MAGIC: Ergodic Theory Lecture 2 - Uniform distribution mod 1

Charles Walkden

January 31st 2013

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Ergodic theory concerns the distribution of typical orbits of a dynamical system.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Ergodic theory concerns the distribution of typical orbits of a dynamical system.

In this lecture we consider the distribution of fractional parts of a sequence of reals.

Ergodic theory concerns the distribution of typical orbits of a dynamical system.

In this lecture we consider the distribution of fractional parts of a sequence of reals.

・ロト・日本・モート モー うへぐ

We also give some applications to number theory.

<ロト (個) (目) (目) (目) (0) (0)</p>

Let $x_n \in \mathbb{R}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

How are the fractional parts of x_n distributed in [0, 1)?

An example of a sequence which is not udm 1:

<□ > < @ > < E > < E > E のQ @

An example of a sequence which is not udm 1:

<□ > < @ > < E > < E > E のQ @

An example of a sequence which is not udm 1:

(ロ)、(型)、(E)、(E)、 E) の(の)

An example of a sequence which is not udm 1:

(ロ)、(型)、(E)、(E)、 E) の(の)

An example of a sequence which is not udm 1:

<□ > < @ > < E > < E > E のQ @

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is not udm 1:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example of a sequence which is not udm 1:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example of a sequence which is not udm 1:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An example of a sequence which is not udm 1:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

An example of a sequence which is not udm 1:

An example of a sequence which is udm 1:

Definition x_n is uniformly distributed mod 1 (udm1) if:

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{1}{n} card \{ j \mid 0 \le j \le n - 1, \{ x_j \} \in [a, b] \}$$

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

$$\frac{1}{n} \textit{card} \{ j \mid 0 \leq j \leq n-1, \{ x_j \} \in [a, b] \} \longrightarrow b - a \text{ as } n \rightarrow \infty$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

$$\frac{1}{n} card \{ j \mid 0 \le j \le n-1, \{ x_j \} \in [a, b] \} \longrightarrow b - a \text{ as } n \to \infty$$

i.e. the frequency with which the fractional parts of x_n lie in [a, b] is equal to the length of [a, b].

(日) (日) (日) (日) (日) (日) (日) (日)

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

$$\frac{1}{n} card \{ j \mid 0 \le j \le n-1, \{ x_j \} \in [a, b] \} \longrightarrow b - a \text{ as } n \to \infty$$

i.e. the frequency with which the fractional parts of x_n lie in [a, b] is equal to the length of [a, b].

Exercise

Show x_n udm1 $\implies \{x_n\}$ dense in [0,1]

 x_n is uniformly distributed mod 1 (udm1) if: $\forall [a, b] \subset [0, 1]$ we have

$$\frac{1}{n} card \{ j \mid 0 \le j \le n-1, \{ x_j \} \in [a, b] \} \longrightarrow b - a \text{ as } n \to \infty$$

i.e. the frequency with which the fractional parts of x_n lie in [a, b] is equal to the length of [a, b].

Exercise

Show x_n udm1 $\implies \{x_n\}$ dense in [0,1]

We need a usable criterion to check whether a sequence is udm1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Weyl's Criterion) The following are equivalent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Weyl's Criterion) The following are equivalent: 1. x_n is udm1,

Theorem (Weyl's Criterion) The following are equivalent:

1. x_n is udm1,

2. \forall continuous $f : [0,1] \rightarrow \mathbb{R}$ with f(0) = f(1),

$$\frac{1}{n}\sum_{j=0}^{n-1}f(\{x_j\})\longrightarrow \int_0^1f(x)dx \text{ as } n\to\infty,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Weyl's Criterion) The following are equivalent:

1. x_n is udm1,

2. \forall continuous $f : [0,1] \rightarrow \mathbb{R}$ with f(0) = f(1),

$$\frac{1}{n}\sum_{j=0}^{n-1}f(\{x_j\})\longrightarrow \int_0^1f(x)dx \text{ as } n\to\infty,$$

