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In this lecture:
> we give some basics about measure theory

» define and study invariant measures and measure-preserving
transformations.
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Measure Theory

Idea: A measure generalises ‘length’ or ‘area’ to an arbitrary set X.
Definition
Let X be a set. A collection B of subsets of X is a o-algebra if:

1. 0 eB,

2. Ae B = X\Aeh,

3. ApeB,n=123,... = U2 A€ B.

Examples
1. The trivial o-algebra: B = {0, X}.
2. The full o-algebra: B = P(X) = {all subsets of X}.

3. Let X be a compact metric space. The Borel o-algebra is the
smallest o-algebra that contains every open set.
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Definition
A measure is a function p: B — RT U {co} such that
1. u(®) =0
2. w is countably additive on pairwise disjoint sets: (A, € B with
AnNAm=0,n%#m= N(Uiozl An) = 220:1 1(An)).

Definition
> (X, B, ) is called a measure space.
> If u(X) < oo, then i is a finite measure.

> If u(X) =1, then p is a probability measure and (X, B, ) is a
probability space.

Definition

A property of X holds almost everywhere (a.e.) if the set of points
on which it fails has zero measure.

(Example: a.e. real number is irrational w.r.t. Lebesgue measure -
the rationals have measure zero.)
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The Lebesgue integral (in 3 minutes)
For B € B, define [ xgdu = u(B).

1

Let f = Z}:l ¢ixs;, ¢ > 0, B; € B, be a simple function.

Q=

0

Define [ fdu=73"i_; cju(B)).
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Suppose f : X — R is measurable. Write:

fr = max{f,0} >0,
. = max{—f,0} >0.
Then f = f, — f_. Define [ fdu= [ f.du— [ £ dp.
Definition
f is integrable if [ |f|du < co.
Definition
LP(X,B,u) ={f: X = R| [|f]Pdu < co}.

We can also work with complex functions by taking real and
imaginary parts.
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We need a way of constructing measures.
Definition
A collection A of subsets of X is an algebra if
1.0eA
2. Ac A = X\Ae A,
3. Ai,Ahe A = AiUA c A
(The difference between an algebra and a o-algebra is that
o-algebras are closed under countable unions.)
Definition
If Ais an algebra then B(.A) denotes the smallest o-algebra that

contains A.

Example

X =10,1]
A = {finite unions of intervals}
B(.A) = Borel o-algebra
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Kolmogorov Extension Theorem

“If it looks like a measure on A then it is (uniquely) a
measure on B(A).”

Suppose:

» A is an algebra of subsets of X.
» u: A— Rt U{oc} is a function such that
L. w®) =0,
2. if A, € A, pairwise disjoint, [ J 2, A, € A, then
1t (Unsa An) = 22000 1(An),
3. (technical condition).
Then: there exists a unique measure p : B(A) — RT U {oc} that
extends 1 : A — R U {0}
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Examples of Measures
Lebesgue Measure
X =10,1] or R/Z
A = {finite unions of intervals}
ula, bl =b—a
The Kolmogorov Extension Theorem gives Lebesgue measure on
the Borel o-algebra.

Higher dimensional Lebesgue Measure
X = RK/7Zk
A = {finite unions of k-dimensional cubes}
wu([a1, b1] x -+ x [ak, bk]) = (b1 — a1) X -+ X (bx — ak)

by | The Kolmogorov Extension Theorem gives k-dimensional
Lebesgue measure on the k-dimensional torus.
p(rectangle) = (by — a1) x (bs — a)

ail b1
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Stieltjes measures on [0, 1]
=[0,1] or R/Z
A = {finite unions of intervals}
p:[0,1] — R™ a non-decreasing function
tpla, b] = p(b) — p(a)
The Kolmogorov Extension theorem gives a measure on the Borel
o-algebra.

Examples
( ) = gives Lebesgue measure.
(x) = |0g2f; 1‘ft gives Gauss' measure (will use this later when

studying continued fractions)
We illustrate that Stieltjes measures can be surprisingly
complicated.
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Definition
> L1 is absolutely continuous with respect to pp (1 < pp) if
p2(B) =0 = pu(B) =0.
> L1, o are equivalent if py < po and pp < pg (ie. pa, g2
have the same sets of measure zero).

> pu1, pio are mutually singular (p1 L po) if X = By U By where
p1(B1) = p2(B2) =1 and pa(Bz) = pi2(B1) = 0.

Fact: If p/(x) is continuous then p, < Lebesgue. If in addition,

p'(x) > 0, then 11, and Lebesgue measure are equivalent. Gauss'
_ 1 1

- Iog2m)'

measure and Lebesgue measure are equivalent (p’(x)
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Dirac Measures

Take X = any set, B any c-algebra. Fix x € X.
Define the measure §x by:

5X(B)={ 1 ifxeB;

0 otherwise.
0x = Dirac 6-measure supported at x.

Note that d,(X\{x}) = 0.
Hence dx-a.e. point of X is equal to x. For this reason d is
sometimes called a point mass at x. Easy check: [ f dd, = f(x).
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Invariant Measures

Let (X, B, 1) be a probability space.
Definition
T is measurable if T"1B={x€ X | T(x) € B} € BYB € B.

