MAGIC: Ergodic Theory Lecture 2 - Uniform distribution $\bmod 1$

Charles Walkden

January 31st 2013

Introduction

Introduction

Ergodic theory concerns the distribution of typical orbits of a dynamical system.

Introduction

Ergodic theory concerns the distribution of typical orbits of a dynamical system.
In this lecture we consider the distribution of fractional parts of a sequence of reals.

Introduction

Ergodic theory concerns the distribution of typical orbits of a dynamical system.
In this lecture we consider the distribution of fractional parts of a sequence of reals.
We also give some applications to number theory.

Uniform distribution in dimension 1

Uniform distribution in dimension 1

Let $x_{n} \in \mathbb{R}$.

Uniform distribution in dimension 1

Let $x_{n} \in \mathbb{R}$. Write

Uniform distribution in dimension 1

Let $x_{n} \in \mathbb{R}$. Write

How are the fractional parts of x_{n} distributed in $[0,1)$?

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1 :

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1 :

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1 :

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1 :

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1 :

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

Examples

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

Definition
x_{n} is uniformly distributed mod 1 (udm1) if:

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

$$
\frac{1}{n} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}\right\} \in[a, b]\right\}
$$

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

$$
\frac{1}{n} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}\right\} \in[a, b]\right\} \longrightarrow b-a \text { as } n \rightarrow \infty
$$

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

$$
\frac{1}{n} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}\right\} \in[a, b]\right\} \longrightarrow b-a \text { as } n \rightarrow \infty
$$

i.e. the frequency with which the fractional parts of x_{n} lie in $[a, b]$ is equal to the length of $[a, b]$.

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

$$
\frac{1}{n} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}\right\} \in[a, b]\right\} \longrightarrow b-a \text { as } n \rightarrow \infty
$$

i.e. the frequency with which the fractional parts of x_{n} lie in $[a, b]$ is equal to the length of $[a, b]$.

Exercise

Show x_{n} udm1 $\Longrightarrow\left\{x_{n}\right\}$ dense in $[0,1]$

Definition

x_{n} is uniformly distributed $\bmod 1(u d m 1)$ if: $\forall[a, b] \subset[0,1]$ we have

$$
\frac{1}{n} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}\right\} \in[a, b]\right\} \longrightarrow b-a \text { as } n \rightarrow \infty
$$

i.e. the frequency with which the fractional parts of x_{n} lie in $[a, b]$ is equal to the length of $[a, b]$.

Exercise

Show x_{n} udm1 $\Longrightarrow\left\{x_{n}\right\}$ dense in $[0,1]$
We need a usable criterion to check whether a sequence is udm1.

Weyl's Criterion

Weyl's Criterion

Theorem (Weyl's Criterion)
The following are equivalent:

Weyl's Criterion

Theorem (Weyl's Criterion)
The following are equivalent:

1. x_{n} is udm1,

Weyl's Criterion

Theorem (Weyl's Criterion)

The following are equivalent:

1. x_{n} is udm1,
2. \forall continuous $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=f(1)$,

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{x_{j}\right\}\right) \longrightarrow \int_{0}^{1} f(x) d x \text { as } n \rightarrow \infty
$$

Weyl's Criterion

Theorem (Weyl's Criterion)

The following are equivalent:

1. x_{n} is udm1,
2. \forall continuous $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=f(1)$,

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{x_{j}\right\}\right) \longrightarrow \int_{0}^{1} f(x) d x \text { as } n \rightarrow \infty
$$

3. $\forall \ell \in \mathbb{Z} \backslash\{0\}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} \exp 2 \pi i \ell x_{j} \longrightarrow 0 \text { as } n \rightarrow \infty
$$

Proof.
(Sketch)

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Then

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Then
x_{n} udm1
\Longleftrightarrow

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Then

$$
x_{n} \text { udm1 } \Longleftrightarrow \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a, b]}\left(\left\{x_{j}\right\}\right) \longrightarrow b-a
$$

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Then

$$
x_{n} \mathrm{udm} 1 \Longleftrightarrow \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a, b]}\left(\left\{x_{j}\right\}\right) \longrightarrow b-a=\int \chi_{[a, b]}(x) d x
$$

Proof.