3. $\forall \ell \in \mathbb{Z} \setminus \{0\}$

$$\frac{1}{n}\sum_{j=0}^{n-1}\exp 2\pi i\ell x_j \longrightarrow 0 \text{ as } n \to \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Proof. (Sketch)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(ロ)、(型)、(E)、(E)、 E) の(の)

Then

Then

 $x_n \text{ udm1} \iff$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then

$$x_n \text{ udm1} \iff \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a,b]}(\{x_j\}) \longrightarrow b-a$$

Then

$$x_n \text{ udm1} \iff \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a,b]}(\{x_j\}) \longrightarrow b - a = \int \chi_{[a,b]}(x) dx.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Then

$$x_n \text{ udm1} \iff \frac{1}{n} \sum_{j=0}^{n-1} \chi_{[a,b]}(\{x_j\}) \longrightarrow b - a = \int \chi_{[a,b]}(x) dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hence Weyl's criterion holds for a characteristic function.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Hence (1) \implies (2). (2) \implies (3) is trivial (put $f(x) = e^{2\pi i \ell x}$).

Hence (1) \implies (2). (2) \implies (3) is trivial (put $f(x) = e^{2\pi i \ell x}$). (3) \implies (1): Approximate $\chi_{[a,b]}$ by finite linear combinations of exponential functions.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus $\{x_n\}$ is not dense, therefore not udm1.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

・ロト・日本・モート モー うへぐ

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion.
Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$.

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left|\frac{1}{n}\sum_{j=0}^{n-1}e^{2\pi i\ell x_j}\right|$$

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left|\frac{1}{n}\sum_{j=0}^{n-1}e^{2\pi i\ell x_j}\right| = \left|\frac{1}{n}\sum_{j=0}^{n-1}e^{2\pi i\ell\alpha j}\right|$$

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right| = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell \alpha j} \right| = \frac{1}{n} \frac{|e^{2\pi i \ell \alpha n} - 1|}{|e^{2\pi i \ell \alpha} - 1|}$$

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right| = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell \alpha j} \right| = \frac{1}{n} \frac{|e^{2\pi i \ell \alpha n} - 1|}{|e^{2\pi i \ell \alpha} - 1|} \\ \leq \frac{2}{n} \frac{1}{|e^{2\pi i \ell \alpha} - 1|}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right| = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell \alpha j} \right| = \frac{1}{n} \frac{\left| e^{2\pi i \ell \alpha n} - 1 \right|}{\left| e^{2\pi i \ell \alpha} - 1 \right|}$$
$$\leq \frac{2}{n} \frac{1}{\left| e^{2\pi i \ell \alpha} - 1 \right|} \longrightarrow 0 \text{ as } n \to \infty$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Fix $\alpha \in \mathbb{R}$ and let $x_n = \alpha n$. Case 1: $\alpha = \frac{p}{q}$ is rational, $p, q \in \mathbb{Z}$. Then $\{x_n\}$ takes only finitely many values

$$0, \left\{\frac{p}{q}\right\}, \ldots, \left\{\frac{(p-1)q}{q}\right\}$$

Thus $\{x_n\}$ is not dense, therefore not udm1.

Case 2: α irrational. We use Weyl's Criterion. Let $\ell \in \mathbb{Z} \setminus \{0\}$. Note: $\ell \in \mathbb{Z} \setminus \{0\} \implies \ell \alpha \notin \mathbb{Z} \implies e^{2\pi i \ell \alpha} \neq 1$. Now

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right| = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell \alpha j} \right| = \frac{1}{n} \frac{\left| e^{2\pi i \ell \alpha n} - 1 \right|}{\left| e^{2\pi i \ell \alpha} - 1 \right|}$$
$$\leq \frac{2}{n} \frac{1}{\left| e^{2\pi i \ell \alpha} - 1 \right|} \longrightarrow 0 \text{ as } n \to \infty$$

Hence x_n is udm1.

