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In this lecture:

I we give some basics about measure theory

I define and study invariant measures and measure-preserving

transformations.



Measure Theory

Idea: A measure generalises ‘length’ or ‘area’ to an arbitrary set X .

Definition
Let X be a set. A collection B of subsets of X is a σ-algebra if:

1. ∅ ∈ B,

2. A ∈ B =⇒ X \ A ∈ B,

3. An ∈ B, n = 1, 2, 3, . . . =⇒
⋃∞

n=1 An ∈ B.

Examples

1. The trivial σ-algebra: B = {∅,X}.
2. The full σ-algebra: B = P(X ) = {all subsets of X}.
3. Let X be a compact metric space. The Borel σ-algebra is the

smallest σ-algebra that contains every open set.
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Definition
A measure is a function µ : B → R+ ∪ {∞} such that

1. µ(∅) = 0

2. µ is countably additive on pairwise disjoint sets: (An ∈ B with

An ∩ Am = ∅, n 6= m⇒ µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An)).

Definition

I (X ,B, µ) is called a measure space.

I If µ(X ) <∞, then µ is a finite measure.

I If µ(X ) = 1, then µ is a probability measure and (X ,B, µ) is a

probability space.

Definition
A property of X holds almost everywhere (a.e.) if the set of points

on which it fails has zero measure.

(Example: a.e. real number is irrational w.r.t. Lebesgue measure -

the rationals have measure zero.)
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The Lebesgue integral (in 3 minutes)
For B ∈ B, define

∫
χBdµ = µ(B).

0

1

B

Let f =
∑r

j=1 cjχBj
, cj ≥ 0, Bj ∈ B, be a simple function.

B1 B2 B3

c1

c2

c3

Define
∫

f dµ =
∑r

j=1 cjµ(Bj).
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Definition
A function f : X −→ R is measurable if

f −1(−∞, c) = {x ∈ X | f (x) < c} ∈ B ∀c ∈ R.

Let f : X −→ R, f ≥ 0, be measurable.

Fact: There exists simple functions fn such that fn(x)↗ f (x),

µ-a.e.

Define
∫

f dµ = limn→∞
∫

fn dµ.
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Suppose f : X −→ R is measurable.

Write:

f+ = max{f , 0} ≥ 0,

f− = max{−f , 0} ≥ 0.

Then f = f+ − f−. Define
∫

f dµ =
∫

f+ dµ−
∫

f− dµ.

Definition
f is integrable if

∫
|f | dµ <∞.

Definition
Lp(X ,B, µ) = {f : X → R |

∫
|f |p dµ <∞}.

We can also work with complex functions by taking real and

imaginary parts.
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We need a way of constructing measures.

Definition
A collection A of subsets of X is an algebra if

1. ∅ ∈ A,

2. A ∈ A =⇒ X\A ∈ A,

3. A1,A2 ∈ A =⇒ A1 ∪ A2 ∈ A.

(The difference between an algebra and a σ-algebra is that

σ-algebras are closed under countable unions.)

Definition
If A is an algebra then B(A) denotes the smallest σ-algebra that

contains A.

Example

X = [0, 1]

A = {finite unions of intervals}
B(A) = Borel σ-algebra
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Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),

3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a

measure on B(A).”

Suppose:

I A is an algebra of subsets of X .

I µ : A −→ R+ ∪ {∞} is a function such that

1. µ(∅) = 0,
2. if An ∈ A, pairwise disjoint,

⋃∞
n=1 An ∈ A, then

µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An),
3. (technical condition).

Then: there exists a unique measure µ : B(A) −→ R+ ∪ {∞} that

extends µ : A −→ R+ ∪ {∞}.



Examples of Measures

Lebesgue Measure
X = [0, 1] or R/Z
A = {finite unions of intervals}
µ[a, b] = b − a

The Kolmogorov Extension Theorem gives Lebesgue measure on

the Borel σ-algebra.

