MAGIC: Ergodic Theory Lecture 3 - Invariant Measures

Charles Walkden

February 6th 2013

In this lecture:

- we give some basics about measure theory
- define and study invariant measures and measure-preserving transformations.

Measure Theory

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.
Definition
Let X be a set. A collection \mathcal{B} of subsets of X is a σ-algebra if:

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.
Definition
Let X be a set. A collection \mathcal{B} of subsets of X is a σ-algebra if:

1. $\emptyset \in \mathcal{B}$,
2. $A \in \mathcal{B} \Longrightarrow X \backslash A \in \mathcal{B}$,
3. $A_{n} \in \mathcal{B}, n=1,2,3, \ldots \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$.

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.
Definition
Let X be a set. A collection \mathcal{B} of subsets of X is a σ-algebra if:

1. $\emptyset \in \mathcal{B}$,
2. $A \in \mathcal{B} \Longrightarrow X \backslash A \in \mathcal{B}$,
3. $A_{n} \in \mathcal{B}, n=1,2,3, \ldots \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$.

Examples

1. The trivial σ-algebra: $\mathcal{B}=\{\emptyset, X\}$.

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.
Definition
Let X be a set. A collection \mathcal{B} of subsets of X is a σ-algebra if:

1. $\emptyset \in \mathcal{B}$,
2. $A \in \mathcal{B} \Longrightarrow X \backslash A \in \mathcal{B}$,
3. $A_{n} \in \mathcal{B}, n=1,2,3, \ldots \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$.

Examples

1. The trivial σ-algebra: $\mathcal{B}=\{\emptyset, X\}$.
2. The full σ-algebra: $\mathcal{B}=\mathcal{P}(X)=\{$ all subsets of $X\}$.

Measure Theory

Idea: A measure generalises 'length' or 'area' to an arbitrary set X.
Definition
Let X be a set. A collection \mathcal{B} of subsets of X is a σ-algebra if:

1. $\emptyset \in \mathcal{B}$,
2. $A \in \mathcal{B} \Longrightarrow X \backslash A \in \mathcal{B}$,
3. $A_{n} \in \mathcal{B}, n=1,2,3, \ldots \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$.

Examples

1. The trivial σ-algebra: $\mathcal{B}=\{\emptyset, X\}$.
2. The full σ-algebra: $\mathcal{B}=\mathcal{P}(X)=\{$ all subsets of $X\}$.
3. Let X be a compact metric space. The Borel σ-algebra is the smallest σ-algebra that contains every open set.

Definition
A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) .
$$

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) .
$$

Definition

- (X, \mathcal{B}, μ) is called a measure space.

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) .
$$

Definition

- (X, \mathcal{B}, μ) is called a measure space.
- If $\mu(X)<\infty$, then μ is a finite measure.

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) .
$$

Definition

- (X, \mathcal{B}, μ) is called a measure space.
- If $\mu(X)<\infty$, then μ is a finite measure.
- If $\mu(X)=1$, then μ is a probability measure and (X, \mathcal{B}, μ) is a probability space.

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) .
$$

Definition

- (X, \mathcal{B}, μ) is called a measure space.
- If $\mu(X)<\infty$, then μ is a finite measure.
- If $\mu(X)=1$, then μ is a probability measure and (X, \mathcal{B}, μ) is a probability space.

Definition

A property of X holds almost everywhere (a.e.) if the set of points on which it fails has zero measure.

Definition

A measure is a function $\mu: \mathcal{B} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $\mu(\emptyset)=0$
2. μ is countably additive on pairwise disjoint sets: $\left(A_{n} \in \mathcal{B}\right.$ with

$$
\left.A_{n} \cap A_{m}=\emptyset, n \neq m \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right)
$$

Definition

- (X, \mathcal{B}, μ) is called a measure space.
- If $\mu(X)<\infty$, then μ is a finite measure.
- If $\mu(X)=1$, then μ is a probability measure and (X, \mathcal{B}, μ) is a probability space.

Definition

A property of X holds almost everywhere (a.e.) if the set of points on which it fails has zero measure.
(Example: a.e. real number is irrational w.r.t. Lebesgue measure the rationals have measure zero.)

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

Let $f=\sum_{j=1}^{r} c_{j} \chi_{B_{j}}, c_{j} \geq 0, B_{j} \in \mathcal{B}$, be a simple function.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

Let $f=\sum_{j=1}^{r} c_{j} \chi_{B_{j}}, c_{j} \geq 0, B_{j} \in \mathcal{B}$, be a simple function.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

Let $f=\sum_{j=1}^{r} c_{j} \chi_{B_{j}}, c_{j} \geq 0, B_{j} \in \mathcal{B}$, be a simple function.

The Lebesgue integral (in 3 minutes)

For $B \in \mathcal{B}$, define $\int \chi_{B} d \mu=\mu(B)$.

Let $f=\sum_{j=1}^{r} c_{j} \chi_{B_{j}}, c_{j} \geq 0, B_{j} \in \mathcal{B}$, be a simple function.