(Sketch) Let $\chi_{[a, b]}$ denote the characteristic function of $[a, b]$.

Then

$$
x_{n} \mathrm{udm} 1 \Longleftrightarrow \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a, b]}\left(\left\{x_{j}\right\}\right) \longrightarrow b-a=\int \chi_{[a, b]}(x) d x
$$

Hence Weyl's criterion holds for a characteristic function.

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Hence (1) \Longrightarrow (2).

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Hence $(1) \Longrightarrow(2) .(2) \Longrightarrow(3)$ is trivial (put $f(x)=e^{2 \pi i \ell x}$).

Now approximate a continuous function by a finite linear combination of characteristic functions of intervals:

Hence $(1) \Longrightarrow(2) .(2) \Longrightarrow(3)$ is trivial (put $f(x)=e^{2 \pi i \ell x}$). $(3) \Longrightarrow(1)$: Approximate $\chi_{[a, b]}$ by finite linear combinations of exponential functions.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$.
Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$.

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i l x_{j}}\right|
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|=\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha j}\right|
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|=\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha j}\right|=\frac{1}{n} \frac{\left|e^{2 \pi i \ell \alpha n}-1\right|}{\left|e^{2 \pi i \ell \alpha}-1\right|}
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right| & =\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha j}\right|=\frac{1}{n} \frac{\left|e^{2 \pi i \ell \alpha n}-1\right|}{\left|e^{2 \pi i \ell \alpha}-1\right|} \\
& \leq \frac{2}{n} \frac{1}{\left|e^{2 \pi i \ell \alpha}-1\right|}
\end{aligned}
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right| & =\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha j}\right|=\frac{1}{n} \frac{\left|e^{2 \pi i \ell \alpha n}-1\right|}{\left|e^{2 \pi i \ell \alpha}-1\right|} \\
& \leq \frac{2}{n} \frac{1}{\left|e^{2 \pi i \ell \alpha}-1\right|} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Example

Fix $\alpha \in \mathbb{R}$ and let $x_{n}=\alpha n$.
Case 1: $\alpha=\frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\left\{x_{n}\right\}$ takes only finitely many values

$$
0,\left\{\frac{p}{q}\right\}, \ldots,\left\{\frac{(p-1) q}{q}\right\}
$$

Thus $\left\{x_{n}\right\}$ is not dense, therefore not udm1.
Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \backslash\{0\}$. Note: $\ell \in \mathbb{Z} \backslash\{0\} \Longrightarrow \ell \alpha \notin \mathbb{Z} \Longrightarrow e^{2 \pi i \ell \alpha} \neq 1$. Now

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right| & =\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha j}\right|=\frac{1}{n} \frac{\left|e^{2 \pi i \ell \alpha n}-1\right|}{\left|e^{2 \pi i \ell \alpha}-1\right|} \\
& \leq \frac{2}{n} \frac{1}{\left|e^{2 \pi i \ell \alpha}-1\right|} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence x_{n} is udm1.

Uniform distribution mod 1 in higher dimensions

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm 1 in an analogous way
Example
For $k=2$,

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

not udm

Uniform distribution mod 1 in higher dimensions

We can define what it means for a sequence
$x_{n}=\left(x_{n}^{(1)}, \ldots x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ to be udm1 in an analogous way
Example
For $k=2$,

udm1

not udm
$x_{n} \in \mathbb{R}^{k}$ is udm1 if the frequency with which $x_{n} \bmod 1$ hits any k-dimensional cube equals the k-dimensional volume of that cube.

