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Course Outline

I There are 10 lectures.

I Each lecture has:
I a set of slides,
I a set of more detailed notes that contain more information

about the material, details of arguments that are only sketched
in the slides, and the exercises,

I solutions to selected exercises.

I These will all be available via the Magic website.

I Assessment: take-home exam at the end of the course.
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What is ergodic theory?

Given a space X (the ‘phase space’), a dynamical system is a rule

that governs how points in X evolve in time.

Time could be discrete - in which case a dynamical system is given

by iterating a single map T : X → X .

Alternatively, time could be continuous - in which case a dynamical

system is often given by a first order autonomous differential

equation.

We will mostly be concerned with discrete dynamical systems.

Let T : X → X be a dynamical system. Let x ∈ X . The orbit of x

is the set {T nx | n ≥ 0}.



What is ergodic theory?

Given a space X (the ‘phase space’), a dynamical system is a rule

that governs how points in X evolve in time.

Time could be discrete - in which case a dynamical system is given

by iterating a single map T : X → X .

Alternatively, time could be continuous - in which case a dynamical

system is often given by a first order autonomous differential

equation.

We will mostly be concerned with discrete dynamical systems.

Let T : X → X be a dynamical system. Let x ∈ X . The orbit of x

is the set {T nx | n ≥ 0}.



What is ergodic theory?

Given a space X (the ‘phase space’), a dynamical system is a rule

that governs how points in X evolve in time.

Time could be discrete - in which case a dynamical system is given

by iterating a single map T : X → X .

Alternatively, time could be continuous - in which case a dynamical

system is often given by a first order autonomous differential

equation.

We will mostly be concerned with discrete dynamical systems.

Let T : X → X be a dynamical system. Let x ∈ X . The orbit of x

is the set {T nx | n ≥ 0}.



What is ergodic theory?

Given a space X (the ‘phase space’), a dynamical system is a rule

that governs how points in X evolve in time.

Time could be discrete - in which case a dynamical system is given

by iterating a single map T : X → X .

Alternatively, time could be continuous - in which case a dynamical

system is often given by a first order autonomous differential

equation.

We will mostly be concerned with discrete dynamical systems.

Let T : X → X be a dynamical system.

Let x ∈ X . The orbit of x

is the set {T nx | n ≥ 0}.



What is ergodic theory?

Given a space X (the ‘phase space’), a dynamical system is a rule

that governs how points in X evolve in time.

Time could be discrete - in which case a dynamical system is given

by iterating a single map T : X → X .

Alternatively, time could be continuous - in which case a dynamical

system is often given by a first order autonomous differential

equation.

We will mostly be concerned with discrete dynamical systems.

Let T : X → X be a dynamical system. Let x ∈ X . The orbit of x

is the set {T nx | n ≥ 0}.



Example

The geodesic flow on the torus

Let T2 = R2/Z2 denote the torus:

Let X = the unit tangent bundle of T2. Then a point x ∈ X is a

pair x = (p, v):

p = point on T2

v = unit vector at v .
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Then there is a unique straight line through p in the direction v .

We can infinitely extend this line using the identifications. The

dynamical system moves the point x = (p, v) along this line at

unit speed.
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Some orbits are periodic

Definition
x is periodic if T nx = x for some n > 0. We call n the period of x .

When projected to T2, some orbits are dense:
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A basic question in ergodic theory is: how often does an orbit visit

a given region?

Let T : X → X be a discrete dynamical system. Suppose X is

equipped with a measure µ (eg. X could be the circle, µ =

Lebesgue measure).

Let A ⊂ X .

What is the frequency with which the orbit of x hits A?

lim
n→∞

1

n

n−1∑
j=0

χA(T jx)

When is it true that the frequency is equal to the proportion of X

occupied by A?

Is it enough to assume that the orbits are dense in X ? No.
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Proper hypothesis: T is ergodic (an indecomposability

assumption).

We then get that:

limn→∞
1
n

∑n−1
j=0 χA(T jx) = µ(A)

µ(X ) for µ-almost every point X

“time average” “space average”

Birkhoff’s Ergodic Theorem

Let T be an ergodic measure-preserving transformation of a

probability space (X ,B, µ). Let f ∈ L1(X ,B, µ). Then

lim
n→∞

1

n

n−1∑
j=0

f (T jx) −→
∫

f dµ µ-a.e.
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I Uniform distribution mod 1

I Invariant and ergodic measures

I Ergodic theorems

I Information and entropy

I Thermodynamic formalism and its applications.
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Maps on the Circle and Torus

We give some examples of dynamical systems defined on the circle

and on the torus.

