MAGIC 010: Ergodic Theory

Charles Walkden
School of Mathematics, The University of Manchester
cwalkden@maths.manchester.ac.uk

Course Outline

Course Outline

- There are 10 lectures.
- Each lecture has:
- a set of slides,
- a set of more detailed notes that contain more information about the material, details of arguments that are only sketched in the slides, and the exercises,
- solutions to selected exercises.
- These will all be available via the Magic website.
- Assessment: take-home exam at the end of the course.

MAGIC: Ergodic Theory Lecture 1 - Examples of Dynamical Systems

January 24th 2013

What is ergodic theory?

Given a space X (the 'phase space'), a dynamical system is a rule that governs how points in X evolve in time.

What is ergodic theory?

Given a space X (the 'phase space'), a dynamical system is a rule that governs how points in X evolve in time.
Time could be discrete - in which case a dynamical system is given by iterating a single map $T: X \rightarrow X$.
Alternatively, time could be continuous - in which case a dynamical system is often given by a first order autonomous differential equation.

What is ergodic theory?

Given a space X (the 'phase space'), a dynamical system is a rule that governs how points in X evolve in time.
Time could be discrete - in which case a dynamical system is given by iterating a single map $T: X \rightarrow X$.
Alternatively, time could be continuous - in which case a dynamical system is often given by a first order autonomous differential equation.
We will mostly be concerned with discrete dynamical systems.

What is ergodic theory?

Given a space X (the 'phase space'), a dynamical system is a rule that governs how points in X evolve in time.
Time could be discrete - in which case a dynamical system is given by iterating a single map $T: X \rightarrow X$.
Alternatively, time could be continuous - in which case a dynamical system is often given by a first order autonomous differential equation.
We will mostly be concerned with discrete dynamical systems.
Let $T: X \rightarrow X$ be a dynamical system.

What is ergodic theory?

Given a space X (the 'phase space'), a dynamical system is a rule that governs how points in X evolve in time.
Time could be discrete - in which case a dynamical system is given by iterating a single map $T: X \rightarrow X$.
Alternatively, time could be continuous - in which case a dynamical system is often given by a first order autonomous differential equation.
We will mostly be concerned with discrete dynamical systems.
Let $T: X \rightarrow X$ be a dynamical system. Let $x \in X$. The orbit of x is the set $\left\{T^{n} x \mid n \geq 0\right\}$.

Example

The geodesic flow on the torus

Example

The geodesic flow on the torus
Let $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ denote the torus:

Example

The geodesic flow on the torus
Let $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ denote the torus:

Let $X=$ the unit tangent bundle of \mathbb{T}^{2}. Then a point $x \in X$ is a pair $x=(p, v)$:

$$
\begin{aligned}
& p=\text { point on } \mathbb{T}^{2} \\
& v=\text { unit vector at } v .
\end{aligned}
$$

Then there is a unique straight line through p in the direction v. We can infinitely extend this line using the identifications. The dynamical system moves the point $x=(p, v)$ along this line at unit speed.

Then there is a unique straight line through p in the direction v. We can infinitely extend this line using the identifications. The dynamical system moves the point $x=(p, v)$ along this line at unit speed.

Some orbits are periodic

Some orbits are periodic

Definition
x is periodic if $T^{n} x=x$ for some $n>0$. We call n the period of x.

Some orbits are periodic

Definition
x is periodic if $T^{n} x=x$ for some $n>0$. We call n the period of x. When projected to \mathbb{T}^{2}, some orbits are dense:

A basic question in ergodic theory is: how often does an orbit visit a given region?

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\chi_{A}\left(T^{j} x\right)
$$

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

When is it true that the frequency is equal to the proportion of X occupied by A ?

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

When is it true that the frequency is equal to the proportion of X occupied by A ?
Is it enough to assume that the orbits are dense in X ?