Definition
We say $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1 if for all intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right] \subset[0,1]$ we have

Definition
We say $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1 if for all intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right] \subset[0,1]$ we have

$$
\sum_{j=0}^{n-1} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}^{(i)}\right\} \in\left[a_{i}, b_{i}\right] \forall 1 \leq i \leq k\right\}
$$

Definition
We say $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1 if for all intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right] \subset[0,1]$ we have

$$
\frac{1}{n} \sum_{j=0}^{n-1} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}^{(i)}\right\} \in\left[a_{i}, b_{i}\right] \forall 1 \leq i \leq k\right\}
$$

Definition
We say $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1 if for all intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right] \subset[0,1]$ we have

$$
\frac{1}{n} \sum_{j=0}^{n-1} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}^{(i)}\right\} \in\left[a_{i}, b_{i}\right] \forall 1 \leq i \leq k\right\}
$$

$$
\longrightarrow\left(b_{1}-a_{1}\right) \times \cdots \times\left(b_{k}-a_{k}\right)
$$

Definition

We say $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1 if for all intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right] \subset[0,1]$ we have

$$
\begin{array}{r}
\frac{1}{n} \sum_{j=0}^{n-1} \operatorname{card}\left\{j \mid 0 \leq j \leq n-1,\left\{x_{j}^{(i)}\right\} \in\left[a_{i}, b_{i}\right] \forall 1 \leq i \leq k\right\} \\
\longrightarrow\left(b_{1}-a_{1}\right) \times \cdots \times\left(b_{k}-a_{k}\right)
\end{array}
$$

There is a higher dimensional version of Weyl's critertion.

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is $u d m 1$

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1
2. $\forall \operatorname{cts} f: \mathbb{R}^{k} / \mathbb{Z}^{k} \rightarrow \mathbb{R}$

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1
2. $\forall \operatorname{cts} f: \mathbb{R}^{k} / \mathbb{Z}^{k} \rightarrow \mathbb{R}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{x_{j}^{(1)}\right\}, \ldots,\left\{x_{j}^{(k)}\right\}\right) \longrightarrow \int f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
$$

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1
2. $\forall \operatorname{cts} f: \mathbb{R}^{k} / \mathbb{Z}^{k} \rightarrow \mathbb{R}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{x_{j}^{(1)}\right\}, \ldots,\left\{x_{j}^{(k)}\right\}\right) \longrightarrow \int f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
$$

3. $\forall\left(\ell_{1}, \ldots, \ell_{k}\right) \in \mathbb{Z}^{k} \backslash\{(0, \ldots, 0)\}$,

Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. $x_{n}=\left(x_{n}^{(1)}, \ldots, x_{n}^{(k)}\right) \in \mathbb{R}^{k}$ is udm1
2. $\forall \operatorname{cts} f: \mathbb{R}^{k} / \mathbb{Z}^{k} \rightarrow \mathbb{R}$

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{x_{j}^{(1)}\right\}, \ldots,\left\{x_{j}^{(k)}\right\}\right) \longrightarrow \int f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
$$

3. $\forall\left(\ell_{1}, \ldots, \ell_{k}\right) \in \mathbb{Z}^{k} \backslash\{(0, \ldots, 0)\}$,

$$
\frac{1}{n} \sum_{j=0}^{n-1} \exp \left(2 \pi i\left(\ell_{1} x_{j}^{(1)}+\cdots+\ell_{k} x_{j}^{(k)}\right)\right) \longrightarrow 0
$$

as $n \rightarrow \infty$.

Example

Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$

Example

Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$
Definition
$v_{1}, \ldots, v_{s} \in \mathbb{R}$ are rationally independent if

$$
r_{1} v_{1}+\cdots+r_{s} v_{s}=0 \text { for } r_{1}, \ldots, r_{s} \in \mathbb{Q} \Longrightarrow r_{1}=\ldots r_{s}=0
$$

Example

Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$
Definition
$v_{1}, \ldots, v_{s} \in \mathbb{R}$ are rationally independent if

$$
r_{1} v_{1}+\cdots+r_{s} v_{s}=0 \text { for } r_{1}, \ldots, r_{s} \in \mathbb{Q} \Longrightarrow r_{1}=\ldots r_{s}=0
$$

Proposition
$x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right)$ is udm1 iff $\alpha_{1}, \ldots, \alpha_{k}, 1$ are rationally independent.

Example
Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$
Definition
$v_{1}, \ldots, v_{s} \in \mathbb{R}$ are rationally independent if

$$
r_{1} v_{1}+\cdots+r_{s} v_{s}=0 \text { for } r_{1}, \ldots, r_{s} \in \mathbb{Q} \Longrightarrow r_{1}=\ldots r_{s}=0
$$

Proposition
$x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right)$ is udm1 iff $\alpha_{1}, \ldots, \alpha_{k}, 1$ are rationally independent.