We will write the circle as R/Z. We will often abuse notation by

identifying a point x ∈ R with the coset x + Z, with it being

understood that we are working mod 1.

Similarly, we write the k-dimensional torus as Rk/Zk with a similar

abuse of notation.

Note that both the circle and d-dimensional torus are Abelian

groups under addition.
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Rotations

Fix α ∈ R. Define the map

Tα : R/Z −→ R/Z : x 7−→ x + α mod 1.

This is a rotation of the circle.

Proposition

1. If α is rational (α = p
q , p, q coprime) then every orbit is

periodic with period q.

2. If α is irrational then every orbit is dense.
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The doubling map

Define T : R/Z→ R/Z by T (x) = 2x mod 1. This is the

doubling map.
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The doubling map satisfies Devaney’s definition of chaos.

Namely:

I sensitive dependence on initial conditions

I the periodic points are dense

I there is a dense orbit.

We can code the orbits of the doubling map as follows.

Any x ∈ [0, 1] has a binary expansion

x =
∞∑

n=0

xn

2n+1
, xn ∈ {0, 1}

Let Σ = {(xj)
∞
j=0 | xj ∈ {0, 1}}.

Define the shift map σ : Σ→ Σ by

σ(x0, x1, x2, . . . ) = (x1, x2, x3, . . . ).

Define π : Σ→ R/Z by

π(x0, x1, x2, . . . ) =
∞∑

n=0

xn

2n+1
.
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Then

Σ

π
��

σ // Σ

π
��

R/Z
T

// R/Z

commutes.

Note that

I π is surjective.

I π is not injective (points x ∈ [0, 1] with a base 2 expansion

ending in all 0s have another expansion ending in all 1s - c.f.

non-uniqueness of decimal expansions). But π is injective on

the complement of such points.
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Then the sequence (xn)∞n=0 is determined by T n(x) ∈ Ixn i.e. we

get the symbolic coding for x by recording the sequence of

elements of this partition that the orbit of x visits.

Note that x has a unique coding iff the orbit of x never hits the

boundary of either I0, I1.

We will return to shift maps and their uses later.
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Endomorphisms and automorphisms of a torus

Let X = Rk/Zk be the k-dimensional torus.

Let A = (aij) be a k × k matrix with integer entries, det A 6= 0.

Then we have a linear map x1
...

xk

 7−→ A

 x1
...

xk

 .

As A is an integer matrix, we have A(Zk) ⊂ Zk . Hence there is a

well-defined map

T = TA : X → X : x + Zk 7→ Ax + Zk .

We will often abuse notation by writing

T (x1, . . . , xk) = A(x1, . . . , xk) mod 1.
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Definition
T is called a linear toral endomorphism.

If det A = ±1 then A−1 is an integer matrix and T is invertible

with T−1 = TA−1 . In this case, we call T a linear toral

automorphism.

Example

Take A =

(
2 1

1 1

)
. Then TA is called Arnold’s Cat map.

(CAT = Continuous Automorphism of a Torus)
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The Gauss Map

Every x ∈ (0, 1) can be expressed as a continued fraction

x =
1

x0 +
1

x1 +
1

x2 + . . .

= [x0, x1, x2, . . . ].

where xj ∈ N.

Facts about continued fractions:

I x has a finite continued fraction expansion iff x is rational.

I If x is irrational then it has a unique continued fraction

expansion.
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Define T : [0, 1]→ [0, 1] by T (x) = 1
x mod 1. (Define T (0) = 0.)

1

1

0

If x has continued fraction expansion [x0, x1, x2, . . . ] then T (x) has

continued fraction expansion [x1, x2, x3, . . . ].
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Shifts of finite type

Let S = {1, . . . , k} be a finite set of symbols.

We are interested in constructing sets of bi-infinite sequences of

symbols chosen from S , subject to certain conditions.

The conditions we impose are of the form: Given a symbol i ∈ S ,

we allow certain symbols (depending only i) to follow i and

disallow all others.

We record this information in a k × k matrix A = (Aij) with entries

in {0, 1}.
Define

Aij = 1 if symbol j can follow symbol i

Aij = 0 if symbol j cannot follow symbol i .
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Let

Σ+
A = {(xj)

∞
j=0 | xj ∈ S ,Axjxj+1 = 1 ∀j ≥ 0}

= a one-sided shift of finite type

ΣA = {(xj)
∞
j=−∞ | xj ∈ S ,Axjxj+1 = 1 ∀j ∈ Z}

= a two-sided shift of finite type

Define σ : Σ+
A → Σ+

A , σ : ΣA → ΣA to be the (left)-shift map:

(σx)j = xj+1.