(ロ)、

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example For k = 2,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

We can define what it means for a sequence $x_n = (x_n^{(1)}, \dots x_n^{(k)}) \in \mathbb{R}^k$ to be udm1 in an analogous way Example

For k = 2,

 $x_n \in \mathbb{R}^k$ is udm1 if the frequency with which $x_n \mod 1$ hits any *k*-dimensional cube equals the *k*-dimensional volume of that cube.

$$\sum_{j=0}^{n-1} card\{j \mid 0 \le j \le n-1, \{x_j^{(i)}\} \in [a_i, b_i] \ \forall 1 \le i \le k\}$$

$$\frac{1}{n} \sum_{j=0}^{n-1} card\{j \mid 0 \le j \le n-1, \{x_j^{(i)}\} \in [a_i, b_i] \ \forall 1 \le i \le k\}$$

$$\frac{1}{n}\sum_{j=0}^{n-1} card\{j \mid 0 \le j \le n-1, \{x_j^{(i)}\} \in [a_i, b_i] \ \forall 1 \le i \le k\}$$
$$\longrightarrow (b_1 - a_1) \times \cdots \times (b_k - a_k)$$

$$\frac{1}{n}\sum_{j=0}^{n-1} \operatorname{card}\{j \mid 0 \le j \le n-1, \{x_j^{(i)}\} \in [a_i, b_i] \ \forall 1 \le i \le k\}$$
$$\longrightarrow (b_1 - a_1) \times \cdots \times (b_k - a_k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is a higher dimensional version of Weyl's critertion.

Theorem The following are equivalent:

Theorem The following are equivalent: 1. $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ is udm1

Theorem The following are equivalent: 1. $x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$ is udm1 2. $\forall \operatorname{cts} f : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}$

Theorem
The following are equivalent:
1.
$$x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$$
 is $udm1$
2. $\forall \operatorname{cts} f : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}$
 $\frac{1}{n} \sum_{j=0}^{n-1} f(\{x_j^{(1)}\}, \dots, \{x_j^{(k)}\}) \longrightarrow \int f(x_1, \dots, x_k) dx_1 \dots dx_k$

Theorem
The following are equivalent:
1.
$$x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$$
 is $udm1$
2. $\forall \operatorname{cts} f : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}$
 $\frac{1}{n} \sum_{j=0}^{n-1} f(\{x_j^{(1)}\}, \dots, \{x_j^{(k)}\}) \longrightarrow \int f(x_1, \dots, x_k) dx_1 \dots dx_k$

3. $\forall (\ell_1, \ldots, \ell_k) \in \mathbb{Z}^k \setminus \{(0, \ldots, 0)\},\$

Theorem
The following are equivalent:
1.
$$x_n = (x_n^{(1)}, \dots, x_n^{(k)}) \in \mathbb{R}^k$$
 is $udm1$
2. $\forall \operatorname{cts} f : \mathbb{R}^k / \mathbb{Z}^k \to \mathbb{R}$
 $\frac{1}{n} \sum_{j=0}^{n-1} f(\{x_j^{(1)}\}, \dots, \{x_j^{(k)}\}) \longrightarrow \int f(x_1, \dots, x_k) dx_1 \dots dx_k$
3. $\forall (\ell_1, \dots, \ell_k) \in \mathbb{Z}^k \setminus \{(0, \dots, 0)\},$
 $\frac{1}{n} \sum_{j=0}^{n-1} \exp(2\pi i (\ell_1 x_j^{(1)} + \dots + \ell_k x_j^{(k)})) \longrightarrow 0$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

as $n \to \infty$.

