \approx \mu(B) \mu(A) \leq k \mu(B \cap A) \approx k \mu\left(B \cap B^{c}\right)=0$. Hence $\mu(B)=0$ or 1 .

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.
Example: $I=[2 / 4,3 / 4], J=[0,1 / 2]$.

$\mu(I \cap J)=0$,

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.
Example: $I=[2 / 4,3 / 4], J=[0,1 / 2]$.

$\mu(I \cap J)=0, \quad \mu\left(I \cap T^{-1} J\right)=1 / 4$,

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.
Example: $I=[2 / 4,3 / 4], J=[0,1 / 2]$.

$\mu(I \cap J)=0, \quad \mu\left(I \cap T^{-1} J\right)=1 / 4, \quad \mu\left(I \cap T^{-2} J\right)=1 / 8$,

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.
Example: $I=[2 / 4,3 / 4], J=[0,1 / 2]$.

$\mu(I \cap J)=0, \quad \mu\left(I \cap T^{-1} J\right)=1 / 4, \quad \mu\left(I \cap T^{-2} J\right)=1 / 8$, $\mu\left(I \cap T^{-3} J\right)=1 / 8$.

The doubling map

Let \mathcal{A} be the algebra of dyadic intervals, $\mu=$ Lebesgue measure.
Example: $I=[2 / 4,3 / 4], J=[0,1 / 2]$.

$\mu(I \cap J)=0, \quad \mu\left(I \cap T^{-1} J\right)=1 / 4, \quad \mu\left(I \cap T^{-2} J\right)=1 / 8$, $\mu\left(I \cap T^{-3} J\right)=1 / 8$.

If n is large enough then $\mu\left(I \cap T^{-n} J\right)=\mu(I) \mu(J)$ for all dyadic intervals I, J.

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$. Let $I \in \mathcal{A}$ be a dyadic interval.

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant.

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant. Hence

$$
\mu(B \cap I)=\mu\left(T^{-n} B \cap I\right)
$$

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant. Hence

$$
\begin{aligned}
\mu(B \cap I) & =\mu\left(T^{-n} B \cap I\right) \\
& \approx \mu\left(T^{-n} J \cap I\right)
\end{aligned}
$$

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant. Hence

$$
\begin{aligned}
\mu(B \cap I) & =\mu\left(T^{-n} B \cap I\right) \\
& \approx \mu\left(T^{-n} J \cap I\right) \\
& \approx \mu(J) \mu(I) \text { if } n \text { large }
\end{aligned}
$$

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant. Hence

$$
\begin{aligned}
\mu(B \cap I) & =\mu\left(T^{-n} B \cap I\right) \\
& \approx \mu\left(T^{-n} J \cap I\right) \\
& \approx \mu(J) \mu(I) \text { if } n \text { large } \\
& \approx \mu(B) \mu(I)
\end{aligned}
$$

Let $B \in \mathcal{B}$. Suppose $T^{-1} B=B$. Then $T^{-n} B=B \forall n \geq 0$.
Let $I \in \mathcal{A}$ be a dyadic interval.
Approximate B by a finite union of dyadic intervals: i.e. choose $J \in \mathcal{A}$ s.t. $\mu(B) \approx \mu(J)$ (more precisely: $\mu(B \triangle J)<\epsilon$).
Then $T^{-n} B \approx T^{-n} J$ as μ is T-invariant. Hence

$$
\begin{aligned}
\mu(B \cap I) & =\mu\left(T^{-n} B \cap I\right) \\
& \approx \mu\left(T^{-n} J \cap I\right) \\
& \approx \mu(J) \mu(I) \text { if } n \text { large } \\
& \approx \mu(B) \mu(I)
\end{aligned}
$$

Hence $\mu(B)=0$ or 1 by the technical lemma.

Bernoulli Shifts

Let $\Sigma_{k}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k}:(\sigma x)_{j}=x_{j+1}$ be the shift map.