Proof.
Exercise (very similar to $x_{n}=\alpha n$)

Example
Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$
Definition
$v_{1}, \ldots, v_{s} \in \mathbb{R}$ are rationally independent if

$$
r_{1} v_{1}+\cdots+r_{s} v_{s}=0 \text { for } r_{1}, \ldots, r_{s} \in \mathbb{Q} \Longrightarrow r_{1}=\ldots r_{s}=0
$$

Proposition
$x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right)$ is udm1 iff $\alpha_{1}, \ldots, \alpha_{k}, 1$ are rationally independent.

Proof.
Exercise (very similar to $x_{n}=\alpha n$)
Remark
When $k=1$, we have the same result as above:

Example

Fix $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. Define $x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right) \in \mathbb{R}^{k}$
Definition
$v_{1}, \ldots, v_{s} \in \mathbb{R}$ are rationally independent if

$$
r_{1} v_{1}+\cdots+r_{s} v_{s}=0 \text { for } r_{1}, \ldots, r_{s} \in \mathbb{Q} \Longrightarrow r_{1}=\ldots r_{s}=0
$$

Proposition

$x_{n}=\left(\alpha_{1} n, \ldots, \alpha_{k} n\right)$ is udm1 iff $\alpha_{1}, \ldots, \alpha_{k}, 1$ are rationally independent.

Proof.
Exercise (very similar to $x_{n}=\alpha n$)
Remark
When $k=1$, we have the same result as above:
$\alpha, 1$ rationally indep. \Leftrightarrow no rational solutions r_{1}, r_{2} to $r_{1} \alpha+r_{2}=0$ $\Leftrightarrow \quad \alpha$ irrational

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$.

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n+\beta$ is udm1 iff $\alpha \notin \mathbb{Q}$.

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n+\beta$ is udm1 iff $\alpha \notin \mathbb{Q}$.
We can generalise this to higher degree polynomials.

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n+\beta$ is udm1 iff $\alpha \notin \mathbb{Q}$.
We can generalise this to higher degree polynomials.
Theorem (Weyl)
Let $p(n)=\alpha_{k} n^{k}+\alpha_{k-1} n^{k-1}+\cdots+\alpha_{1} n+\alpha_{0}$. If at least one of $\alpha_{k}, \ldots, \alpha_{1}$ is irrational then $p(n)$ is udm1.

Lemma (Van der Corput's inequality)
Let $z_{0}, \ldots, z_{n-1} \in \mathbb{C}, 1 \leq m \leq n$. Then

Lemma (Van der Corput's inequality)

Let $z_{0}, \ldots, z_{n-1} \in \mathbb{C}, 1 \leq m \leq n$. Then
$m^{2}\left|\sum_{j=0}^{n-1} z_{j}\right|^{2} \leq m(n+m) \sum_{j=0}^{n-1}\left|z_{j}\right|^{2}+2(n+m) \operatorname{Re}\left(\sum_{j=1}^{m-1}(m-j) \sum_{i=0}^{n-1-j} z_{i+j} \bar{z}_{i}\right)$

Lemma (Van der Corput's inequality)

Let $z_{0}, \ldots, z_{n-1} \in \mathbb{C}, 1 \leq m \leq n$. Then
$m^{2}\left|\sum_{j=0}^{n-1} z_{j}\right|^{2} \leq m(n+m) \sum_{j=0}^{n-1}\left|z_{j}\right|^{2}+2(n+m) \operatorname{Re}\left(\sum_{j=1}^{m-1}(m-j) \sum_{i=0}^{n-1-j} z_{i+j} \bar{z}_{i}\right)$

Proof.
(In notes.) Idea:

$$
\begin{aligned}
\left|z_{0}+z_{1}\right|^{2} & =\left(z_{0}+z_{1}\right)\left(\bar{z}_{0}+\bar{z}_{1}\right) \\
& =\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+z_{0} \bar{z}_{1}+\bar{z}_{0} z_{1} \\
& =\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+2 \operatorname{Re}\left(\bar{z}_{0} z_{1}\right)
\end{aligned}
$$

Fix m.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is $u d m 1$. Then x_{n} is $u d m 1$.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$. We prove the special case when the leading coefficient α_{k} is irrational (the general case follows easily).