Define $\int f d \mu=\sum_{j=1}^{r} c_{j} \mu\left(B_{j}\right)$.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.
Let $f: X \longrightarrow \mathbb{R}, f \geq 0$, be measurable.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.
Let $f: X \longrightarrow \mathbb{R}, f \geq 0$, be measurable.
Fact: There exists simple functions f_{n} such that $f_{n}(x) \nearrow f(x)$, μ-a.e.
Define $\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu$.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.
Let $f: X \longrightarrow \mathbb{R}, f \geq 0$, be measurable.
Fact: There exists simple functions f_{n} such that $f_{n}(x) \nearrow f(x)$, μ-a.e.
Define $\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu$.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.
Let $f: X \longrightarrow \mathbb{R}, f \geq 0$, be measurable.
Fact: There exists simple functions f_{n} such that $f_{n}(x) \nearrow f(x)$, μ-a.e.
Define $\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu$.

Definition

A function $f: X \longrightarrow \mathbb{R}$ is measurable if
$f^{-1}(-\infty, c)=\{x \in X \mid f(x)<c\} \in \mathcal{B} \forall c \in \mathbb{R}$.
Let $f: X \longrightarrow \mathbb{R}, f \geq 0$, be measurable.
Fact: There exists simple functions f_{n} such that $f_{n}(x) \nearrow f(x)$, μ-a.e.
Define $\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu$.

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable.

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable. Write:

$$
\begin{aligned}
& f_{+}=\max \{f, 0\} \geq 0 \\
& f_{-}=\max \{-f, 0\} \geq 0
\end{aligned}
$$

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable. Write:

$$
\begin{aligned}
& f_{+}=\max \{f, 0\} \geq 0 \\
& f_{-}=\max \{-f, 0\} \geq 0
\end{aligned}
$$

Then $f=f_{+}-f_{-}$. Define $\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu$.

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable. Write:

$$
\begin{aligned}
& f_{+}=\max \{f, 0\} \geq 0 \\
& f_{-}=\max \{-f, 0\} \geq 0
\end{aligned}
$$

Then $f=f_{+}-f_{-}$. Define $\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu$.
Definition
f is integrable if $\int|f| d \mu<\infty$.

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable. Write:

$$
\begin{aligned}
& f_{+}=\max \{f, 0\} \geq 0 \\
& f_{-}=\max \{-f, 0\} \geq 0 .
\end{aligned}
$$

Then $f=f_{+}-f_{-}$. Define $\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu$.
Definition
f is integrable if $\int|f| d \mu<\infty$.
Definition
$L^{p}(X, \mathcal{B}, \mu)=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int\right| f\right|^{p} d \mu<\infty\right\}$.

Suppose $f: X \longrightarrow \mathbb{R}$ is measurable. Write:

$$
\begin{aligned}
& f_{+}=\max \{f, 0\} \geq 0 \\
& f_{-}=\max \{-f, 0\} \geq 0 .
\end{aligned}
$$

Then $f=f_{+}-f_{-}$. Define $\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu$.
Definition
f is integrable if $\int|f| d \mu<\infty$.
Definition
$L^{p}(X, \mathcal{B}, \mu)=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int\right| f\right|^{p} d \mu<\infty\right\}$.
We can also work with complex functions by taking real and imaginary parts.

We need a way of constructing measures.

We need a way of constructing measures.
Definition
A collection \mathcal{A} of subsets of X is an algebra if

We need a way of constructing measures.

Definition

A collection \mathcal{A} of subsets of X is an algebra if

1. $\emptyset \in \mathcal{A}$,
2. $A \in \mathcal{A} \Longrightarrow X \backslash A \in \mathcal{A}$,
3. $A_{1}, A_{2} \in \mathcal{A} \Longrightarrow A_{1} \cup A_{2} \in \mathcal{A}$.
(The difference between an algebra and a σ-algebra is that σ-algebras are closed under countable unions.)

We need a way of constructing measures.

Definition

A collection \mathcal{A} of subsets of X is an algebra if

1. $\emptyset \in \mathcal{A}$,
2. $A \in \mathcal{A} \Longrightarrow X \backslash A \in \mathcal{A}$,
3. $A_{1}, A_{2} \in \mathcal{A} \Longrightarrow A_{1} \cup A_{2} \in \mathcal{A}$.
(The difference between an algebra and a σ-algebra is that σ-algebras are closed under countable unions.)
Definition
If \mathcal{A} is an algebra then $\mathcal{B}(\mathcal{A})$ denotes the smallest σ-algebra that contains \mathcal{A}.

We need a way of constructing measures.

Definition

A collection \mathcal{A} of subsets of X is an algebra if

1. $\emptyset \in \mathcal{A}$,
2. $A \in \mathcal{A} \Longrightarrow X \backslash A \in \mathcal{A}$,
3. $A_{1}, A_{2} \in \mathcal{A} \Longrightarrow A_{1} \cup A_{2} \in \mathcal{A}$.
(The difference between an algebra and a σ-algebra is that σ-algebras are closed under countable unions.)

Definition

If \mathcal{A} is an algebra then $\mathcal{B}(\mathcal{A})$ denotes the smallest σ-algebra that contains \mathcal{A}.

Example

$$
X=[0,1]
$$

$A=\{$ finite unions of intervals $\}$

We need a way of constructing measures.

Definition

A collection \mathcal{A} of subsets of X is an algebra if

1. $\emptyset \in \mathcal{A}$,
2. $A \in \mathcal{A} \Longrightarrow X \backslash A \in \mathcal{A}$,
3. $A_{1}, A_{2} \in \mathcal{A} \Longrightarrow A_{1} \cup A_{2} \in \mathcal{A}$.
(The difference between an algebra and a σ-algebra is that σ-algebras are closed under countable unions.)