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

Definition

 $v_1, \ldots, v_s \in \mathbb{R}$ are rationally independent if

 $r_1v_1 + \cdots + r_sv_s = 0$ for $r_1, \ldots, r_s \in \mathbb{Q} \Longrightarrow r_1 = \ldots r_s = 0$

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

Definition

 $v_1, \ldots, v_s \in \mathbb{R}$ are rationally independent if

$$r_1v_1 + \cdots + r_sv_s = 0$$
 for $r_1, \ldots, r_s \in \mathbb{Q} \Longrightarrow r_1 = \ldots r_s = 0$

Proposition

 $x_n = (\alpha_1 n, \dots, \alpha_k n)$ is udm1 iff $\alpha_1, \dots, \alpha_k, 1$ are rationally independent.

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

Definition

 $v_1,\ldots,v_s\in\mathbb{R}$ are rationally independent if

$$r_1v_1 + \cdots + r_sv_s = 0$$
 for $r_1, \ldots, r_s \in \mathbb{Q} \Longrightarrow r_1 = \ldots r_s = 0$

Proposition

 $x_n = (\alpha_1 n, \dots, \alpha_k n)$ is udm1 iff $\alpha_1, \dots, \alpha_k, 1$ are rationally independent.

Proof. Exercise (very similar to $x_n = \alpha n$)

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

Definition

 $v_1, \ldots, v_s \in \mathbb{R}$ are rationally independent if

$$r_1v_1 + \cdots + r_sv_s = 0$$
 for $r_1, \ldots, r_s \in \mathbb{Q} \Longrightarrow r_1 = \ldots r_s = 0$

Proposition

 $x_n = (\alpha_1 n, \dots, \alpha_k n)$ is udm1 iff $\alpha_1, \dots, \alpha_k, 1$ are rationally independent.

Proof.

Exercise (very similar to $x_n = \alpha n$)

Remark

When k = 1, we have the same result as above:

Fix $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Define $x_n = (\alpha_1 n, \ldots, \alpha_k n) \in \mathbb{R}^k$

Definition

 $v_1,\ldots,v_s\in\mathbb{R}$ are rationally independent if

$$r_1v_1 + \cdots + r_sv_s = 0$$
 for $r_1, \ldots, r_s \in \mathbb{Q} \Longrightarrow r_1 = \ldots r_s = 0$

Proposition

 $x_n = (\alpha_1 n, \dots, \alpha_k n)$ is udm1 iff $\alpha_1, \dots, \alpha_k, 1$ are rationally independent.

Proof.

Exercise (very similar to $x_n = \alpha n$)

Remark

When k = 1, we have the same result as above: $\alpha, 1$ rationally indep. \Leftrightarrow no rational solutions r_1, r_2 to $r_1\alpha + r_2 = 0$ $\Leftrightarrow \alpha$ irrational

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$.

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n + \beta$ is udm1 iff $\alpha \notin \mathbb{Q}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Weyl's Theorem on Polynomials

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n + \beta$ is udm1 iff $\alpha \notin \mathbb{Q}$. We can generalise this to higher degree polynomials.

We know αn is udm1 iff $\alpha \notin \mathbb{Q}$. It is easy to extend this to $\alpha n + \beta$ is udm1 iff $\alpha \notin \mathbb{Q}$. We can generalise this to higher degree polynomials.

Theorem (Weyl)

Let $p(n) = \alpha_k n^k + \alpha_{k-1} n^{k-1} + \dots + \alpha_1 n + \alpha_0$. If at least one of $\alpha_k, \dots, \alpha_1$ is irrational then p(n) is udm1.