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$. We prove the special case when the leading coefficient α_{k} is irrational (the general case follows easily).
We induct on the degree of p. Let

$$
\begin{aligned}
\Delta(k)= & \text { "every polynomial } q \text { of degree } \leq k \\
& \text { with irrational leading coefficient is } \\
& \text { such that } q(n) \text { is udm1." }
\end{aligned}
$$

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$. We prove the special case when the leading coefficient α_{k} is irrational (the general case follows easily).
We induct on the degree of p. Let

$$
\begin{aligned}
\Delta(k)= & \text { "every polynomial } q \text { of degree } \leq k \\
& \text { with irrational leading coefficient is } \\
& \text { such that } q(n) \text { is udm1." }
\end{aligned}
$$

$\Delta(1)$ is true as $\alpha n+\beta$ is udm1 if $\alpha \notin \mathbb{Q}$.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$. We prove the special case when the leading coefficient α_{k} is irrational (the general case follows easily).
We induct on the degree of p. Let

$$
\begin{aligned}
\Delta(k)= & \text { "every polynomial } q \text { of degree } \leq k \\
& \text { with irrational leading coefficient is } \\
& \text { such that } q(n) \text { is udm1." }
\end{aligned}
$$

$\Delta(1)$ is true as $\alpha n+\beta$ is udm 1 if $\alpha \notin \mathbb{Q}$.
Suppose $\Delta(k-1)$ is true. We prove $\Delta(k)$ is true.

Fix m. Define $x_{n}^{(m)}=x_{n+m}-x_{n}$ to be the sequence of $m^{t h}$ differences.

Lemma
Suppose $\forall m \geq 1, x_{n}^{(m)}$ is udm1. Then x_{n} is udm1.
Lemma \Longrightarrow Weyl
Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$. We prove the special case when the leading coefficient α_{k} is irrational (the general case follows easily).
We induct on the degree of p. Let

$$
\begin{aligned}
\Delta(k)= & \text { "every polynomial } q \text { of degree } \leq k \\
& \text { with irrational leading coefficient is } \\
& \text { such that } q(n) \text { is udm1." }
\end{aligned}
$$

$\Delta(1)$ is true as $\alpha n+\beta$ is udm1 if $\alpha \notin \mathbb{Q}$.
Suppose $\Delta(k-1)$ is true. We prove $\Delta(k)$ is true. Let $p(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n+\alpha_{0}$ be a degree k polynomial with irrational leading coefficient α_{k}.

Fix $m \geq 1$.

Fix $m \geq 1$. The sequence of differences is

$$
\begin{aligned}
p^{(m)}(n)=p(n+m)-p(n)= & \alpha_{k}(n+m)^{k}+\alpha_{k-1}(n+m)^{k-1}+\ldots \\
& \quad-\alpha_{k} n^{k}-\alpha_{k-1} n^{k-1}-\ldots \\
= & \alpha_{k} k m n^{k-1}+\ldots
\end{aligned}
$$

i.e. a polynomial of degree $k-1$ with irrational leading coefficient.

Fix $m \geq 1$. The sequence of differences is

$$
\begin{aligned}
p^{(m)}(n)=p(n+m)-p(n)= & \alpha_{k}(n+m)^{k}+\alpha_{k-1}(n+m)^{k-1}+\ldots \\
& -\alpha_{k} n^{k}-\alpha_{k-1} n^{k-1}-\ldots \\
= & \alpha_{k} k m n^{k-1}+\ldots
\end{aligned}
$$

i.e. a polynomial of degree $k-1$ with irrational leading coefficient. Induction hypothesis $\Longrightarrow p^{(m)}(n)$ is udm1 $\forall m \geq 1$.