A basic question in ergodic theory is: how often does an orbit visit a given region?
Let $T: X \rightarrow X$ be a discrete dynamical system. Suppose X is equipped with a measure μ (eg. X could be the circle, $\mu=$ Lebesgue measure).
Let $A \subset X$.
What is the frequency with which the orbit of x hits A ?

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} x\right)
$$

When is it true that the frequency is equal to the proportion of X occupied by A ?
Is it enough to assume that the orbits are dense in X ? No.

Proper hypothesis: T is ergodic (an indecomposability assumption).

Proper hypothesis: T is ergodic (an indecomposability assumption).
We then get that:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} \times\right)=\frac{\mu(A)}{\mu(X)}$ for μ-almost every point X

"time average"
"space average"

Proper hypothesis: T is ergodic (an indecomposability assumption).
We then get that:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} \times\right)=\frac{\mu(A)}{\mu(X)}$ for μ-almost every point X

"time average"

Birkhoff's Ergodic Theorem

Proper hypothesis: T is ergodic (an indecomposability assumption).
We then get that:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} X\right)=\frac{\mu(A)}{\mu(X)}$ for μ-almost every point X

"time average"

Birkhoff's Ergodic Theorem
Let T be an ergodic measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Let $f \in L^{1}(X, \mathcal{B}, \mu)$.

Proper hypothesis: T is ergodic (an indecomposability assumption).
We then get that:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}\left(T^{j} X\right)=\frac{\mu(A)}{\mu(X)}$ for μ-almost every point X

Birkhoff's Ergodic Theorem

Let T be an ergodic measure-preserving transformation of a probability space (X, \mathcal{B}, μ). Let $f \in L^{1}(X, \mathcal{B}, \mu)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right) \longrightarrow \int f d \mu \quad \quad \mu \text {-a.e. }
$$

Structure of the Course

Structure of the Course

- Give examples of dynamical systems

Structure of the Course

- Give examples of dynamical systems
- Uniform distribution mod 1

Structure of the Course

- Give examples of dynamical systems
- Uniform distribution mod 1
- Invariant and ergodic measures

Structure of the Course

- Give examples of dynamical systems
- Uniform distribution mod 1
- Invariant and ergodic measures
- Ergodic theorems

Structure of the Course

- Give examples of dynamical systems
- Uniform distribution mod 1
- Invariant and ergodic measures
- Ergodic theorems
- Information and entropy

Structure of the Course

- Give examples of dynamical systems
- Uniform distribution mod 1
- Invariant and ergodic measures
- Ergodic theorems
- Information and entropy
- Thermodynamic formalism and its applications.

Maps on the Circle and Torus

Maps on the Circle and Torus

We give some examples of dynamical systems defined on the circle and on the torus.

Maps on the Circle and Torus

We give some examples of dynamical systems defined on the circle and on the torus.
We will write the circle as \mathbb{R} / \mathbb{Z}. We will often abuse notation by identifying a point $x \in \mathbb{R}$ with the $\operatorname{coset} x+\mathbb{Z}$, with it being understood that we are working mod 1 .

Maps on the Circle and Torus

We give some examples of dynamical systems defined on the circle and on the torus.
We will write the circle as \mathbb{R} / \mathbb{Z}. We will often abuse notation by identifying a point $x \in \mathbb{R}$ with the $\operatorname{coset} x+\mathbb{Z}$, with it being understood that we are working mod 1 .
Similarly, we write the k-dimensional torus as $\mathbb{R}^{k} / \mathbb{Z}^{k}$ with a similar abuse of notation.

Maps on the Circle and Torus

We give some examples of dynamical systems defined on the circle and on the torus.
We will write the circle as \mathbb{R} / \mathbb{Z}. We will often abuse notation by identifying a point $x \in \mathbb{R}$ with the $\operatorname{coset} x+\mathbb{Z}$, with it being understood that we are working mod 1 .
Similarly, we write the k-dimensional torus as $\mathbb{R}^{k} / \mathbb{Z}^{k}$ with a similar abuse of notation.
Note that both the circle and d-dimensional torus are Abelian groups under addition.