Bernoulli Shifts

Let $\Sigma_{k}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k}:(\sigma x)_{j}=x_{j+1}$ be the shift map.
Recall cylinder sets

$$
\left[i_{0}, \ldots, i_{n-1}\right]=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j}=i_{j}, 0 \leq j \leq n-1\right\} .
$$

Bernoulli Shifts

Let $\Sigma_{k}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k}:(\sigma x)_{j}=x_{j+1}$ be the shift map.
Recall cylinder sets

$$
\left[i_{0}, \ldots, i_{n-1}\right]=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j}=i_{j}, 0 \leq j \leq n-1\right\} .
$$

Let $p=\left(p_{1}, \ldots, p_{k}\right)$ be a probability vector. Recall the p-Bernoulli measure μ_{p} defined on cylinders by

$$
\mu_{p}\left[i_{0}, \ldots, i_{n-1}\right]=p_{i_{0}} \ldots p_{i_{n-1}}
$$

Proposition

σ is ergodic w.r.t. μ_{p}.

Proposition

σ is ergodic w.r.t. μ_{p}.

Proof (sketch): Let \mathcal{A} denote the algebra of finite unions of cylinders. Then \mathcal{A} generates \mathcal{B}. Let $I=\left[i_{0}, \ldots, i_{p}\right], J=\left[j_{0}, \ldots, j_{r}\right]$ be two cylinders.

Proposition

σ is ergodic w.r.t. μ_{p}.
Proof (sketch): Let \mathcal{A} denote the algebra of finite unions of cylinders. Then \mathcal{A} generates \mathcal{B}. Let $I=\left[i_{0}, \ldots, i_{p}\right], J=\left[j_{0}, \ldots, j_{r}\right]$ be two cylinders. Then for $n>p$, we have

$$
\mu_{p}\left(I \cap \sigma^{-n} J\right)=p_{i_{0}} \ldots p_{i_{p}} p_{j_{0}} \ldots p_{j_{r}}
$$

Proposition

σ is ergodic w.r.t. μ_{p}.
Proof (sketch): Let \mathcal{A} denote the algebra of finite unions of cylinders. Then \mathcal{A} generates \mathcal{B}. Let $I=\left[i_{0}, \ldots, i_{p}\right], J=\left[j_{0}, \ldots, j_{r}\right]$ be two cylinders. Then for $n>p$, we have

$$
\begin{aligned}
\mu_{p}\left(I \cap \sigma^{-n} J\right) & =p_{i_{0}} \ldots p_{i_{p}} p_{j_{0}} \ldots p_{j_{r}} \\
& =\mu_{p}(I) \mu_{p}(J) .
\end{aligned}
$$

Proposition

σ is ergodic w.r.t. μ_{p}.

Proof (sketch): Let \mathcal{A} denote the algebra of finite unions of cylinders. Then \mathcal{A} generates \mathcal{B}. Let $I=\left[i_{0}, \ldots, i_{p}\right], J=\left[j_{0}, \ldots, j_{r}\right]$ be two cylinders. Then for $n>p$, we have

$$
\begin{aligned}
\mu_{p}\left(I \cap \sigma^{-n} J\right) & =p_{i_{0}} \ldots p_{i_{p}} p_{j_{0}} \ldots p_{j_{r}} \\
& =\mu_{p}(I) \mu_{p}(J) .
\end{aligned}
$$

Hence $\forall I, J \in \mathcal{A}, \mu_{p}\left(I \cap \sigma^{-n} J\right)=\mu_{p}(I) \mu_{p}(J)$ provided n is sufficiently large.

Proposition

σ is ergodic w.r.t. μ_{p}.

Proof (sketch): Let \mathcal{A} denote the algebra of finite unions of cylinders. Then \mathcal{A} generates \mathcal{B}. Let $I=\left[i_{0}, \ldots, i_{p}\right], J=\left[j_{0}, \ldots, j_{r}\right]$ be two cylinders. Then for $n>p$, we have

$$
\begin{aligned}
\mu_{p}\left(I \cap \sigma^{-n} J\right) & =p_{i_{0}} \ldots p_{i_{p}} p_{j_{0}} \ldots p_{j_{r}} \\
& =\mu_{p}(I) \mu_{p}(J) .
\end{aligned}
$$

Hence $\forall I, J \in \mathcal{A}, \mu_{p}\left(I \cap \sigma^{-n} J\right)=\mu_{p}(I) \mu_{p}(J)$ provided n is sufficiently large.