Note that

σ : ΣA → ΣA is invertible (the inverse is the right shift)

but

σ : Σ+
A → Σ+

A is not invertible.
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Shifts of finite type as walks on graphs

Here is an alternative description of Σ+
A , ΣA.

Construct a graph Γ with:

I vertices labeled by the symbols S

I a directed edge from vertex i to vertex j iff Aij = 1.

Then
ΣA is the set of all infinite walks in Γ

Σ+
A is the set of all bi-infinite walks in Γ.

Example

A =

(
1 1

1 0

)
Γ : 199

** 2jj

ΣA = {all infinite sequences of 1s, 2s with no consecutive 2s}
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Example

Let A =

 1 . . . 1
...

. . .
...

1 . . . 1

.

Then ΣA = {all sequences of symbols 1, . . . , k}.
We call this the full k-shift.

We need hypotheses on A to ensure that ΣA has sufficient

structure to be of interest.
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ij > 0.

A k × k 0− 1 matrix A is aperiodic if: ∃n > 0 s.t. ∀i , j , An
ij > 0.

Fact:

An
ij := the (i , j)th entry of An = the number of distinct paths in Γ

of length n from vertex i to vertex j .

Hence
A is irreducible ⇐⇒ For all vertices i , j , there exists a path

in Γ (with length depending on i , j)

from i to j .

A is aperiodic ⇐⇒ as above, but the length of the path

can be chosen to be independent of

i , j .
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A topology on ΣA, Σ+
A

Our intuition is that two sequences should be ‘close’ if they agree

for a large number of initial places.

Define a metric on ΣA as follows:

Let x = (xj)
∞
j=0, y = (yj)

∞
j=0 ∈ Σ+

A . Fix any θ ∈ (0, 1).

Let

n(x , y) =

{
sup{n | xj = yj , j = 0, 1, . . . , n − 1} if x 6= y ; (∗)
∞ if x = y .

Define dθ(x , y) = θn(x ,y). Then dθ is a metric on Σ+
A . (There is a

similar formula for the two-sided case - replace j ∈ {0, 1 . . . , n} by

j ∈ {−n, . . . , 0, . . . , n} in (∗).)

Remark
The exact choice of θ is, for the moment, unimportant: any

θ ∈ (0, 1) gives the same topology.
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Suppose A is aperiodic.

With this metric, Σ+
A is a

I compact

I totally disconnected

I perfect (= equal to its limit points)

metric space. (Topologically, Σ+
A is a Cantor set.)

The shift map is chaotic:

I sensitive dependence on initial conditions

I the periodic points are dense

I there is a dense orbit.

(See exercises.)
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Markov partitions and symbolic coding

The reason for introducing shifts of finite type is that they can be

used to model a wide range of dynamical systems that possess

some degree of “hyperbolicity”.

For example we have already seen that the doubling map can be

coded by the full one-sided 2-shift:

Σ2

π
��

σ // Σ2

π
��

R/Z
T

// R/Z

Tx = 2x mod 1 π(xj) =
∑∞

j=0
xj

2j+1
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We will not give a precise definition of what makes a dynamical

system ‘hyperbolic’.

Heuristically, hyperbolicity means that there is local uniform

expansion and (in the case of invertible maps) local uniform

contraction in a complementary direction.

For example, the doubling map locally expands by a factor of 2.

Definition
A linear toral automorphism T = TA is hyperbolic if A has no

eigenvalues of modulus 1.
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Example

The Cat map A =

(
2 1

1 1

)
is hyperbolic.
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Proposition

Let T be a hyperbolic linear toral automorphism.

Then there exists

an aperiodic shift of finite type Σ and a map π : Σ→ Rk/Zk such

that

I π is continuous

I π is surjective

I π is injective, except on a small set

I Σ

π
��

σ // Σ

π
��

Rk/Zk
T

// Rk/Zk

commutes

Remark
It follows that T is chaotic.

One can use symbolic dynamics to prove many other results about

hyperbolic dynamical systems.
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Next lecture

Recall that ergodic theory is concerned about the distribution of

typical orbits of a dynamical system.

In the next lecture we study a related problem: the distribution of

fractional parts of real numbers.

We will also see some applications to number theory.
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