Definition

If \mathcal{A} is an algebra then $\mathcal{B}(\mathcal{A})$ denotes the smallest σ-algebra that contains \mathcal{A}.

Example

$$
X=[0,1]
$$

$A=\{$ finite unions of intervals $\}$
$\mathcal{B}(\mathcal{A})=$ Borel σ-algebra

Kolmogorov Extension Theorem

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Suppose:

- \mathcal{A} is an algebra of subsets of X.

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Suppose:

- \mathcal{A} is an algebra of subsets of X.
- $\mu: \mathcal{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ is a function such that

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Suppose:

- \mathcal{A} is an algebra of subsets of X.
- $\mu: \mathcal{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ is a function such that

1. $\mu(\emptyset)=0$,
2. if $A_{n} \in \mathcal{A}$, pairwise disjoint, $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$,

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Suppose:

- \mathcal{A} is an algebra of subsets of X.
- $\mu: \mathcal{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ is a function such that

1. $\mu(\emptyset)=0$,
2. if $A_{n} \in \mathcal{A}$, pairwise disjoint, $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$,
3. (technical condition).

Kolmogorov Extension Theorem

"If it looks like a measure on \mathcal{A} then it is (uniquely) a measure on $\mathcal{B}(\mathcal{A})$."

Suppose:

- \mathcal{A} is an algebra of subsets of X.
- $\mu: \mathcal{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ is a function such that

1. $\mu(\emptyset)=0$,
2. if $A_{n} \in \mathcal{A}$, pairwise disjoint, $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right),
$$

3. (technical condition).

Then: there exists a unique measure $\mu: \mathcal{B}(\mathcal{A}) \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ that extends $\mu: \mathcal{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$.

Examples of Measures

Examples of Measures

Lebesgue Measure
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\mu[a, b]=b-a$

Examples of Measures

Lebesgue Measure
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\mu[a, b]=b-a$
The Kolmogorov Extension Theorem gives Lebesgue measure on the Borel σ-algebra.

Examples of Measures

Lebesgue Measure
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\mu[a, b]=b-a$
The Kolmogorov Extension Theorem gives Lebesgue measure on the Borel σ-algebra.

Higher dimensional Lebesgue Measure
$X=\mathbb{R}^{k} / \mathbb{Z}^{k}$
$\mathcal{A}=\{$ finite unions of k-dimensional cubes $\}$
$\mu\left(\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{k}, b_{k}\right]\right)=\left(b_{1}-a_{1}\right) \times \cdots \times\left(b_{k}-a_{k}\right)$

Examples of Measures

Lebesgue Measure
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\mu[a, b]=b-a$
The Kolmogorov Extension Theorem gives Lebesgue measure on the Borel σ-algebra.

Higher dimensional Lebesgue Measure
$X=\mathbb{R}^{k} / \mathbb{Z}^{k}$
$\mathcal{A}=\{$ finite unions of k-dimensional cubes $\}$
$\mu\left(\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{k}, b_{k}\right]\right)=\left(b_{1}-a_{1}\right) \times \cdots \times\left(b_{k}-a_{k}\right)$

The Kolmogorov Extension Theorem gives k-dimensional Lebesgue measure on the k-dimensional torus.

$$
\mu(\text { rectangle })=\left(b_{1}-a_{1}\right) \times\left(b_{2}-a_{2}\right)
$$

Stieltjes measures on $[0,1]$
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\rho:[0,1] \longrightarrow \mathbb{R}^{+}$a non-decreasing function
$\mu_{\rho}[a, b]=\rho(b)-\rho(a)$

Stieltjes measures on $[0,1]$
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\rho:[0,1] \longrightarrow \mathbb{R}^{+}$a non-decreasing function
$\mu_{\rho}[a, b]=\rho(b)-\rho(a)$
The Kolmogorov Extension theorem gives a measure on the Borel σ-algebra.

Stieltjes measures on $[0,1]$
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\rho:[0,1] \longrightarrow \mathbb{R}^{+}$a non-decreasing function
$\mu_{\rho}[a, b]=\rho(b)-\rho(a)$
The Kolmogorov Extension theorem gives a measure on the Borel σ-algebra.

Examples $\rho(x)=x$ gives Lebesgue measure.

Stieltjes measures on $[0,1]$
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\rho:[0,1] \longrightarrow \mathbb{R}^{+}$a non-decreasing function
$\mu_{\rho}[a, b]=\rho(b)-\rho(a)$
The Kolmogorov Extension theorem gives a measure on the Borel σ-algebra.

Examples
$\rho(x)=x$
$\rho(x)=\frac{1}{\log 2} \int_{0}^{x} \frac{d t}{1+t}$
gives Lebesgue measure.
gives Gauss' measure (will use this later when studying continued fractions)

Stieltjes measures on $[0,1]$
$X=[0,1]$ or \mathbb{R} / \mathbb{Z}
$\mathcal{A}=\{$ finite unions of intervals $\}$
$\rho:[0,1] \longrightarrow \mathbb{R}^{+}$a non-decreasing function
$\mu_{\rho}[a, b]=\rho(b)-\rho(a)$
The Kolmogorov Extension theorem gives a measure on the Borel σ-algebra.

