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Introduction

Ergodic theory concerns the distribution of typical orbits of a
dynamical system.

In this lecture we consider the distribution of fractional parts of a
sequence of reals.

We also give some applications to number theory.
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Uniform distribution in dimension 1

Let x, € R. Write
Xp = [xn] + {xn}

. fractional part
integer part =x, mod 1¢€[0,1)
(largest integer < x,)

How are the fractional parts of x, distributed in [0,1)?
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Definition
Xp is uniformly distributed mod 1 (udm1l) if: ¥[a, b] C [0,1] we
have

1
Ecard{j\Ogjgn—l,{xj}e[a,b]} — b—aasn— o0

i.e. the frequency with which the fractional parts of x, lie in [a, b]
is equal to the length of [a, b].

Exercise
Show x, udml = {x,} dense in [0, 1]
We need a usable criterion to check whether a sequence is udm1.
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Theorem (Weyl's Criterion)
The following are equivalent:

1. x, is udml,
2. ¥ continuous f : [0,1] — R with f(0) = (1),

n—1

1 1
an({xJ})—>/o f(x)dx asn— oo,

Jj=0

3. v e 7\ {0}

n—1
— E exp 2milx; — 0 as n — 0.
n

j=0
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(Sketch) Let X[, denote the characteristic function of [a, b].

1\
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Then

n—1

1
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Proof.
(Sketch) Let X[, denote the characteristic function of [a, b].

1\

a b 1
Then
1 n—1
Xoudmt = S xuy(0g)) — b-a = [ xa(x) o
j=0

Hence Weyl's criterion holds for a characteristic function.
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Now approximate a continuous function by a finite linear
combination of characteristic functions of intervals:

vaN

Hence (1) = (2). (2) == (3) is trivial (put f(x) = e2™¥).
(3) = (1): Approximate X[, ] by finite linear combinations of
exponential functions.
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Example
Fix o € R and let x, = an.

Case 1: a= g is rational, p,q € Z. Then {x,} takes only
finitely many values

{2} ()

Thus {x,} is not dense, therefore not udm1l.

Case 2: « irrational. We use Weyl's Criterion. Let ¢ € Z\{0}.
Note: £ € Z\{0} = la ¢ Z = e>™/t@ £ 1.

Now
n—1 n—1 2miban
1 3 et = 1 S ernita| - 1le —1
n 4 n n |e?wite — 1|
_]:0 =0
2 1

< —0asn—

; |e27ri€a _ 1|

Hence x, is udml.
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Theorem
The following are equivalent:

1. x, = (x,(,l),...,x,(,k)) € R¥ is udm1
2. Vetsf:RF/ZK - R

n—1

Jj=0
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Higher dimensional Weyl's criterion

Theorem
The following are equivalent:

1. x, = (x,(,l),...,x,(,k)) € R¥ is udm1
2. Vetsf:RF/ZK - R

n—1

j=0
3. Y(Ly, ..., L) € ZK\{(0,...,0)},

n—1

1

- Z exp(27ri(€1xj(1) +-+ kaj(k))) —0
j=0

as n — oQ.

,172 f({ﬁgl)}j.._,{&(")}) —>/f(x1,...,xk)dx1...

ka
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Example

Fix ai,...,ax € R. Define x, = (ain,...,axn) € R¥

Definition

vi,...,Vs € R are rationally independent if
nvi+---+rvi=0forrn,....scQ=—=n=...rs=0

Proposition

Xp = (aan,...,akn) is udml iff as, ..., ax, 1 are rationally

independent.

Proof.

Exercise (very similar to x, = an) O

Remark

When k = 1, we have the same result as above:
a, 1 rationally indep. < no rational solutions ri,r» to na+r, =0

&« irrational
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Weyl's Theorem on Polynomials

We know an is udml iff o ¢ Q. It is easy to extend this to an+ [
is udml iff & ¢ Q.

We can generalise this to higher degree polynomials.
Theorem (Weyl)

Let p(n) = arn® + ap_1n* 1+ ...+ agn+ ag. If at least one of
Q, .. .,aq is irrational then p(n) is udm1l.
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Lemma (Van der Corput's inequality)
Let zp,...,z,.1 €C, 1 <m<n. Then

n—1 2 n—1 m—1 n—1—j
m? sz < m(n—i—m)Z\zj\z—i-Z(n—l—m)Re Z(m—j) Z Zi4)Zj
Jj=0 Jj=0 j=1 i=0
Proof.