Definition
T is a measure preserving transformation (mpt) if

O - \
7B BQ
w(T71B) = u(B) vB e B

Lemma
Tisampt<= [foTdu= [fduVfelY(X,B,u)
Remark: We can replace L' by L2.
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Examples

We describe three methods for proving a given measure is invariant
for a given dynamical system.

» Using periodic points.
» Using the Kolmogorov Extension Theorem.

» (When X is a group) using Haar measure.
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Invariant measures via periodic orbits
Suppose x, Tx, ..., T""1x, T"x = x is a periodic orbit for T.

Then
1 i 5
; ' T/x
Jj=0

is a T-invariant measure.

/fonu =

(F(Tx) + -+ F(T"x) + £(T"x))

(F(x) + F(Tx) +--- + £(T" 1x))

S|l—= 3|

fdu.

Il
—
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Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X, B, u). If T is
measurable, then we can define a new measure T,u on B by

T.u(B) = n(T*B).

Then 1 is T-invariant <= T,u(B) = u(B) VB € B.

To show T,u(B) = u(B) VB € B, it is sufficient to prove that
T(B) = u(B) VB € A, where A is an algebra that generates 5.
(This is because the Kolmogorov Extension Theorem tells us that a
“measure” on A extends uniquely to a measure on B.)
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Proposition

Let Tx = 2x mod 1 be the doubling map on [0,1]. Then T
preserves Lebesgue measure p.

Proof.

It is sufficient to prove that u T 1[a, b]

[a, b].

b

..........

atl b+l
2 2
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Definition
Define Gauss’ measure 1 on [0, 1] by

1 1
= — Ix
log2 Jg 1+ x

1(B)

Proposition

Let Tx = % mod 1 be the continued fraction map. Then T
preserves Gauss' measure.

Proof:

Again, it is sufficient to prove that T ~[a, b] = pu[a, b] for every
interval [a, b].
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Hence (easy check!)

(T [a, b)) = Zu([
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Markov Measures

Let X ={1,....k}N = {(x)20 | x5 €{1,...,k}} be the full
one-sided k-shift.

Fix symbols iy ...,i, € {1,...,k}, meN.

The cylinder [ig, . . ., in] is the set of sequences (x;)72, where
xj = 1Ijfor 0 <j < n.

[i07 ilv ey in—17 /n] — {X — (i07 i17 ey in—17 in7*)*)*7' : )}
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Cylinders for shifts play the same role as intervals do for [0, 1].
Let A = {finite unions of cylinders}.
Let P = (Pj;) be a stochastic matrix (i.e. each row of P sums to
1).
Suppose there is a left probability eigenvector p = (pu, ..., pk) (i-e.
pi >0, > pi=1, pP = p).
Define
pelio -y in] = Pio Pigiv - - - Pin_1i
Then the K.E.T gives a measure ji, on the Borel o-algebra. 1 is

called a Markov measure.
If P,',j = PJ then

/’L[io) c '7in] = pioph .. 'Pin~

We call p a Bernoulli measure.
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Proposition

Let 0 : X — Xk, (0x)j = Xj+1, be the full one-sided k-shift, P be
a stochastic matrix, and let p be a left probability eigenvector.
Then the Markov measure . = up is o-invariant.

Proof.
It is sufficient to prove that p(c~1C) = u(C) for all cylinders C.

Note:
k

o Ylios i, -y in)) = Jlirios i1y - - i1

i=1

Hence

w(o (i, ity - - -5 in])) = Z“([i’ 0,1,y in1])

—ZP, iioPlio, 1) - - - Piy_yin = PigPio,s 1) - .. Piy_y i,

= N([i07 Myenns in])'
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Algebraic examples

Let X be a compact group, such as the k-dimensional torus.

It is well-known that there exists a unique left- and right-invariant
probability measure . This is Haar measure.

(Left-invariant means: u(gB) = u(B) VB € B,g € X,
Right-invariant means: p(Bg) = u(B) VB € B,g € X.)

For example, k-dimensional Lebesgue measure is Haar measure on
the k-dimensional torus R¥ /Zk.

Proposition

Define T : R¥/Z¥ by Tx = x + a mod 1. Then Lebesgue measure
is T-invariant.
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Group automorphisms

Let X be a compact group. Let o a group automorphism of X.
Define T(x) = a(x).
Proposition

Haar measure 1 is a T-invariant measure.

Corollary

Lebesgue measure is an invariant measure for linear toral
automorphisms (eg the Cat map).

Proof.
Let g € X. Note that T~1(g(B)) = a~(g)(T~(B)). Hence

T.u(gB) = (T 'g(B)) = (e (g)(T'B)) = (T~ 'B) = T.u(B).

Hence T, u is invariant under any group rotation. By uniqueness of
Haar measure, T,u is Haar measure, i.e. T,u = p. O



Next lecture

In the next lecture we define ergodic measures.
We will give examples of ergodic measure-preserving

transformations.
We will also see how mixing properties of the dynamics imply

ergodicity.