Examples $\rho(x)=x$
gives Lebesgue measure.
$\rho(x)=\frac{1}{\log 2} \int_{0}^{x} \frac{d t}{1+t}$ gives Gauss' measure (will use this later when studying continued fractions)
We illustrate that Stieltjes measures can be surprisingly complicated.

Definition

Definition

- μ_{1} is absolutely continuous with respect to $\mu_{2}\left(\mu_{1} \ll \mu_{2}\right)$ if $\mu_{2}(B)=0 \Longrightarrow \mu_{1}(B)=0$.

Definition

- μ_{1} is absolutely continuous with respect to $\mu_{2}\left(\mu_{1} \ll \mu_{2}\right)$ if $\mu_{2}(B)=0 \Longrightarrow \mu_{1}(B)=0$.
- μ_{1}, μ_{2} are equivalent if $\mu_{1} \ll \mu_{2}$ and $\mu_{2} \ll \mu_{1}$ (i.e. μ_{1}, μ_{2} have the same sets of measure zero).

Definition

- μ_{1} is absolutely continuous with respect to $\mu_{2}\left(\mu_{1} \ll \mu_{2}\right)$ if $\mu_{2}(B)=0 \Longrightarrow \mu_{1}(B)=0$.
- μ_{1}, μ_{2} are equivalent if $\mu_{1} \ll \mu_{2}$ and $\mu_{2} \ll \mu_{1}$ (i.e. μ_{1}, μ_{2} have the same sets of measure zero).
- μ_{1}, μ_{2} are mutually singular $\left(\mu_{1} \perp \mu_{2}\right)$ if $X=B_{1} \cup B_{2}$ where $\mu_{1}\left(B_{1}\right)=\mu_{2}\left(B_{2}\right)=1$ and $\mu_{1}\left(B_{2}\right)=\mu_{2}\left(B_{1}\right)=0$.

Definition

- μ_{1} is absolutely continuous with respect to $\mu_{2}\left(\mu_{1} \ll \mu_{2}\right)$ if $\mu_{2}(B)=0 \Longrightarrow \mu_{1}(B)=0$.
- μ_{1}, μ_{2} are equivalent if $\mu_{1} \ll \mu_{2}$ and $\mu_{2} \ll \mu_{1}$ (i.e. μ_{1}, μ_{2} have the same sets of measure zero).
- μ_{1}, μ_{2} are mutually singular $\left(\mu_{1} \perp \mu_{2}\right)$ if $X=B_{1} \cup B_{2}$ where $\mu_{1}\left(B_{1}\right)=\mu_{2}\left(B_{2}\right)=1$ and $\mu_{1}\left(B_{2}\right)=\mu_{2}\left(B_{1}\right)=0$.

Fact: If $\rho^{\prime}(x)$ is continuous then $\mu_{\rho} \ll$ Lebesgue. If in addition, $\rho^{\prime}(x)>0$, then μ_{ρ} and Lebesgue measure are equivalent.

Definition

- μ_{1} is absolutely continuous with respect to $\mu_{2}\left(\mu_{1} \ll \mu_{2}\right)$ if $\mu_{2}(B)=0 \Longrightarrow \mu_{1}(B)=0$.
- μ_{1}, μ_{2} are equivalent if $\mu_{1} \ll \mu_{2}$ and $\mu_{2} \ll \mu_{1}$ (i.e. μ_{1}, μ_{2} have the same sets of measure zero).
- μ_{1}, μ_{2} are mutually singular $\left(\mu_{1} \perp \mu_{2}\right)$ if $X=B_{1} \cup B_{2}$ where $\mu_{1}\left(B_{1}\right)=\mu_{2}\left(B_{2}\right)=1$ and $\mu_{1}\left(B_{2}\right)=\mu_{2}\left(B_{1}\right)=0$.

Fact: If $\rho^{\prime}(x)$ is continuous then $\mu_{\rho} \ll$ Lebesgue. If in addition, $\rho^{\prime}(x)>0$, then μ_{ρ} and Lebesgue measure are equivalent. Gauss' measure and Lebesgue measure are equivalent $\left(\rho^{\prime}(x)=\frac{1}{\log 2} \frac{1}{1+x}\right)$.

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.
Define the measure δ_{x} by:

$$
\delta_{x}(B)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.
Define the measure δ_{x} by:

$$
\delta_{x}(B)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

$\delta_{x}=$ Dirac δ-measure supported at x.

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.
Define the measure δ_{x} by:

$$
\delta_{x}(B)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

$\delta_{x}=$ Dirac δ-measure supported at x.
Note that $\delta_{x}(X \backslash\{x\})=0$.

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.
Define the measure δ_{X} by:

$$
\delta_{x}(B)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

$\delta_{x}=$ Dirac δ-measure supported at x.
Note that $\delta_{x}(X \backslash\{x\})=0$.
Hence δ_{x}-a.e. point of X is equal to x. For this reason δ_{x} is sometimes called a point mass at x.

Dirac Measures

Take $X=$ any set, \mathcal{B} any σ-algebra. Fix $x \in X$.
Define the measure δ_{X} by:

$$
\delta_{x}(B)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

$\delta_{x}=$ Dirac δ-measure supported at x.
Note that $\delta_{x}(X \backslash\{x\})=0$.
Hence δ_{x}-a.e. point of X is equal to x. For this reason δ_{x} is sometimes called a point mass at x. Easy check: $\int f d \delta_{x}=f(x)$.