Lemma (Van der Corput's inequality) Let $z_0, \ldots, z_{n-1} \in \mathbb{C}$, $1 \le m \le n$. Then
Lemma (Van der Corput's inequality) Let $z_0, \ldots, z_{n-1} \in \mathbb{C}$, $1 \le m \le n$. Then

$$m^{2} \left| \sum_{j=0}^{n-1} z_{j} \right|^{2} \leq m(n+m) \sum_{j=0}^{n-1} |z_{j}|^{2} + 2(n+m) \operatorname{Re} \left(\sum_{j=1}^{m-1} (m-j) \sum_{i=0}^{n-1-j} z_{i+j} \overline{z}_{i} \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma (Van der Corput's inequality) Let $z_0, \ldots, z_{n-1} \in \mathbb{C}$, $1 \le m \le n$. Then

$$m^{2} \left| \sum_{j=0}^{n-1} z_{j} \right|^{2} \leq m(n+m) \sum_{j=0}^{n-1} |z_{j}|^{2} + 2(n+m) \operatorname{Re} \left(\sum_{j=1}^{m-1} (m-j) \sum_{i=0}^{n-1-j} z_{i+j} \overline{z}_{i} \right)$$

Proof.

(In notes.) Idea:

$$\begin{aligned} |z_0 + z_1|^2 &= (z_0 + z_1)(\bar{z}_0 + \bar{z}_1) \\ &= |z_0|^2 + |z_1|^2 + z_0 \bar{z}_1 + \bar{z}_0 z_1 \\ &= |z_0|^2 + |z_1|^2 + 2\operatorname{Re}\left(\bar{z}_0 z_1\right) \end{aligned}$$

Fix m.

<□ > < @ > < E > < E > E のQ @

Lemma

Suppose $\forall m \ge 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Suppose $\forall m \geq 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$.

Lemma

Suppose $\forall m \geq 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \cdots + \alpha_1 n + \alpha_0$. We prove the special case when the leading coefficient α_k is irrational (the general case follows easily).

Lemma

Suppose $\forall m \geq 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$. We prove the special case when the leading coefficient α_k is irrational (the general case follows easily).

We induct on the degree of p. Let

 $\Delta(k) = "every polynomial q of degree \le k \\ with irrational leading coefficient is \\ such that q(n) is udm1."$

Lemma

Suppose $\forall m \ge 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$. We prove the special case when the leading coefficient α_k is irrational (the general case follows easily).

We induct on the degree of p. Let

$$\Delta(k) = \text{"every polynomial } q \text{ of degree} \le k$$

with irrational leading coefficient is
such that $q(n)$ is udm1."

 $\Delta(1)$ is true as $\alpha n + \beta$ is udm1 if $\alpha \notin \mathbb{Q}$.

Lemma

Suppose $\forall m \ge 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$. We prove the special case when the leading coefficient α_k is irrational (the general case follows easily).

We induct on the degree of p. Let

$$\Delta(k) = \text{"every polynomial } q \text{ of degree} \le k$$

with irrational leading coefficient is
such that $q(n)$ is udm1."

 $\Delta(1)$ is true as $\alpha n + \beta$ is udm1 if $\alpha \notin \mathbb{Q}$. Suppose $\Delta(k-1)$ is true. We prove $\Delta(k)$ is true.

Lemma

Suppose $\forall m \geq 1$, $x_n^{(m)}$ is udm1. Then x_n is udm1.

Lemma \implies Weyl Let $p(n) = \alpha_k n^k + \dots + \alpha_1 n + \alpha_0$. We prove the special case when the leading coefficient α_k is irrational (the general case follows easily).

We induct on the degree of p. Let

 $\Delta(k) = \text{"every polynomial } q \text{ of degree} \le k$ with irrational leading coefficient is such that q(n) is udm1."

 $\Delta(1)$ is true as $\alpha n + \beta$ is udm1 if $\alpha \notin \mathbb{Q}$. Suppose $\Delta(k-1)$ is true. We prove $\Delta(k)$ is true. Let $p(n) = \alpha_k n^k + \cdots + \alpha_1 n + \alpha_0$ be a degree k polynomial with irrational leading coefficient α_k . Fix $m \ge 1$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Fix $m \ge 1$. The sequence of differences is

$$p^{(m)}(n) = p(n+m) - p(n) = \alpha_k (n+m)^k + \alpha_{k-1} (n+m)^{k-1} + \dots \\ -\alpha_k n^k - \alpha_{k-1} n^{k-1} - \dots \\ = \alpha_k km n^{k-1} + \dots$$

i.e. a polynomial of degree k - 1 with irrational leading coefficient.