The same proof as for the doubling map then works.

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map $T x=\frac{1}{x} \bmod 1$.

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map
$T x=\frac{1}{x} \bmod 1$. Write

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map
$T x=\frac{1}{x} \bmod 1$. Write

Then $T\left[x_{0}, x_{1}, x_{2}, \ldots\right]=\left[x_{1}, x_{2}, \ldots\right]$.

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map
$T x=\frac{1}{x} \bmod 1$. Write

Then $T\left[x_{0}, x_{1}, x_{2}, \ldots\right]=\left[x_{1}, x_{2}, \ldots\right]$.
Recall Gauss' measure

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{d x}{1+x}
$$

We know that μ is T-invariant.

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map
$T x=\frac{1}{x} \bmod 1$. Write

Then $T\left[x_{0}, x_{1}, x_{2}, \ldots\right]=\left[x_{1}, x_{2}, \ldots\right]$.
Recall Gauss' measure

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{d x}{1+x}
$$

We know that μ is T-invariant.
Proposition
T is ergodic w.r.t. μ.

The continued fraction map

Let $T:[0,1] \rightarrow[0,1]$ be the continued fraction map
$T x=\frac{1}{x} \bmod 1$. Write

Then $T\left[x_{0}, x_{1}, x_{2}, \ldots\right]=\left[x_{1}, x_{2}, \ldots\right]$.
Recall Gauss' measure

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{d x}{1+x}
$$

We know that μ is T-invariant.
Proposition
T is ergodic w.r.t. μ.

Let $I\left(x_{0}, \ldots, x_{n}\right)=\{x \in(0,1) \mid x$ has ct'd frac. exp. starting $\left.x_{0}, \ldots, x_{n}\right\}$

$$
\text { Let } \begin{aligned}
I\left(x_{0}, \ldots, x_{n}\right)= & \{x \in(0,1) \mid x \text { has ct'd frac. exp. starting } \\
& \left.x_{0}, \ldots, x_{n}\right\}
\end{aligned}
$$

$$
\text { Let } \begin{aligned}
I\left(x_{0}, \ldots, x_{n}\right)= & \{x \in(0,1) \mid x \text { has ct'd frac. exp. starting } \\
& \left.x_{0}, \ldots, x_{n}\right\}
\end{aligned}
$$

Call $I\left(x_{0}, \ldots, x_{n}\right)$ the cylinder of rank n that contains x.

Let $x=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$.

Let $x=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$. The $n^{\text {th }}$ partial convergent is

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{P_{n}}{Q_{n}} \longrightarrow x
$$

Let $x=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$. The $n^{\text {th }}$ partial convergent is

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{P_{n}}{Q_{n}} \longrightarrow x
$$

Fact: $\exists c, C>0$ such that for all cylinders of rank n containing x

$$
\frac{c}{Q_{n}^{2}} \leq \mu\left(I\left(x_{0}, \ldots, x_{n}\right)\right) \leq \frac{C}{Q_{n}^{2}}
$$

Let $x=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$. The $n^{\text {th }}$ partial convergent is

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{P_{n}}{Q_{n}} \longrightarrow x
$$

Fact: $\exists c, C>0$ such that for all cylinders of rank n containing x

$$
\frac{c}{Q_{n}^{2}} \leq \mu\left(I\left(x_{0}, \ldots, x_{n}\right)\right) \leq \frac{C}{Q_{n}^{2}}
$$

From this, one can show there exists $C^{\prime}>0$ s.t. if $B \in \mathcal{B}$ and I is a cylinder, then $\mu(B) \mu(I) \leq C^{\prime} \mu(B \cap I)$.

Let $x=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$. The $n^{\text {th }}$ partial convergent is

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{P_{n}}{Q_{n}} \longrightarrow x
$$

Fact: $\exists c, C>0$ such that for all cylinders of rank n containing x

$$
\frac{c}{Q_{n}^{2}} \leq \mu\left(I\left(x_{0}, \ldots, x_{n}\right)\right) \leq \frac{C}{Q_{n}^{2}}
$$

From this, one can show there exists $C^{\prime}>0$ s.t. if $B \in \mathcal{B}$ and I is a cylinder, then $\mu(B) \mu(I) \leq C^{\prime} \mu(B \cap I)$.