(In notes.) ldea:

20+ 21> = (204 21)(Z0 + Z1)
20> + |21]* + 2021 + 2021
= |z + |z1|* + 2Re (20z1)
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Fix m. Define x5 = Xp1m — Xa to be the sequence of m*"
differences.

Lemma
Suppose Vm > 1, x,(,m) is udml. Then x, is udml.

Lemma — Weyl

Let p(n) = ayn® + -+ ayn+ ag. We prove the special case
when the leading coefficient o is irrational (the general case
follows easily).

We induct on the degree of p. Let

A(k) = ‘every polynomial q of degree < k
with irrational leading coefficient is
such that g(n) is udm1.”

A(1) is true as an + (B is udml if o ¢ Q.
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Fix m. Define x5 = Xp1m — Xa to be the sequence of m*"
differences.

Lemma
Suppose Vm > 1, x,(,m) is udml. Then x, is udml.

Lemma — Weyl

Let p(n) = axn® +--- + ain+ ag. We prove the special case
when the leading coefficient o is irrational (the general case
follows easily).

We induct on the degree of p. Let

A(k) = ‘every polynomial q of degree < k
with irrational leading coefficient is
such that g(n) is udm1.”

A(1) is true as an + (B is udml if o ¢ Q.

Suppose A(k — 1) is true. We prove A(k) is true. Let

p(n) = ayxn® + -+ ayn+ ag be a degree k polynomial with
irrational leading coefficient a.
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Fix m > 1. The sequence of differences is

p™(n) = p(n+m)—p(n) = ax(n+m)*+ar_1(n+mrt+. ..
—ozknk — Ozkflnk_l — ...
= ozkkmnk_1 + ...

i.e. a polynomial of degree k — 1 with irrational leading coefficient.
Induction hypothesis = p(™(n) is udm1 ¥Ym > 1.
Lemma = p(n) is udml. O
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Van der Corput = Lemma
Put z; = €™, |z;| = 1. Then V1 < m < n,

5 |n—1 . 2 m— nfifj )
o Zezmsz < %(n+m)n+2( ) Z Z &2 =)
n Jj=0 n Jj= i=0

m n+m — .
= ;(n+m)+2< : )Re (m— j)An,
j=1
where

n—i—j .

_1 Z g2mitx”

n
i=0

Now A, ; — 0 by Weyl's criterion, as the sequence of jth

differences is udm1.
Hence for every m > 1,

n—1 1
lim = 2 :6271'/2)9 S -
n—oo N m
Jj=0

As m is arbitrary, the result follows. O
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Exponential Sequences

We now consider sequences of the form x, = a",a > 1. This is a
much harder and more delicate problem!

Theorem

Fix > 1. Then for “typical” points x € [0, 1] the sequence
Xn = a"x is udml.

Remark
By ‘“typical” we mean: for Lebesgue almost every x, a"x is udml.

Proof.
(Sketch) By Weyl's criterion, we want to show, for ¢ € 7\{0},

2 2
n—1 n—1

1 . 1 o
An(X) — ; Z e27rlej — ; Z e27rl€aJx ~.0

j=0 Jj=0

for a.e. x.
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For this it is sufficient to prove

Z An(x) < oo a.e.

(convergent series = summands — 0).
Recall: if f > 0 satisfies [ f(x)dx < oo then f(x) < oo a.e..
Hence it is sufficient to prove

I :/ (Z An(x)> dx < oo

- an easy, if lengthy, estimate!
The actual details are more involved - but this is the basic idea. [

Remark
We will give an easier proof that a"x is udml for a.e. x when
«a € Z,a > 1 in a future lecture.
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Remark

One can also show: x, = " is udml for a.e. o« > 1.

No example of such an « for which " is udm1 is known.
Indeed, it is not even known if (3/2)" mod 1 is dense!
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Next lecture

In the next lecture we re-introduce dynamical systems.

We will define what is meant by an invariant measure, and study
some invariant measures for the examples of dynamical systems
that we saw in the first lecture.