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

Invariant Measures
Let (X, \mathcal{B}, μ) be a probability space.
Definition
T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

$$
\mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}
$$

Invariant Measures

Let (X, \mathcal{B}, μ) be a probability space.

Definition

T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.
Definition
T is a measure preserving transformation (mpt) if

$$
\mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}
$$

Lemma
T is a $m p t \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \forall f \in L^{1}(X, \mathcal{B}, \mu)$

Invariant Measures

Let (X, \mathcal{B}, μ) be a probability space.

Definition

T is measurable if $T^{-1} B=\{x \in X \mid T(x) \in B\} \in \mathcal{B} \forall B \in \mathcal{B}$.

Definition

T is a measure preserving transformation (mpt) if

$$
\mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}
$$

Lemma
T is a $m p t \Longleftrightarrow \int f \circ T d \mu=\int f d \mu \forall f \in L^{1}(X, \mathcal{B}, \mu)$
Remark: We can replace L^{1} by L^{2}.

Proof (sketch):

$T \mathrm{mpt} \Longleftrightarrow \mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}$

Proof (sketch):

$T \mathrm{mpt} \Longleftrightarrow \mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}$

$$
\Longleftrightarrow \quad \int \chi_{T^{-1} B} d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
$$

Proof (sketch):

T mpt $\Longleftrightarrow \mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}$

$$
\begin{aligned}
& \Longleftrightarrow \quad \int \chi_{T^{-1} B} d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B} \\
& \Longleftrightarrow \quad \int \chi_{B} \circ T d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
\end{aligned}
$$

Proof (sketch):

$T \mathrm{mpt} \Longleftrightarrow \mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}$

$$
\Longleftrightarrow \quad \int \chi_{T^{-1} B} d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
$$

$$
\Longleftrightarrow \quad \int \chi_{B} \circ T d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
$$

$$
\Longleftrightarrow \quad \int f \circ T d \mu=\int f d \mu \forall f \in L^{1}(X, \mathcal{B}, \mu)
$$

by an approximation argument

Proof (sketch):

$T \mathrm{mpt} \Longleftrightarrow \mu\left(T^{-1} B\right)=\mu(B) \forall B \in \mathcal{B}$

$$
\Longleftrightarrow \quad \int \chi_{T^{-1} B} d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
$$

$$
\Longleftrightarrow \quad \int \chi_{B} \circ T d \mu=\int \chi_{B} d \mu \forall B \in \mathcal{B}
$$

$$
\Longleftrightarrow \quad \int f \circ T d \mu=\int f d \mu \forall f \in L^{1}(X, \mathcal{B}, \mu)
$$

by an approximation argument

Examples

We describe three methods for proving a given measure is invariant for a given dynamical system.

Examples

We describe three methods for proving a given measure is invariant for a given dynamical system.

- Using periodic points.

Examples

We describe three methods for proving a given measure is invariant for a given dynamical system.

- Using periodic points.
- Using the Kolmogorov Extension Theorem.

Examples

We describe three methods for proving a given measure is invariant for a given dynamical system.

- Using periodic points.
- Using the Kolmogorov Extension Theorem.
- (When X is a group) using Haar measure.

Invariant measures via periodic orbits

Invariant measures via periodic orbits

Suppose $x, T x, \ldots, T^{n-1} x, T^{n} x=x$ is a periodic orbit for T.

Invariant measures via periodic orbits

Suppose $x, T x, \ldots, T^{n-1} x, T^{n} x=x$ is a periodic orbit for T. Then

$$
\frac{1}{n} \sum_{j=0}^{n-1} \delta_{T^{j} X}
$$

is a T-invariant measure.

Invariant measures via periodic orbits

Suppose $x, T x, \ldots, T^{n-1} x, T^{n} x=x$ is a periodic orbit for T. Then

$$
\frac{1}{n} \sum_{j=0}^{n-1} \delta_{T^{j} X}
$$

is a T-invariant measure.

$$
\begin{aligned}
\int f \circ T d \mu & =\frac{1}{n}\left(f(T x)+\cdots+f\left(T^{n-1} x\right)+f\left(T^{n} x\right)\right) \\
& =\frac{1}{n}\left(f(x)+f(T x)+\cdots+f\left(T^{n-1} x\right)\right) \\
& =\int f d \mu .
\end{aligned}
$$

Invariant measures via the Kolmogorov Extension Theorem

Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X, \mathcal{B}, μ).

Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X, \mathcal{B}, μ). If T is measurable, then we can define a new measure $T_{*} \mu$ on \mathcal{B} by

$$
T_{*} \mu(B)=\mu\left(T^{-1} B\right)
$$

Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X, \mathcal{B}, μ). If T is measurable, then we can define a new measure $T_{*} \mu$ on \mathcal{B} by

$$
T_{*} \mu(B)=\mu\left(T^{-1} B\right) .
$$

Then μ is T-invariant $\Longleftrightarrow T_{*} \mu(B)=\mu(B) \forall B \in \mathcal{B}$.