Higher dimensional Lebesgue Measure
X = Rk/Zk

A = {finite unions of k-dimensional cubes}
µ([a1, b1]× · · · × [ak , bk ]) = (b1 − a1)× · · · × (bk − ak)

b2

a2

a1 b1

µ(rectangle) = (b1 − a1)× (b2 − a2)

The Kolmogorov Extension Theorem gives k-dimensional
Lebesgue measure on the k-dimensional torus.
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Stieltjes measures on [0, 1]
X = [0, 1] or R/Z
A = {finite unions of intervals}
ρ : [0, 1] −→ R+ a non-decreasing function

µρ[a, b] = ρ(b)− ρ(a)

The Kolmogorov Extension theorem gives a measure on the Borel

σ-algebra.

Examples
ρ(x) = x gives Lebesgue measure.

ρ(x) = 1
log 2

∫ x
0

dt
1+t gives Gauss’ measure (will use this later when

studying continued fractions)

We illustrate that Stieltjes measures can be surprisingly

complicated.
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Definition

I µ1 is absolutely continuous with respect to µ2 (µ1 � µ2) if

µ2(B) = 0 =⇒ µ1(B) = 0.

I µ1, µ2 are equivalent if µ1 � µ2 and µ2 � µ1 (i.e. µ1, µ2

have the same sets of measure zero).

I µ1, µ2 are mutually singular (µ1 ⊥ µ2) if X = B1 ∪ B2 where

µ1(B1) = µ2(B2) = 1 and µ1(B2) = µ2(B1) = 0.

Fact: If ρ′(x) is continuous then µρ � Lebesgue. If in addition,

ρ′(x) > 0, then µρ and Lebesgue measure are equivalent. Gauss’

measure and Lebesgue measure are equivalent (ρ′(x) = 1
log 2

1
1+x ).
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Dirac Measures

Take X = any set, B any σ-algebra. Fix x ∈ X .

Define the measure δx by:

δx(B) =

{
1 if x ∈ B;

0 otherwise.

δx = Dirac δ-measure supported at x .

Note that δx(X\{x}) = 0.

Hence δx -a.e. point of X is equal to x . For this reason δx is

sometimes called a point mass at x . Easy check:
∫

f dδx = f (x).
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Invariant Measures

Let (X ,B, µ) be a probability space.

Definition
T is measurable if T−1B = {x ∈ X | T (x) ∈ B} ∈ B ∀B ∈ B.

Definition
T is a measure preserving transformation (mpt) if

µ(T−1B) = µ(B) ∀B ∈ B

Lemma
T is a mpt ⇐⇒

∫
f ◦ T dµ =

∫
f dµ ∀f ∈ L1(X ,B, µ)

Remark: We can replace L1 by L2.
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Proof (sketch):

T mpt ⇐⇒ µ(T−1B) = µ(B) ∀B ∈ B

⇐⇒
∫
χT−1B dµ =

∫
χB dµ ∀B ∈ B

⇐⇒
∫
χB ◦ T dµ =

∫
χB dµ ∀B ∈ B

⇐⇒
∫

f ◦ T dµ =

∫
f dµ ∀f ∈ L1(X ,B, µ)

by an approximation argument �
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Examples

We describe three methods for proving a given measure is invariant

for a given dynamical system.

I Using periodic points.

I Using the Kolmogorov Extension Theorem.

I (When X is a group) using Haar measure.



Examples

We describe three methods for proving a given measure is invariant

for a given dynamical system.

I Using periodic points.

I Using the Kolmogorov Extension Theorem.

I (When X is a group) using Haar measure.



Examples

We describe three methods for proving a given measure is invariant

for a given dynamical system.

I Using periodic points.

I Using the Kolmogorov Extension Theorem.

I (When X is a group) using Haar measure.



Examples

We describe three methods for proving a given measure is invariant

for a given dynamical system.

I Using periodic points.

I Using the Kolmogorov Extension Theorem.

I (When X is a group) using Haar measure.



Invariant measures via periodic orbits

Suppose x ,Tx , . . . ,T n−1x ,T nx = x is a periodic orbit for T .

Then
1

n

n−1∑
j=0

δT jx

is a T -invariant measure.