By the technical lemma, T is ergodic wrt μ.

Mixing

Recall Birkhoff's Ergodic Theorem: Let T be an ergodic mpt of (X, \mathcal{B}, μ) and let $f \in L^{1}(X, \mathcal{B}, \mu)$. Then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \rightarrow \int f d \mu \mu \text {-a.e. } \tag{1}
\end{equation*}
$$

Mixing

Recall Birkhoff's Ergodic Theorem: Let T be an ergodic mpt of (X, \mathcal{B}, μ) and let $f \in L^{1}(X, \mathcal{B}, \mu)$. Then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \rightarrow \int f d \mu \mu \text {-a.e. } \tag{1}
\end{equation*}
$$

Corollary
Let T be a mpt of (X, \mathcal{B}, μ). Then

Mixing

Recall Birkhoff's Ergodic Theorem: Let T be an ergodic mpt of (X, \mathcal{B}, μ) and let $f \in L^{1}(X, \mathcal{B}, \mu)$. Then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \rightarrow \int f d \mu \mu \text {-a.e. } \tag{1}
\end{equation*}
$$

Corollary
Let T be a mpt of (X, \mathcal{B}, μ). Then
T is ergodic $\Leftrightarrow \forall A, B \in \mathcal{B}, \frac{1}{n} \sum_{j=0}^{n-1} \mu\left(T^{-j} A \cap B\right) \rightarrow \mu(A) \mu(B)$.

Different notions of convergence

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

1. a_{n} converges to a if $a_{n} \rightarrow a$,

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

1. a_{n} converges to a if $a_{n} \rightarrow a$,
2. a_{n} absolutely Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|a_{j}-a\right| \rightarrow 0
$$

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

1. a_{n} converges to a if $a_{n} \rightarrow a$,
2. a_{n} absolutely Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|a_{j}-a\right| \rightarrow 0
$$

3. a_{n} Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1} a_{j} \rightarrow a
$$

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

1. a_{n} converges to a if $a_{n} \rightarrow a$,
2. a_{n} absolutely Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|a_{j}-a\right| \rightarrow 0
$$

3. a_{n} Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1} a_{j} \rightarrow a
$$

Then

$$
(1) \Rightarrow(2) \Rightarrow(3)
$$

Different notions of convergence

Let $a_{n} \in \mathbb{R}$. Then:

1. a_{n} converges to a if $a_{n} \rightarrow a$,
2. a_{n} absolutely Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|a_{j}-a\right| \rightarrow 0
$$

3. a_{n} Cesàro converges to a if

$$
\frac{1}{n} \sum_{j=0}^{n-1} a_{j} \rightarrow a
$$

Then

$$
\begin{array}{rll}
(1) & \Rightarrow(2) & \Rightarrow(3) . \\
& \nLeftarrow & \nLeftarrow
\end{array}
$$

Different types of mixing

Different types of mixing

Let T be a mpt of (X, \mathcal{B}, μ).

Different types of mixing

Let T be a mpt of (X, \mathcal{B}, μ).

1. T is strong-mixing if $\forall A, B \in \mathcal{B}$

$$
\mu\left(T^{-n} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

Different types of mixing

Let T be a mpt of (X, \mathcal{B}, μ).

1. T is strong-mixing if $\forall A, B \in \mathcal{B}$

$$
\mu\left(T^{-n} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

2. T is weak-mixing if $\forall A, B \in \mathcal{B}$

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|\mu\left(T^{-j} A \cap B\right)-\mu(A) \mu(B)\right| \rightarrow 0
$$

Different types of mixing

Let T be a mpt of (X, \mathcal{B}, μ).

1. T is strong-mixing if $\forall A, B \in \mathcal{B}$

$$
\mu\left(T^{-n} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

2. T is weak-mixing if $\forall A, B \in \mathcal{B}$

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|\mu\left(T^{-j} A \cap B\right)-\mu(A) \mu(B)\right| \rightarrow 0
$$

3. T is ergodic if $\forall A, B \in \mathcal{B}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} \mu\left(T^{-j} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

Note: strong-mixing \Rightarrow weak-mixing \Rightarrow ergodic.