Invariant measures via the Kolmogorov Extension Theorem

Idea: Let T be a dynamical system on (X, \mathcal{B}, μ). If T is measurable, then we can define a new measure $T_{*} \mu$ on \mathcal{B} by

$$
T_{*} \mu(B)=\mu\left(T^{-1} B\right)
$$

Then μ is T-invariant $\Longleftrightarrow T_{*} \mu(B)=\mu(B) \forall B \in \mathcal{B}$. To show $T_{*} \mu(B)=\mu(B) \forall B \in \mathcal{B}$, it is sufficient to prove that $T_{*} \mu(B)=\mu(B) \forall B \in \mathcal{A}$, where \mathcal{A} is an algebra that generates \mathcal{B}. (This is because the Kolmogorov Extension Theorem tells us that a "measure" on \mathcal{A} extends uniquely to a measure on \mathcal{B}.)

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

$T^{-1}[a, b]=\left[\frac{a}{2}, \frac{b}{2}\right] \cup\left[\frac{a+1}{2}, \frac{b+1}{2}\right]$

Proposition

Let $T x=2 x \bmod 1$ be the doubling map on $[0,1]$. Then T preserves Lebesgue measure μ.

Proof.
It is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for any interval $[a, b]$.

$T^{-1}[a, b]=\left[\frac{a}{2}, \frac{b}{2}\right] \cup\left[\frac{a+1}{2}, \frac{b+1}{2}\right]$ therefore:

$$
\mu T^{-1}[a, b]=\frac{b}{2}-\frac{a}{2}+\frac{b+1}{2}-\frac{a+1}{2}=b-a=\mu[a, b]
$$

Definition
Define Gauss' measure μ on $[0,1]$ by

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{1}{1+x} d x
$$

Definition
Define Gauss' measure μ on $[0,1]$ by

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{1}{1+x} d x
$$

Proposition

Let $T x=\frac{1}{x} \bmod 1$ be the continued fraction map. Then T preserves Gauss' measure.

Definition

Define Gauss' measure μ on $[0,1]$ by

$$
\mu(B)=\frac{1}{\log 2} \int_{B} \frac{1}{1+x} d x
$$

Proposition

Let $T x=\frac{1}{x} \bmod 1$ be the continued fraction map. Then T preserves Gauss' measure.
Proof:
Again, it is sufficient to prove that $\mu T^{-1}[a, b]=\mu[a, b]$ for every interval $[a, b]$.

$$
T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right]
$$

$$
T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right]
$$

$$
T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right]
$$

$$
T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right]
$$

$$
\begin{aligned}
& T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right] \\
& \mu\left(\left[\frac{1}{b+n}, \frac{1}{a+n}\right]\right)=\frac{1}{\log 2} \int_{\frac{1}{b+n}}^{\frac{1}{a+n}} \frac{1}{1+x} d x \\
&
\end{aligned}=\frac{1}{\log 2}\left(\log \left(1+\frac{1}{a+n}\right)-\log \left(1+\frac{1}{b+n}\right)\right)
$$

$$
\begin{aligned}
& T^{-1}[a, b]=\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right] \\
& \begin{aligned}
\mu\left(\left[\frac{1}{b+n}, \frac{1}{a+n}\right]\right) & =\frac{1}{\log 2} \int_{\frac{1}{b+n}}^{\frac{1}{a+n}} \frac{1}{1+x} d x \\
& =\frac{1}{\log 2}\left(\log \left(1+\frac{1}{a+n}\right)-\log \left(1+\frac{1}{b+n}\right)\right)
\end{aligned} \\
& \left.\begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

Hence (easy check!)

$$
\mu\left(T^{-1}[a, b]\right)=\sum_{n=1}^{\infty} \mu\left(\left[\frac{1}{b+n}, \frac{1}{a+n}\right]\right)=\mu([a, b]) .
$$

Markov Measures

Markov Measures

Let $X=\{1, \ldots, k\}^{\mathbb{N}}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.

Markov Measures

Let $X=\{1, \ldots, k\}^{\mathbb{N}}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Fix symbols $i_{0} \ldots, i_{n} \in\{1, \ldots, k\}, m \in \mathbb{N}$.

Markov Measures

Let $X=\{1, \ldots, k\}^{\mathbb{N}}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Fix symbols $i_{0} \ldots, i_{n} \in\{1, \ldots, k\}, m \in \mathbb{N}$.
The cylinder $\left[i_{0}, \ldots, i_{n}\right]$ is the set of sequences $\left(x_{j}\right)_{j=0}^{\infty}$ where $x_{j}=i_{j}$ for $0 \leq j \leq n$.

Markov Measures

Let $X=\{1, \ldots, k\}^{\mathbb{N}}=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{1, \ldots, k\}\right\}$ be the full one-sided k-shift.
Fix symbols $i_{0} \ldots, i_{n} \in\{1, \ldots, k\}, m \in \mathbb{N}$.
The cylinder $\left[i_{0}, \ldots, i_{n}\right]$ is the set of sequences $\left(x_{j}\right)_{j=0}^{\infty}$ where $x_{j}=i_{j}$ for $0 \leq j \leq n$.
$\left[i_{0}, i_{1}, \ldots, i_{n-1}, i_{n}\right]=\left\{x=\left(i_{0}, i_{1}, \ldots, i_{n-1}, i_{n}, *, *, *, \cdots\right)\right\}$

Cylinders for shifts play the same role as intervals do for $[0,1]$.

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix (i.e. each row of P sums to $1)$.

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix (i.e. each row of P sums to 1).

