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(mpt) if, for all B € B, we have (T 1B) = u(B).

In this lecture we define ergodicity.

We will also briefly discuss mixing properties that imply ergodicity.

Motivation: Birkhoff's Ergodic Theorem

Suppose:
» T is an ergodic measure-preserving transformation of a
probability space (X, B, i),
> f e LY(X,B,u).

Then
1 n—1

;Zf(zj) —>/fdu p-a.e. x € X.
j=0
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A mpt T of a probability space (X, B, i) is ergodic (or y is an
ergodic measure for T) if

T'B=B,BcB=— pu(B)=0o0r1

i.e. the only T-invariant subsets are trivial.

Remark

Ergodicity is an indecomposability assumption. Suppose T is not
ergodic. Then 3B € B with 0 < u(B) < 1 such that T-1B = B.

TG

OT

T : B — B is a mpt of the proba-
bility space B With invariant prob-
ability measure u( 1 w(- N B).

T : B — B¢ is a mpt of the prob-
ability space B with invariant prob-
ability measure (Bc) wu(- N B).
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Recall:
If A, B C X, then the symmetric difference
AN B=(A\B)U(B\A).

ANB

Definition
We say A= B a.e. or A= B mod 0 if u(AA B) =0. Note:
A= Bae = pu(A)=u(B).
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Lemma
T is ergodic < if T"1B = B p-a.e. then u(B) =0 or 1.

Proof.
In notes. (Philosophy: in measure theory, sets of measure zero
don't matter.)

The following gives a useful criterion for ergodicity.

Proposition
Let T be a mpt of a probability space (X, B, ). Then the
followng are equivalent

1. T is ergodic.

2. “The only T-invariant functions are constant”
felY(X,B,u),foT =f u-ae = f = const. u-a.e.

Remark: We can replace L' in 2. by 2.
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Let X = R/Z. Fix a € R and define the circle rotation
Tx = x4+ a mod 1. We have seen that T preserves Lebesgue
measure 4.

Proposition

T is ergodic w.r.t. Lebesgue measure <= « ¢ Q.

Proof:

— Suppose a = g, p,q € Z with g # 0. Let
f(x) = exp(2migx). Then f is non-constant and

F(Tx) = exp <27Tiq (x + Z)) — exp(2i(gx + p))
—  exp(2migx) = F(x)

so f is T-invariant. Hence T is not ergodic.
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< Suppose o ¢ Q. Let f € L? be T-invariant: fo T = f a.e.
Let f have Fourier series

oo
E Cn627rmx
n=-—oo
Then f o T has Fourier series
oo oo
§ : Cne27rln(x+a) _ § : Cn627r/nae27rlnx.
n=-—o00 n=-—o0
Comparing Fourier coefficients gives

Cp = Cn6271'in04.

If n# 0, then exp(2mina) # 1 (as « irrational). Hence:
n#0 = ¢, =0. Hence f has Fourier series ¢y, i.e. f is
constant a.e.
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Recall: The Riemann-Lebesgue Lemma. If f € L2 has Fourier
series > ¢,e2™™ then ¢, — 0 as |n| — oo.

In higher dimensions this is: If f € L2 has Fourier series

Z Ch e27rl (n,x)

nezk

then ¢, — 0 as ||n|| — oo.
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The doubling map

Proposition

The doubling map Tx = 2x mod 1 is ergodic w.r.t. Lebesgue
measure.

Proof Suppose f € L2 is T-invariant: fo T = f a.e.

Then fo TP =f a.e. Vp > 0. Let f have Fourier series

[es)
2 : Cne27rmx.

n=—oo

Then f o TP has Fourier series

00
ioP
2 : Cne27r12 nx.

n—=——oo
Comparing Fourier coefficients: cpp = c,Vn € Z,p > 0.
Suppose n # 0. Then 2°n — oo as p — oo. By the Riemann-
Lebesgue lemma: ¢, = copp — 0. Hence ¢, =0 Vn # 0.
Hence f has Fourier series ¢y so f is constant a.e. Hence T is

arrrnr“r
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Using approximation to prove ergodicity

Let T be a measure-preserving transformation of a probability
space (X, B, ). Suppose A is an algebra that generates B. We
show how to prove ergodicity by approximating invariant sets
T~ 1B =B by setsin A.

Key Technical Lemma

Suppose: (X, B, i) is a probability space, A an algebra that
generates 3. Let B € B. Suppose there exists k > 0 such that

w(B)u(l) < kp(BN 1)Vl e A.

Then pu(B) =0or 1.

Idea: approximate B€ by an element A € A. Then

w(B)u(BC) =~ u(B)u(A) < k(BN A) = ku(B N B) = 0. Hence
uw(B) =0 or 1.
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The doubling map

Let A be the algebra of dyadic intervals, ;1 = Lebesgue measure.

Example: | =1[2/4,3/4], J =10,1/2].

- - T
_ T
________ T

p(INJ)y=0, u(INT 1) =1/4, u(InT72J)=1/8,
u(INT3J)=1/8.

If nis large enough then (/N T7"J) = pu(l)wu(J) for all dyadic
intervals /. J.
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Let B € B. Suppose T"'B=B. Then T""B = BVYn > 0.

Let /| € A be a dyadic interval.

Approximate B by a finite union of dyadic intervals: i.e. choose
Je Ast. u(B) = p(J) (more precisely: u(B A J) < e).

Then T7"B ~ T~"J as u is T-invariant. Hence

wBNI) = w(T"BNI)

~ u(T"Inl)
(Np(!) if n large
(B)u(l)

o

%
=

Hence p(B) = 0 or 1 by the technical lemma.
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Bernoulli Shifts

Let X4 = {(Xj)f.io | x € {1,..., k}} be the full one-sided k-shift.
Let 0 : Xx — Xy : (0x)j = Xj41 be the shift map.
Recall cylinder sets

lis - ina] = {05)20 | 3 = .0 <j < n—1).