Fix $m \ge 1$. The sequence of differences is

$$p^{(m)}(n) = p(n+m) - p(n) = \alpha_k (n+m)^k + \alpha_{k-1} (n+m)^{k-1} + \dots \\ -\alpha_k n^k - \alpha_{k-1} n^{k-1} - \dots \\ = \alpha_k km n^{k-1} + \dots$$

i.e. a polynomial of degree k - 1 with irrational leading coefficient. Induction hypothesis $\implies p^{(m)}(n)$ is udm1 $\forall m \ge 1$.

Fix $m \ge 1$. The sequence of differences is

$$p^{(m)}(n) = p(n+m) - p(n) = \alpha_k (n+m)^k + \alpha_{k-1} (n+m)^{k-1} + \dots \\ -\alpha_k n^k - \alpha_{k-1} n^{k-1} - \dots \\ = \alpha_k km n^{k-1} + \dots$$

i.e. a polynomial of degree k - 1 with irrational leading coefficient. Induction hypothesis $\implies p^{(m)}(n)$ is udm1 $\forall m \ge 1$. Lemma $\implies p(n)$ is udm1.

Van der Corput \Rightarrow Lemma Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Van der Corput \Rightarrow Lemma Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$, $\frac{m^2}{n^2} \left| \sum_{i=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{i=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$

Van der Corput
$$\Rightarrow$$
 Lemma
Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,
 $\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$
 $= \frac{m}{n} (n+m) + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} (m-j)A_{n,j}$

$$A_{n,j} = rac{1}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell x_i^{(j)}}$$

Van der Corput
$$\Rightarrow$$
 Lemma
Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,
 $\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$
 $= \frac{m}{n} (n+m) + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} (m-j)A_{n,j}$

$$A_{n,j} = rac{1}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell x_i^{(j)}}$$

Now $A_{n,j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j^{th} differences is udm1.

Van der Corput
$$\Rightarrow$$
 Lemma
Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,
 $\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$
 $= \frac{m}{n} (n+m) + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} (m-j)A_{n,j}$

$$A_{n,j} = \frac{1}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell x_i^{(j)}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Now $A_{n,j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j^{th} differences is udm1. Hence for every m > 1,

Van der Corput
$$\Rightarrow$$
 Lemma
Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,
 $\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$
 $= \frac{m}{n} (n+m) + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} (m-j)A_{n,j}$

$$A_{n,j} = \frac{1}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell x_i^{(j)}}$$

Now $A_{n,j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j^{th} differences is udm1. Hence for every m > 1,

$$\overline{\lim_{n\to\infty}} \frac{1}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{1}{m}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Van der Corput
$$\Rightarrow$$
 Lemma
Put $z_j = e^{2\pi i \ell x_j}$, $|z_j| = 1$. Then $\forall 1 \le m \le n$,
 $\frac{m^2}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{m}{n^2} (n+m)n + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} \frac{(m-j)}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell (x_{i+j}-x_i)}$
 $= \frac{m}{n} (n+m) + 2\left(\frac{n+m}{n}\right) \operatorname{Re} \sum_{j=1}^{m-1} (m-j)A_{n,j}$

$$A_{n,j} = rac{1}{n} \sum_{i=0}^{n-i-j} e^{2\pi i \ell x_i^{(j)}}$$

Now $A_{n,j} \longrightarrow 0$ by Weyl's criterion, as the sequence of j^{th} differences is udm1. Hence for event m > 1

Hence for every m > 1,

$$\overline{\lim_{n\to\infty}} \frac{1}{n^2} \left| \sum_{j=0}^{n-1} e^{2\pi i \ell x_j} \right|^2 \le \frac{1}{m}$$

As m is arbitrary, the result follows.