Suppose there is a left probability eigenvector $p=\left(p_{1}, \ldots, p_{k}\right)$ (i.e. $\left.p_{i} \geq 0, \sum p_{i}=1, p P=p\right)$.

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix (i.e. each row of P sums to 1).

Suppose there is a left probability eigenvector $p=\left(p_{1}, \ldots, p_{k}\right)$ (i.e.
$\left.p_{i} \geq 0, \sum p_{i}=1, p P=p\right)$.
Define

$$
\mu_{P}\left[i_{0}, \ldots, i_{n}\right]=p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-1} i_{n}}
$$

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix (i.e. each row of P sums to 1).

Suppose there is a left probability eigenvector $p=\left(p_{1}, \ldots, p_{k}\right)$ (i.e.
$\left.p_{i} \geq 0, \sum p_{i}=1, p P=p\right)$.
Define

$$
\mu_{P}\left[i_{0}, \ldots, i_{n}\right]=p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-1} i_{n}}
$$

Then the K.E.T gives a measure μ_{p} on the Borel σ-algebra. μ_{p} is called a Markov measure.

Cylinders for shifts play the same role as intervals do for $[0,1]$. Let $\mathcal{A}=\{$ finite unions of cylinders $\}$.
Let $P=\left(P_{i j}\right)$ be a stochastic matrix (i.e. each row of P sums to 1).

Suppose there is a left probability eigenvector $p=\left(p_{1}, \ldots, p_{k}\right)$ (i.e.
$\left.p_{i} \geq 0, \sum p_{i}=1, p P=p\right)$.
Define

$$
\mu_{P}\left[i_{0}, \ldots, i_{n}\right]=p_{i_{0}} P_{i_{0} i_{1}} \ldots P_{i_{n-1} i_{n}}
$$

Then the K.E.T gives a measure μ_{p} on the Borel σ-algebra. μ_{p} is called a Markov measure.
If $P_{i, j}=P_{j}$ then

$$
\mu\left[i_{0}, \ldots, i_{n}\right]=p_{i_{0}} p_{i_{1}} \cdots p_{i_{n}}
$$

We call μ a Bernoulli measure.

Proposition

Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k},(\sigma x)_{j}=x_{j+1}$, be the full one-sided k-shift, P be a stochastic matrix, and let p be a left probability eigenvector. Then the Markov measure $\mu=\mu_{P}$ is σ-invariant.

Proposition

Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k},(\sigma x)_{j}=x_{j+1}$, be the full one-sided k-shift, P be a stochastic matrix, and let p be a left probability eigenvector. Then the Markov measure $\mu=\mu_{P}$ is σ-invariant.

Proof.
It is sufficient to prove that $\mu\left(\sigma^{-1} C\right)=\mu(C)$ for all cylinders C.

Proposition

Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k},(\sigma x)_{j}=x_{j+1}$, be the full one-sided k-shift, P be a stochastic matrix, and let p be a left probability eigenvector.
Then the Markov measure $\mu=\mu_{P}$ is σ-invariant.
Proof.
It is sufficient to prove that $\mu\left(\sigma^{-1} C\right)=\mu(C)$ for all cylinders C.
Note:

$$
\sigma^{-1}\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)=\bigcup_{i=1}^{k}\left[i, i_{0}, i_{1}, \ldots, i_{n-1}\right] .
$$

Proposition

Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k},(\sigma x)_{j}=x_{j+1}$, be the full one-sided k-shift, P be a stochastic matrix, and let p be a left probability eigenvector.
Then the Markov measure $\mu=\mu_{P}$ is σ-invariant.
Proof.
It is sufficient to prove that $\mu\left(\sigma^{-1} C\right)=\mu(C)$ for all cylinders C.
Note:

$$
\sigma^{-1}\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)=\bigcup_{i=1}^{k}\left[i, i_{0}, i_{1}, \ldots, i_{n-1}\right] .
$$

Hence

$$
\begin{aligned}
& \mu\left(\sigma^{-1}\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)\right)=\sum_{i} \mu\left(\left[i, i_{0}, i_{1}, \ldots, i_{n-1}\right]\right) \\
= & \sum_{i} p_{i} P_{i, i_{0}} P\left(i_{0}, i_{1}\right) \ldots P_{i_{n-1}, i_{n}}=
\end{aligned}
$$

Proposition

Let $\sigma: \Sigma_{k} \rightarrow \Sigma_{k},(\sigma x)_{j}=x_{j+1}$, be the full one-sided k-shift, P be a stochastic matrix, and let p be a left probability eigenvector.
Then the Markov measure $\mu=\mu_{P}$ is σ-invariant.
Proof.
It is sufficient to prove that $\mu\left(\sigma^{-1} C\right)=\mu(C)$ for all cylinders C.
Note:

$$
\sigma^{-1}\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)=\bigcup_{i=1}^{k}\left[i, i_{0}, i_{1}, \ldots, i_{n-1}\right] .
$$

Hence

$$
\begin{gathered}
\mu\left(\sigma^{-1}\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)\right)=\sum_{i} \mu\left(\left[i, i_{0}, i_{1}, \ldots, i_{n-1}\right]\right) \\
=\sum_{i} p_{i} P_{i, i_{0}} P\left(i_{0}, i_{1}\right) \ldots P_{i_{n-1}, i_{n}}=p_{i_{0}} P\left(i_{0}, i_{1}\right) \ldots P_{i_{n-1}, i_{n}} \\
=\mu\left(\left[i_{0}, i_{1}, \ldots, i_{n}\right]\right)
\end{gathered}
$$

Algebraic examples

Let X be a compact group, such as the k-dimensional torus.