Rotations

Fix $\alpha \in \mathbb{R}$. Define the map

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \longrightarrow \mathbb{R} / \mathbb{Z}: x \longmapsto x+\alpha \bmod 1
$$

Rotations

Fix $\alpha \in \mathbb{R}$. Define the map

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \longrightarrow \mathbb{R} / \mathbb{Z}: x \longmapsto x+\alpha \bmod 1
$$

This is a rotation of the circle.

Rotations

Fix $\alpha \in \mathbb{R}$. Define the map

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \longrightarrow \mathbb{R} / \mathbb{Z}: x \longmapsto x+\alpha \bmod 1
$$

This is a rotation of the circle.

Proposition

1. If α is rational ($\alpha=\frac{p}{q}, p, q$ coprime) then every orbit is periodic with period q.

Rotations

Fix $\alpha \in \mathbb{R}$. Define the map

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \longrightarrow \mathbb{R} / \mathbb{Z}: x \longmapsto x+\alpha \bmod 1
$$

This is a rotation of the circle.

Proposition

1. If α is rational ($\alpha=\frac{p}{q}, p, q$ coprime) then every orbit is periodic with period q.
2. If α is irrational then every orbit is dense.

The doubling map

The doubling map
Define $T: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ by $T(x)=2 x \bmod 1$. This is the doubling map.

The doubling map
Define $T: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ by $T(x)=2 x \bmod 1$. This is the doubling map.

The doubling map
Define $T: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ by $T(x)=2 x \bmod 1$. This is the doubling map.

The doubling map
Define $T: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ by $T(x)=2 x \bmod 1$. This is the doubling map.

The doubling map satisfies Devaney's definition of chaos.

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

We can code the orbits of the doubling map as follows.

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

We can code the orbits of the doubling map as follows.
Any $x \in[0,1]$ has a binary expansion

$$
x=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}, \quad x_{n} \in\{0,1\}
$$

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

We can code the orbits of the doubling map as follows.
Any $x \in[0,1]$ has a binary expansion

$$
x=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}, \quad x_{n} \in\{0,1\}
$$

Let $\Sigma=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\}$.

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

We can code the orbits of the doubling map as follows.
Any $x \in[0,1]$ has a binary expansion

$$
x=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}, \quad x_{n} \in\{0,1\}
$$

Let $\Sigma=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\}$.
Define the shift map $\sigma: \Sigma \rightarrow \Sigma$ by

$$
\sigma\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

The doubling map satisfies Devaney's definition of chaos. Namely:

- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.

We can code the orbits of the doubling map as follows.
Any $x \in[0,1]$ has a binary expansion

$$
x=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}, \quad x_{n} \in\{0,1\}
$$

Let $\Sigma=\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in\{0,1\}\right\}$.
Define the shift map $\sigma: \Sigma \rightarrow \Sigma$ by

$$
\sigma\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

Define $\pi: \Sigma \rightarrow \mathbb{R} / \mathbb{Z}$ by

$$
\pi\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}
$$

Then

commutes.

Then

commutes.
Note that

Then

commutes.
Note that

- π is surjective.

Then

commutes.
Note that

- π is surjective.
- π is not injective (points $x \in[0,1]$ with a base 2 expansion ending in all 0 s have another expansion ending in all 1 s - c.f. non-uniqueness of decimal expansions).

Then

commutes.
Note that

- π is surjective.
- π is not injective (points $x \in[0,1]$ with a base 2 expansion ending in all 0 s have another expansion ending in all 1 s - c.f. non-uniqueness of decimal expansions). But π is injective on the complement of such points.

An alternative view

An alternative view

Write $\mathbb{R} / \mathbb{Z}=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]=I_{0} \cup I_{1}$.

An alternative view

Write $\mathbb{R} / \mathbb{Z}=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]=I_{0} \cup I_{1}$.

An alternative view

Write $\mathbb{R} / \mathbb{Z}=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]=I_{0} \cup I_{1}$.