Different types of mixing

Let T be a mpt of (X, \mathcal{B}, μ).

1. T is strong-mixing if $\forall A, B \in \mathcal{B}$

$$
\mu\left(T^{-n} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

2. T is weak-mixing if $\forall A, B \in \mathcal{B}$

$$
\frac{1}{n} \sum_{j=0}^{n-1}\left|\mu\left(T^{-j} A \cap B\right)-\mu(A) \mu(B)\right| \rightarrow 0
$$

3. T is ergodic if $\forall A, B \in \mathcal{B}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} \mu\left(T^{-j} A \cap B\right) \rightarrow \mu(A) \mu(B)
$$

Note: strong-mixing \Rightarrow weak-mixing \Rightarrow ergodic.
There are examples to show that neither of these inequalities can be reversed.

Mixing as an independence condition

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing and ergodicity can be viewed as an asymptotic independence condition.

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing and ergodicity can be viewed as an asymptotic independence condition.
Consider two events $A, B \in \mathcal{B}$.

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing and ergodicity can be viewed as an asymptotic independence condition.
Consider two events $A, B \in \mathcal{B}$.
Then $T^{-n} A$ can be viewed as the event A happening at time n.

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing and ergodicity can be viewed as an asymptotic independence condition.
Consider two events $A, B \in \mathcal{B}$.
Then $T^{-n} A$ can be viewed as the event A happening at time n. Thus T is strong-mixing if and only if the events $T^{-n} A$ and B become independent as $n \rightarrow \infty$.

Mixing as an independence condition

Recall from probability theory that two events $A, B \in \mathcal{B}$ are independent if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Mixing and ergodicity can be viewed as an asymptotic independence condition.
Consider two events $A, B \in \mathcal{B}$.
Then $T^{-n} A$ can be viewed as the event A happening at time n.
Thus T is strong-mixing if and only if the events $T^{-n} A$ and B become independent as $n \rightarrow \infty$.
T is weak-mixing (or ergodic) if the events $T^{-n} A, B$ become independent as $n \rightarrow \infty$ in the absolute Cesàro (or Cesàro) sense.

Weak-mixing and spectral theory

Weak-mixing and spectral theory
Let T be a measure-preserving transformation of (X, \mathcal{B}, μ).

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T .
$$

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.
Hence U is an isometry of $L^{2}(X, \mathcal{B}, \mu)$.

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.
Hence U is an isometry of $L^{2}(X, \mathcal{B}, \mu)$.
Note:
1 is a simple eigenvalue of U

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.
Hence U is an isometry of $L^{2}(X, \mathcal{B}, \mu)$.
Note:
1 is a simple eigenvalue of $U \Leftrightarrow f \circ T=f$ imples $f=$ const a.e.

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.
Hence U is an isometry of $L^{2}(X, \mathcal{B}, \mu)$.
Note:
1 is a simple eigenvalue of $U \Leftrightarrow f \circ T=f$ imples $f=$ const a.e. \Leftrightarrow T is ergodic.

Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, \mathcal{B}, μ). Define the linear operator

$$
U: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu): f \mapsto f \circ T
$$

Then
$\langle U f, U g\rangle=\int f \circ T \overline{g \circ T} d \mu=\int(f \bar{g}) \circ T d \mu=\int f \bar{g} d \mu=\langle f, g\rangle$.
Hence U is an isometry of $L^{2}(X, \mathcal{B}, \mu)$.
Note:
1 is a simple eigenvalue of $U \Leftrightarrow f \circ T=f$ imples $f=$ const a.e. \Leftrightarrow T is ergodic.

Theorem
T is weak-mixing $\Leftrightarrow 1$ is the only eigenvalue for U.

Examples of weak-mixing

Examples of weak-mixing

Using Fourier series, one can easily prove:

Examples of weak-mixing

Using Fourier series, one can easily prove:
Proposition
The doubling map $T x=2 x$ mod 1 is weak-mixing (wrt Lebesgue measure).