Let p = (p1,..., pk) be a probability vector. Recall the p-Bernoulli
measure /i, defined on cylinders by

MP[I‘07 RN infl] = piO e pin—l'
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Proposition

o is ergodic w.r.t. fip.

Proof (sketch): Let A denote the algebra of finite unions of

cylinders. Then A generates B. Let | = [ip,...,ip], J = [jo,---

be two cylinders. Then for n > p, we have

,u,p(lﬂain.f) = Pip---PiPj - Pj
= pp(Nip(J)-

Hence VI, J € A, pp(INo™"J) = pp(l)pp(J) provided n is
sufficiently large.

The same proof as for the doubling map then works.

Jr]
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Call I(xo, . ..,xn) the cylinder of rank n that contains x.
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Let x = [xg, X1, X2, ...]. The n" partial convergent is

| ]=
X0, X1y 3 Xp| = —<— — X.
" Qn
Fact: Jc, C > 0 such that for all cylinders of rank n containing x
C

Qi?, < p(l(x0s -5 X)) < Q7r2'

From this, one can show there exists C' > 0 s.t. if B€ B and [ is
a cylinder, then pu(B)u(l) < C'u(BN1).

By the technical lemma, T is ergodic wrt pu.
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Mixing

Recall Birkhoff’s Ergodic Theorem: Let T be an ergodic mpt of
(X,B,p) and let f € L1(X,B, ). Then

1 n—1

an(TjX)%/fd,U, p-a.e. (1)
j=0

Corollary
Let T be a mpt of (X, B, ). Then
n—1

1 .
T is ergodic & VA, B € B, — > (TIANB) = u(A)u(B).
Jj=0
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Different notions of convergence
Let a, € R. Then:
1. a, converges to a if a, — a,

2. ap, absolutely Cesaro converges to a if
1 n—1
- E laj —a] — 0,
n<
Jj=0
3. a, Cesaro converges to a if
n—1
53
- aj — a.
n 2
Jj=0

Then

W= @ = 0
£ F
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Different types of mixing

Let T be a mpt of (X, B, u).
1. T is strong-mixing if VA, B € B

w(T~"AN B) — u(A)u(B).

2. T is weak-mixing if VA, B € B
n—1

LN W(THANB) — u(A)u(B)] — 0.
j=0

3. Tis ergodicit VA,Be B
1 n—1 ]
. > u(T7ANB) — u(A)u(B).
j=0
Note: strong-mixing = weak-mixing = ergodic.
There are examples to show that neither of these inequalities can
be reversed.
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Mixing as an independence condition

Recall from probability theory that two events A, B € B are
independent if

W(AN B) = u(A)u(B).

Mixing and ergodicity can be viewed as an asymptotic
independence condition.

Consider two events A, B € B.

Then T7"A can be viewed as the event A happening at time n.
Thus T is strong-mixing if and only if the events T~"A and B
become independent as n — oo.

T is weak-mixing (or ergodic) if the events T~"A, B become
independent as n — oo in the absolute Cesaro (or Cesaro) sense.
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Weak-mixing and spectral theory

Let T be a measure-preserving transformation of (X, B, u). Define
the linear operator

U:L2(X,B,n) — L*(X,B,p): f—foT.
Then

<Uf,Ug>:/fngon,u:/(fg)onM:/fgdu:<f,g>.

Hence U is an isometry of L?(X, 3, 11).
Note:

1 is a simple eigenvalue of U < fo T = f imples f =const a.e. &
T is ergodic.

Theorem
T is weak-mixing < 1 is the only eigenvalue for U.
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Examples of weak-mixing

Using Fourier series, one can easily prove:

Proposition
The doubling map Tx = 2x mod 1 is weak-mixing (wrt Lebesgue
measure).

Proposition
An irrational circle rotation Tx = x + o mod 1 is ergodic but not
weak-mixing (wrt Lebesgue measure).

Indeed, let f(x) = e>™*. Then
f( TX) _ e27r(x+a) _ e27rio¢f(X)

so that e®™@ is an eigenvalue.
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Bernoulli

There is a natural notion of two mpts S, T being
measure-theoretically isomorphic. (Essentially: there is a
measure-preserving map ¢ such that So¢p =¢o T.)

Definition

A mpt T of a probability space (X, B, i) is Bernoulli if it is
isomorphic to a Bernoulli (p1, ..., px)-shift.

Example

The doubling map equipped with Lebesgue measrure is Bernoulli.
It is isomorphic to the Bernoulli (1/2,1/2)-shift via the coding

map 71 %5 = [0,1], 7((3)) = T o



Hierachies of mixing



Hierachies of mixing

Let T be a (non-invertible) mpt of (X, B, ).



Hierachies of mixing

Let T be a (non-invertible) mpt of (X, B, ).
Then

Bernoulli = Strong-mixing = Weak-mixing = Ergodic.



Hierachies of mixing

Let T be a (non-invertible) mpt of (X, B, ).
Then

Bernoulli = Strong-mixing = Weak-mixing = Ergodic.

(And none of these implications can be reversed.)



Hierachies of mixing

Let T be a (non-invertible) mpt of (X, B, ).
Then

Bernoulli = Strong-mixing = Weak-mixing = Ergodic.

(And none of these implications can be reversed.)
There are many other forms of mixing (mild-mixing, r-fold mixing)
that can be fitted in to this scheme.



Next lecture

In the next lecture we look at Birkhoff's Ergodic Theorem and
recurrence.