Then the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ is determined by $T^{n}(x) \in I_{x_{n}}$ i.e. we get the symbolic coding for x by recording the sequence of elements of this partition that the orbit of x visits.

An alternative view

Write $\mathbb{R} / \mathbb{Z}=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]=I_{0} \cup I_{1}$.

Then the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ is determined by $T^{n}(x) \in I_{x_{n}}$ i.e. we get the symbolic coding for x by recording the sequence of elements of this partition that the orbit of x visits.
Note that x has a unique coding iff the orbit of x never hits the boundary of either I_{0}, I_{1}.

An alternative view

Write $\mathbb{R} / \mathbb{Z}=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]=I_{0} \cup I_{1}$.

Then the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ is determined by $T^{n}(x) \in I_{x_{n}}$ i.e. we get the symbolic coding for x by recording the sequence of elements of this partition that the orbit of x visits.
Note that x has a unique coding iff the orbit of x never hits the boundary of either I_{0}, I_{1}.
We will return to shift maps and their uses later.

Endomorphisms and automorphisms of a torus

Endomorphisms and automorphisms of a torus

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ be the k-dimensional torus.
Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with integer entries, $\operatorname{det} A \neq 0$.

Endomorphisms and automorphisms of a torus

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ be the k-dimensional torus.
Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with integer entries, $\operatorname{det} A \neq 0$. Then we have a linear map

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \longmapsto A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

Endomorphisms and automorphisms of a torus

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ be the k-dimensional torus.
Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with integer entries, $\operatorname{det} A \neq 0$. Then we have a linear map

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \longmapsto A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

As A is an integer matrix, we have $A\left(\mathbb{Z}^{k}\right) \subset \mathbb{Z}^{k}$.

Endomorphisms and automorphisms of a torus

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ be the k-dimensional torus.
Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with integer entries, $\operatorname{det} A \neq 0$. Then we have a linear map

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \longmapsto A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

As A is an integer matrix, we have $A\left(\mathbb{Z}^{k}\right) \subset \mathbb{Z}^{k}$. Hence there is a well-defined map

$$
T=T_{A}: X \rightarrow X: \quad x+\mathbb{Z}^{k} \mapsto A x+\mathbb{Z}^{k}
$$

Endomorphisms and automorphisms of a torus

Let $X=\mathbb{R}^{k} / \mathbb{Z}^{k}$ be the k-dimensional torus.
Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with integer entries, $\operatorname{det} A \neq 0$. Then we have a linear map

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \longmapsto A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

As A is an integer matrix, we have $A\left(\mathbb{Z}^{k}\right) \subset \mathbb{Z}^{k}$. Hence there is a well-defined map

$$
T=T_{A}: X \rightarrow X: \quad x+\mathbb{Z}^{k} \mapsto A x+\mathbb{Z}^{k}
$$

We will often abuse notation by writing

$$
T\left(x_{1}, \ldots, x_{k}\right)=A\left(x_{1}, \ldots, x_{k}\right) \bmod 1
$$

Definition

T is called a linear toral endomorphism.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example

Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example
Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example
Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example
Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example
Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example
Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

Definition

T is called a linear toral endomorphism.
If $\operatorname{det} A= \pm 1$ then A^{-1} is an integer matrix and T is invertible with $T^{-1}=T_{A^{-1}}$. In this case, we call T a linear toral automorphism.

Example

Take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Then T_{A} is called Arnold's Cat map.

(CAT $=$ Continuous Automorphism of a Torus)

The Gauss Map

Every $x \in(0,1)$ can be expressed as a continued fraction

$$
x=\frac{1}{x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\ldots}}}=\left[x_{0}, x_{1}, x_{2}, \ldots\right] .
$$

where $x_{j} \in \mathbb{N}$.