∫
f ◦ T dµ =

1

n
(f (Tx) + · · ·+ f (T n−1x) + f (T nx))

=
1

n
(f (x) + f (Tx) + · · ·+ f (T n−1x))

=

∫
f dµ.
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Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X ,B, µ). If T is

measurable, then we can define a new measure T∗µ on B by

T∗µ(B) = µ(T−1B).

Then µ is T -invariant ⇐⇒ T∗µ(B) = µ(B) ∀B ∈ B.

To show T∗µ(B) = µ(B) ∀B ∈ B, it is sufficient to prove that

T∗µ(B) = µ(B) ∀B ∈ A, where A is an algebra that generates B.

(This is because the Kolmogorov Extension Theorem tells us that a

“measure” on A extends uniquely to a measure on B.)
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Proposition

Let Tx = 2x mod 1 be the doubling map on [0, 1]. Then T

preserves Lebesgue measure µ.

Proof.
It is sufficient to prove that µT−1[a, b] = µ[a, b] for any interval

[a, b].
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Definition
Define Gauss’ measure µ on [0, 1] by

µ(B) =
1

log 2

∫
B

1

1 + x
dx

Proposition

Let Tx = 1
x mod 1 be the continued fraction map. Then T

preserves Gauss’ measure.

Proof:

Again, it is sufficient to prove that µT−1[a, b] = µ[a, b] for every

interval [a, b].
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Markov Measures

Let X = {1, . . . , k}N = {(xj)
∞
j=0 | xj ∈ {1, . . . , k}} be the full

one-sided k-shift.

Fix symbols i0 . . . , in ∈ {1, . . . , k}, m ∈ N.

The cylinder [i0, . . . , in] is the set of sequences (xj)
∞
j=0 where

xj = ij for 0 ≤ j ≤ n.

[i0, i1, . . . , in−1, in] = {x = (i0, i1, . . . , in−1, in, ∗, ∗, ∗, · · · )}
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Cylinders for shifts play the same role as intervals do for [0, 1].

Let A = {finite unions of cylinders}.
Let P = (Pij) be a stochastic matrix (i.e. each row of P sums to

1).

Suppose there is a left probability eigenvector p = (p1, . . . , pk) (i.e.

pi ≥ 0,
∑

pi = 1, pP = p).

Define

µP [i0, . . . , in] = pi0Pi0i1 . . .Pin−1in

Then the K.E.T gives a measure µp on the Borel σ-algebra. µp is

called a Markov measure.

If Pi ,j = Pj then

µ[i0, . . . , in] = pi0pi1 · · · pin .

We call µ a Bernoulli measure.
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Proposition

Let σ : Σk → Σk , (σx)j = xj+1, be the full one-sided k-shift, P be

a stochastic matrix, and let p be a left probability eigenvector.

Then the Markov measure µ = µP is σ-invariant.

Proof.
It is sufficient to prove that µ(σ−1C ) = µ(C ) for all cylinders C .

Note:

σ−1([i0, i1, . . . , in]) =
k⋃

i=1

[i , i0, i1, . . . , in−1].

Hence

µ(σ−1([i0, i1, . . . , in])) =
∑

i

µ([i , i0, i1, . . . , in−1])

=
∑

i

piPi ,i0P(i0, i1) . . .Pin−1,in = pi0P(i0, i1) . . .Pin−1,in

= µ([i0, i1, . . . , in]).
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Algebraic examples

Let X be a compact group, such as the k-dimensional torus.

It is well-known that there exists a unique left- and right-invariant

probability measure µ. This is Haar measure.

(Left-invariant means: µ(gB) = µ(B) ∀B ∈ B, g ∈ X ,

Right-invariant means: µ(Bg) = µ(B) ∀B ∈ B, g ∈ X .)

For example, k-dimensional Lebesgue measure is Haar measure on

the k-dimensional torus Rk/Zk .

Proposition

Define T : Rk/Zk by Tx = x + a mod 1. Then Lebesgue measure

is T -invariant.
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Next lecture

In the next lecture we define ergodic measures.

We will give examples of ergodic measure-preserving

transformations.

We will also see how mixing properties of the dynamics imply

ergodicity.