Examples of weak-mixing

Using Fourier series, one can easily prove:
Proposition
The doubling map $T x=2 x \bmod 1$ is weak-mixing (wrt Lebesgue measure).

Proposition
An irrational circle rotation $T x=x+\alpha$ mod 1 is ergodic but not weak-mixing (wrt Lebesgue measure).

Examples of weak-mixing

Using Fourier series, one can easily prove:
Proposition
The doubling map $T_{x}=2 x \bmod 1$ is weak-mixing (wrt Lebesgue measure).

Proposition
An irrational circle rotation $T x=x+\alpha$ mod 1 is ergodic but not weak-mixing (wrt Lebesgue measure).
Indeed, let $f(x)=e^{2 \pi i x}$.

Examples of weak-mixing

Using Fourier series, one can easily prove:

Proposition

The doubling map $T_{x}=2 x \bmod 1$ is weak-mixing (wrt Lebesgue measure).

Proposition

An irrational circle rotation $T x=x+\alpha$ mod 1 is ergodic but not weak-mixing (wrt Lebesgue measure).
Indeed, let $f(x)=e^{2 \pi i x}$. Then

$$
f(T x)=e^{2 \pi(x+\alpha)}=e^{2 \pi i \alpha} f(x)
$$

so that $e^{2 \pi i \alpha}$ is an eigenvalue.

Bernoulli

Bernoulli

There is a natural notion of two mpts S, T being measure-theoretically isomorphic.

Bernoulli

There is a natural notion of two mpts S, T being measure-theoretically isomorphic. (Essentially: there is a measure-preserving map ϕ such that $S \circ \phi=\phi \circ T$.)

Bernoulli

There is a natural notion of two mpts S, T being measure-theoretically isomorphic. (Essentially: there is a measure-preserving map ϕ such that $S \circ \phi=\phi \circ T$.)

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a Bernoulli $\left(p_{1}, \ldots, p_{k}\right)$-shift.

Bernoulli

There is a natural notion of two mpts S, T being measure-theoretically isomorphic. (Essentially: there is a measure-preserving map ϕ such that $S \circ \phi=\phi \circ T$.)

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a Bernoulli $\left(p_{1}, \ldots, p_{k}\right)$-shift.

Example

The doubling map equipped with Lebesgue measrure is Bernoulli.

Bernoulli

There is a natural notion of two mpts S, T being measure-theoretically isomorphic. (Essentially: there is a measure-preserving map ϕ such that $S \circ \phi=\phi \circ T$.)

Definition

A mpt T of a probability space (X, \mathcal{B}, μ) is Bernoulli if it is isomorphic to a Bernoulli $\left(p_{1}, \ldots, p_{k}\right)$-shift.

Example

The doubling map equipped with Lebesgue measrure is Bernoulli. It is isomorphic to the Bernoulli $(1 / 2,1 / 2)$-shift via the coding $\operatorname{map} \pi: \Sigma_{2} \rightarrow[0,1], \pi\left(\left(x_{j}\right)\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}$.

Hierachies of mixing

Hierachies of mixing

Let T be a (non-invertible) mpt of (X, \mathcal{B}, μ).

Hierachies of mixing

Let T be a (non-invertible) mpt of (X, \mathcal{B}, μ).
Then
Bernoulli \Rightarrow Strong-mixing \Rightarrow Weak-mixing \Rightarrow Ergodic.

Hierachies of mixing

Let T be a (non-invertible) mpt of (X, \mathcal{B}, μ).
Then
Bernoulli \Rightarrow Strong-mixing \Rightarrow Weak-mixing \Rightarrow Ergodic.
(And none of these implications can be reversed.)

Hierachies of mixing

Let T be a (non-invertible) mpt of (X, \mathcal{B}, μ).
Then
Bernoulli \Rightarrow Strong-mixing \Rightarrow Weak-mixing \Rightarrow Ergodic.
(And none of these implications can be reversed.)
There are many other forms of mixing (mild-mixing, r-fold mixing) that can be fitted in to this scheme.

Next lecture

In the next lecture we look at Birkhoff's Ergodic Theorem and recurrence.