The Gauss Map

Every $x \in(0,1)$ can be expressed as a continued fraction

$$
x=\frac{1}{x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\ldots}}}=\left[x_{0}, x_{1}, x_{2}, \ldots\right] .
$$

where $x_{j} \in \mathbb{N}$.
Facts about continued fractions:

The Gauss Map

Every $x \in(0,1)$ can be expressed as a continued fraction

$$
x=\frac{1}{x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\ldots}}}=\left[x_{0}, x_{1}, x_{2}, \ldots\right] .
$$

where $x_{j} \in \mathbb{N}$.
Facts about continued fractions:

- x has a finite continued fraction expansion iff x is rational.

The Gauss Map

Every $x \in(0,1)$ can be expressed as a continued fraction

$$
x=\frac{1}{x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\ldots}}}=\left[x_{0}, x_{1}, x_{2}, \ldots\right] .
$$

where $x_{j} \in \mathbb{N}$.
Facts about continued fractions:

- x has a finite continued fraction expansion iff x is rational.
- If x is irrational then it has a unique continued fraction expansion.

Define $T:[0,1] \rightarrow[0,1]$ by $T(x)=\frac{1}{x} \bmod 1$. (Define $T(0)=0$.)

Define $T:[0,1] \rightarrow[0,1]$ by $T(x)=\frac{1}{x} \bmod 1$. (Define $T(0)=0$.)

Define $T:[0,1] \rightarrow[0,1]$ by $T(x)=\frac{1}{x} \bmod 1$. (Define $T(0)=0$.)

If x has continued fraction expansion $\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ then $T(x)$ has continued fraction expansion $\left[x_{1}, x_{2}, x_{3}, \ldots\right]$.

Shifts of finite type

Let $S=\{1, \ldots, k\}$ be a finite set of symbols.

Shifts of finite type

Let $S=\{1, \ldots, k\}$ be a finite set of symbols.
We are interested in constructing sets of bi-infinite sequences of symbols chosen from S, subject to certain conditions.

Shifts of finite type

Let $S=\{1, \ldots, k\}$ be a finite set of symbols.
We are interested in constructing sets of bi-infinite sequences of symbols chosen from S, subject to certain conditions.

The conditions we impose are of the form: Given a symbol $i \in S$, we allow certain symbols (depending only i) to follow i and disallow all others.

Shifts of finite type

Let $S=\{1, \ldots, k\}$ be a finite set of symbols.
We are interested in constructing sets of bi-infinite sequences of symbols chosen from S, subject to certain conditions.

The conditions we impose are of the form: Given a symbol $i \in S$, we allow certain symbols (depending only i) to follow i and disallow all others.
We record this information in a $k \times k$ matrix $A=\left(A_{i j}\right)$ with entries in $\{0,1\}$.

Shifts of finite type

Let $S=\{1, \ldots, k\}$ be a finite set of symbols.
We are interested in constructing sets of bi-infinite sequences of symbols chosen from S, subject to certain conditions.

The conditions we impose are of the form: Given a symbol $i \in S$, we allow certain symbols (depending only i) to follow i and disallow all others.
We record this information in a $k \times k$ matrix $A=\left(A_{i j}\right)$ with entries in $\{0,1\}$.
Define

$$
\begin{array}{ll}
A_{i j}=1 & \text { if symbol } j \text { can follow symbol } i \\
A_{i j}=0 & \text { if symbol } j \text { cannot follow symbol } i .
\end{array}
$$

Let

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{x^{\prime} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{x^{\prime} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A} & =\left\{\left(x_{j}\right)_{j=-\infty}^{\infty} \mid x_{j} \in S, A_{x_{j} x_{j+1}}=1 \forall j \in \mathbb{Z}\right\} \\
& =\text { a two-sided shift of finite type }
\end{aligned}
$$

Let

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{x^{\prime} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A} & =\left\{\left(x_{j}\right)_{j=-\infty}^{\infty} \mid x_{j} \in S, A_{x_{j} x_{j+1}}=1 \forall j \in \mathbb{Z}\right\} \\
& =\text { a two-sided shift of finite type }
\end{aligned}
$$

Define $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}, \sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ to be the (left)-shift map:

Let

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{x^{\prime} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A} & =\left\{\left(x_{j}\right)_{j=-\infty}^{\infty} \mid x_{j} \in S, A_{x_{j} x_{j+1}}=1 \forall j \in \mathbb{Z}\right\} \\
& =\text { a two-sided shift of finite type }
\end{aligned}
$$

Define $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}, \sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ to be the (left)-shift map: $(\sigma x)_{j}=x_{j+1}$.