We now consider sequences of the form $x_n = \alpha^n, \alpha > 1$. This is a much harder and more delicate problem!

We now consider sequences of the form $x_n = \alpha^n, \alpha > 1$. This is a much harder and more delicate problem!

Theorem

Fix $\alpha > 1$. Then for "typical" points $x \in [0, 1]$ the sequence $x_n = \alpha^n x$ is udm1.

We now consider sequences of the form $x_n = \alpha^n, \alpha > 1$. This is a much harder and more delicate problem!

Theorem

Fix $\alpha > 1$. Then for "typical" points $x \in [0, 1]$ the sequence $x_n = \alpha^n x$ is udm1.

Remark

By "typical" we mean: for Lebesgue almost every x, $\alpha^n x$ is udm1.

We now consider sequences of the form $x_n = \alpha^n, \alpha > 1$. This is a much harder and more delicate problem!

Theorem

Fix $\alpha > 1$. Then for "typical" points $x \in [0, 1]$ the sequence $x_n = \alpha^n x$ is udm1.

Remark

By "typical" we mean: for Lebesgue almost every x, $\alpha^n x$ is udm1.

Proof.

(Sketch) By Weyl's criterion, we want to show, for $\ell \in \mathbb{Z} \setminus \{0\}$,

$$A_{n}(x) = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell x_{j}} \right|^{2} = \left| \frac{1}{n} \sum_{j=0}^{n-1} e^{2\pi i \ell \alpha^{j} x} \right|^{2} \longrightarrow 0$$

for a.e. x.

$$\sum_n A_n(x) < \infty \text{ a.e.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(convergent series \implies summands \rightarrow 0).

$$\sum_n A_n(x) < \infty \text{ a.e.}$$

(convergent series \implies summands \rightarrow 0). Recall: if $f \ge 0$ satisfies $\int f(x)dx < \infty$ then $f(x) < \infty$ a.e..

$$\sum_n A_n(x) < \infty \text{ a.e.}$$

(convergent series \implies summands \rightarrow 0). Recall: if $f \ge 0$ satisfies $\int f(x)dx < \infty$ then $f(x) < \infty$ a.e.. Hence it is sufficient to prove

$$I_n = \int \left(\sum_n A_n(x)\right) dx < \infty$$

- an easy, if lengthy, estimate!
- The actual details are more involved but this is the basic idea. \Box

$$\sum_n A_n(x) < \infty \text{ a.e.}$$

(convergent series \implies summands \rightarrow 0). Recall: if $f \ge 0$ satisfies $\int f(x)dx < \infty$ then $f(x) < \infty$ a.e.. Hence it is sufficient to prove

$$I_n = \int \left(\sum_n A_n(x)\right) dx < \infty$$

- an easy, if lengthy, estimate!

The actual details are more involved - but this is the basic idea. \Box

Remark

We will give an easier proof that $\alpha^n x$ is udm1 for a.e. x when $\alpha \in \mathbb{Z}, \alpha > 1$ in a future lecture.

Remark

One can also show: $x_n = \alpha^n$ is udm1 for a.e. $\alpha > 1$.

Remark

One can also show: $x_n = \alpha^n$ is udm1 for a.e. $\alpha > 1$. No example of such an α for which α^n is udm1 is known.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark

One can also show: $x_n = \alpha^n$ is udm1 for a.e. $\alpha > 1$. No example of such an α for which α^n is udm1 is known. Indeed, it is not even known if $(3/2)^n \mod 1$ is dense!

Next lecture

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

In the next lecture we re-introduce dynamical systems.

In the next lecture we re-introduce dynamical systems. We will define what is meant by an invariant measure, and study some invariant measures for the examples of dynamical systems that we saw in the first lecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