Algebraic examples

Let X be a compact group, such as the k-dimensional torus.
It is well-known that there exists a unique left- and right-invariant probability measure μ. This is Haar measure.

Algebraic examples

Let X be a compact group, such as the k-dimensional torus.
It is well-known that there exists a unique left- and right-invariant probability measure μ. This is Haar measure.
(Left-invariant means: $\mu(g B)=\mu(B) \forall B \in \mathcal{B}, g \in X$, Right-invariant means: $\mu(B g)=\mu(B) \forall B \in \mathcal{B}, g \in X$.)

Algebraic examples

Let X be a compact group, such as the k-dimensional torus.
It is well-known that there exists a unique left- and right-invariant probability measure μ. This is Haar measure.
(Left-invariant means: $\mu(g B)=\mu(B) \forall B \in \mathcal{B}, g \in X$, Right-invariant means: $\mu(B g)=\mu(B) \forall B \in \mathcal{B}, g \in X$.)

For example, k-dimensional Lebesgue measure is Haar measure on the k-dimensional torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Algebraic examples

Let X be a compact group, such as the k-dimensional torus.
It is well-known that there exists a unique left- and right-invariant probability measure μ. This is Haar measure.
(Left-invariant means: $\mu(g B)=\mu(B) \forall B \in \mathcal{B}, g \in X$, Right-invariant means: $\mu(B g)=\mu(B) \forall B \in \mathcal{B}, g \in X$.)

For example, k-dimensional Lebesgue measure is Haar measure on the k-dimensional torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Proposition

Define $T: \mathbb{R}^{k} / \mathbb{Z}^{k}$ by $T x=x+\operatorname{amod} 1$. Then Lebesgue measure is T-invariant.

Group automorphisms

Let X be a compact group. Let α a group automorphism of X. Define $T(x)=\alpha(x)$.

Group automorphisms

Let X be a compact group. Let α a group automorphism of X. Define $T(x)=\alpha(x)$.

Proposition
Haar measure μ is a T-invariant measure.

Group automorphisms

Let X be a compact group. Let α a group automorphism of X. Define $T(x)=\alpha(x)$.

Proposition
Haar measure μ is a T-invariant measure.
Corollary
Lebesgue measure is an invariant measure for linear toral automorphisms (eg the Cat map).

Group automorphisms

Let X be a compact group. Let α a group automorphism of X. Define $T(x)=\alpha(x)$.

Proposition

Haar measure μ is a T-invariant measure.
Corollary
Lebesgue measure is an invariant measure for linear toral automorphisms (eg the Cat map).

Proof.
Let $g \in X$. Note that $T^{-1}(g(B))=\alpha^{-1}(g)\left(T^{-1}(B)\right)$.

Group automorphisms

Let X be a compact group. Let α a group automorphism of X. Define $T(x)=\alpha(x)$.

Proposition

Haar measure μ is a T-invariant measure.
Corollary
Lebesgue measure is an invariant measure for linear toral automorphisms (eg the Cat map).

Proof.
Let $g \in X$. Note that $T^{-1}(g(B))=\alpha^{-1}(g)\left(T^{-1}(B)\right)$. Hence

$$
T_{*} \mu(g B)=\mu\left(T^{-1} g(B)\right)=\mu\left(\alpha^{-1}(g)\left(T^{-1} B\right)\right)=\mu\left(T^{-1} B\right)
$$

Group automorphisms

Let X be a compact group. Let α a group automorphism of X.
Define $T(x)=\alpha(x)$.

Proposition

Haar measure μ is a T-invariant measure.
Corollary
Lebesgue measure is an invariant measure for linear toral automorphisms (eg the Cat map).

Proof.
Let $g \in X$. Note that $T^{-1}(g(B))=\alpha^{-1}(g)\left(T^{-1}(B)\right)$. Hence

$$
T_{*} \mu(g B)=\mu\left(T^{-1} g(B)\right)=\mu\left(\alpha^{-1}(g)\left(T^{-1} B\right)\right)=\mu\left(T^{-1} B\right)=T_{*} \mu(B)
$$

Group automorphisms

Let X be a compact group. Let α a group automorphism of X.
Define $T(x)=\alpha(x)$.

Proposition

Haar measure μ is a T-invariant measure.
Corollary
Lebesgue measure is an invariant measure for linear toral automorphisms (eg the Cat map).

Proof.
Let $g \in X$. Note that $T^{-1}(g(B))=\alpha^{-1}(g)\left(T^{-1}(B)\right)$. Hence
$T_{*} \mu(g B)=\mu\left(T^{-1} g(B)\right)=\mu\left(\alpha^{-1}(g)\left(T^{-1} B\right)\right)=\mu\left(T^{-1} B\right)=T_{*} \mu(B)$.
Hence $T_{*} \mu$ is invariant under any group rotation. By uniqueness of Haar measure, $T_{*} \mu$ is Haar measure, i.e. $T_{*} \mu=\mu$.

Next lecture

In the next lecture we define ergodic measures.
We will give examples of ergodic measure-preserving transformations.
We will also see how mixing properties of the dynamics imply ergodicity.