Fix $m \geq 1$. The sequence of differences is

$$
\begin{aligned}
p^{(m)}(n)=p(n+m)-p(n)= & \alpha_{k}(n+m)^{k}+\alpha_{k-1}(n+m)^{k-1}+\ldots \\
& -\alpha_{k} n^{k}-\alpha_{k-1} n^{k-1}-\ldots \\
& =\alpha_{k} k m n^{k-1}+\ldots
\end{aligned}
$$

i.e. a polynomial of degree $k-1$ with irrational leading coefficient. Induction hypothesis $\Longrightarrow p^{(m)}(n)$ is udm1 $\forall m \geq 1$. Lemma $\Longrightarrow p(n)$ is udm1.

Van der Corput \Rightarrow Lemma

$$
\text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 \text {. Then } \forall 1 \leq m \leq n \text {, }
$$

Van der Corput \Rightarrow Lemma

$$
\text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 \text {. Then } \forall 1 \leq m \leq n \text {, }
$$

$$
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)}
$$

Van der Corput \Rightarrow Lemma

$$
\begin{aligned}
& \text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 . \text { Then } \forall 1 \leq m \leq n \\
& \begin{aligned}
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} & \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)} \\
& =\frac{m}{n}(n+m)+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1}(m-j) A_{n, j}
\end{aligned}
\end{aligned}
$$

where

$$
A_{n, j}=\frac{1}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i l x_{i}^{(j)}}
$$

Van der Corput \Rightarrow Lemma

$$
\begin{aligned}
& \text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 . \text { Then } \forall 1 \leq m \leq n \\
& \begin{aligned}
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} & \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)} \\
& =\frac{m}{n}(n+m)+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1}(m-j) A_{n, j}
\end{aligned}
\end{aligned}
$$

where

$$
A_{n, j}=\frac{1}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell x_{i}^{(j)}}
$$

Now $A_{n, j} \longrightarrow 0$ by Weyl's criterion, as the sequence of $j^{t h}$ differences is udm1.

Van der Corput \Rightarrow Lemma

$$
\begin{aligned}
& \text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 . \text { Then } \forall 1 \leq m \leq n \\
& \begin{aligned}
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} & \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)} \\
& =\frac{m}{n}(n+m)+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1}(m-j) A_{n, j}
\end{aligned}
\end{aligned}
$$

where

$$
A_{n, j}=\frac{1}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell x_{i}^{(j)}}
$$

Now $A_{n, j} \longrightarrow 0$ by Weyl's criterion, as the sequence of $j^{\text {th }}$ differences is udm1. Hence for every $m>1$,

Van der Corput \Rightarrow Lemma

$$
\begin{aligned}
& \text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 . \text { Then } \forall 1 \leq m \leq n \\
& \begin{aligned}
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} & \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)} \\
& =\frac{m}{n}(n+m)+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1}(m-j) A_{n, j}
\end{aligned}
\end{aligned}
$$

where

$$
A_{n, j}=\frac{1}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell x_{i}^{(j)}}
$$

Now $A_{n, j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j th differences is udm1. Hence for every $m>1$,

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} \leq \frac{1}{m}
$$

Van der Corput \Rightarrow Lemma

$$
\begin{aligned}
& \text { Put } z_{j}=e^{2 \pi i \ell x_{j}},\left|z_{j}\right|=1 . \text { Then } \forall 1 \leq m \leq n \\
& \begin{aligned}
\frac{m^{2}}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} & \leq \frac{m}{n^{2}}(n+m) n+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell\left(x_{i+j}-x_{i}\right)} \\
& =\frac{m}{n}(n+m)+2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1}(m-j) A_{n, j}
\end{aligned}
\end{aligned}
$$

where

$$
A_{n, j}=\frac{1}{n} \sum_{i=0}^{n-i-j} e^{2 \pi i \ell x_{i}^{(j)}}
$$

Now $A_{n, j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j th differences is udm1. Hence for every $m>1$,

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n^{2}}\left|\sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2} \leq \frac{1}{m}
$$

As m is arbitrary, the result follows.

Exponential Sequences

We now consider sequences of the form $x_{n}=\alpha^{n}, \alpha>1$. This is a much harder and more delicate problem!

Exponential Sequences

We now consider sequences of the form $x_{n}=\alpha^{n}, \alpha>1$. This is a much harder and more delicate problem!

Theorem
Fix $\alpha>1$. Then for "typical" points $x \in[0,1]$ the sequence $x_{n}=\alpha^{n} \times$ is $u d m 1$.

Exponential Sequences

We now consider sequences of the form $x_{n}=\alpha^{n}, \alpha>1$. This is a much harder and more delicate problem!
Theorem
Fix $\alpha>1$. Then for "typical" points $x \in[0,1]$ the sequence $x_{n}=\alpha^{n} x$ is udm1.

Remark

By "typical" we mean: for Lebesgue almost every $x, \alpha^{n} x$ is udm1.

Exponential Sequences

We now consider sequences of the form $x_{n}=\alpha^{n}, \alpha>1$. This is a much harder and more delicate problem!
Theorem
Fix $\alpha>1$. Then for "typical" points $x \in[0,1]$ the sequence $x_{n}=\alpha^{n} x$ is udm1.

Remark

By "typical" we mean: for Lebesgue almost every $x, \alpha^{n} x$ is udm1.

Proof.

(Sketch) By Weyl's criterion, we want to show, for $\ell \in \mathbb{Z} \backslash\{0\}$,

$$
A_{n}(x)=\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell x_{j}}\right|^{2}=\left|\frac{1}{n} \sum_{j=0}^{n-1} e^{2 \pi i \ell \alpha^{j} x}\right|^{2} \longrightarrow 0
$$

for a.e. x.

For this it is sufficient to prove

$$
\sum_{n} A_{n}(x)<\infty \text { a.e. }
$$

(convergent series \Longrightarrow summands $\rightarrow 0$).

For this it is sufficient to prove

$$
\sum_{n} A_{n}(x)<\infty \text { a.e. }
$$

(convergent series \Longrightarrow summands $\rightarrow 0$).
Recall: if $f \geq 0$ satisfies $\int f(x) d x<\infty$ then $f(x)<\infty$ a.e..

For this it is sufficient to prove

$$
\sum_{n} A_{n}(x)<\infty \text { a.e. }
$$

(convergent series \Longrightarrow summands $\rightarrow 0$).
Recall: if $f \geq 0$ satisfies $\int f(x) d x<\infty$ then $f(x)<\infty$ a.e.. Hence it is sufficient to prove

$$
I_{n}=\int\left(\sum_{n} A_{n}(x)\right) d x<\infty
$$

- an easy, if lengthy, estimate!

The actual details are more involved - but this is the basic idea. \square

For this it is sufficient to prove

$$
\sum_{n} A_{n}(x)<\infty \text { a.e. }
$$

(convergent series \Longrightarrow summands $\rightarrow 0$).
Recall: if $f \geq 0$ satisfies $\int f(x) d x<\infty$ then $f(x)<\infty$ a.e.. Hence it is sufficient to prove

$$
I_{n}=\int\left(\sum_{n} A_{n}(x)\right) d x<\infty
$$

- an easy, if lengthy, estimate!

The actual details are more involved - but this is the basic idea. \square

Remark

We will give an easier proof that $\alpha^{n} x$ is udm1 for a.e. x when $\alpha \in \mathbb{Z}, \alpha>1$ in a future lecture.

Remark
One can also show: $x_{n}=\alpha^{n}$ is $u d m 1$ for a.e. $\alpha>1$.

Remark
One can also show: $x_{n}=\alpha^{n}$ is udm1 for a.e. $\alpha>1$. No example of such an α for which α^{n} is udm1 is known.

Remark
One can also show: $x_{n}=\alpha^{n}$ is udm1 for a.e. $\alpha>1$. No example of such an α for which α^{n} is udm1 is known. Indeed, it is not even known if $(3 / 2)^{n} \bmod 1$ is dense!

Next lecture

Next lecture

In the next lecture we re-introduce dynamical systems.

Next lecture

In the next lecture we re-introduce dynamical systems.
We will define what is meant by an invariant measure, and study some invariant measures for the examples of dynamical systems that we saw in the first lecture.