Let

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{j_{j} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A} & =\left\{\left(x_{j}\right)_{j=-\infty}^{\infty} \mid x_{j} \in S, A_{x_{j} x_{j+1}}=1 \forall j \in \mathbb{Z}\right\} \\
& =\text { a two-sided shift of finite type }
\end{aligned}
$$

Define $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}, \sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ to be the (left)-shift map: $(\sigma x)_{j}=x_{j+1}$.
Note that
$\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ is invertible (the inverse is the right shift)

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\left(x_{j}\right)_{j=0}^{\infty} \mid x_{j} \in S, A_{x_{x^{\prime} x_{j+1}}}=1 \forall j \geq 0\right\} \\
& =\text { a one-sided shift of finite type }
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{A} & =\left\{\left(x_{j}\right)_{j=-\infty}^{\infty} \mid x_{j} \in S, A_{x_{j} x_{j+1}}=1 \forall j \in \mathbb{Z}\right\} \\
& =\text { a two-sided shift of finite type }
\end{aligned}
$$

Define $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}, \sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ to be the (left)-shift map: $(\sigma x)_{j}=x_{j+1}$.
Note that
$\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ is invertible (the inverse is the right shift)
but

$$
\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+} \text {is not invertible. }
$$

Shifts of finite type as walks on graphs

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

- vertices labeled by the symbols S

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

- vertices labeled by the symbols S
- a directed edge from vertex i to vertex j iff $A_{i j}=1$.

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

- vertices labeled by the symbols S
- a directed edge from vertex i to vertex j iff $A_{i j}=1$.

Then $\begin{aligned} & \Sigma_{A} \text { is the set of all infinite walks in } \Gamma \\ & \Sigma_{A}^{+} \text {is the set of all bi-infinite walks in } \Gamma .\end{aligned}$

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

- vertices labeled by the symbols S
- a directed edge from vertex i to vertex j iff $A_{i j}=1$.

Then $\begin{aligned} & \Sigma_{A} \text { is the set of all infinite walks in } \Gamma \\ & \Sigma_{A}^{+} \text {is the set of all bi-infinite walks in } \Gamma \text {. }\end{aligned}$
Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Shifts of finite type as walks on graphs

Here is an alternative description of $\Sigma_{A}^{+}, \Sigma_{A}$.
Construct a graph 「 with:

- vertices labeled by the symbols S
- a directed edge from vertex i to vertex j iff $A_{i j}=1$.

Then $\begin{aligned} & \Sigma_{A} \text { is the set of all infinite walks in } \Gamma \\ & \Sigma_{A}^{+} \text {is the set of all bi-infinite walks in } \Gamma \text {. }\end{aligned}$
Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

$\Sigma_{A}=\{$ all infinite sequences of $1 \mathrm{~s}, 2 \mathrm{~s}$ with no consecutive 2 s$\}$

Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Example

$\Sigma_{A}=$ \{all infinite sequences of $1 \mathrm{~s}, 2 \mathrm{~s}$ with no restrictions $\}$
Example
Let $A=\left(\begin{array}{ccc}1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1\end{array}\right)$.

Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$\Sigma_{A}=\{$ all infinite sequences of $1 \mathrm{~s}, 2 \mathrm{~s}$ with no restrictions $\}$
Example
Let $A=\left(\begin{array}{ccc}1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1\end{array}\right)$.
Then $\Sigma_{A}=\{$ all sequences of symbols $1, \ldots, k\}$.
We call this the full k-shift.

Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$\Sigma_{A}=\{$ all infinite sequences of $1 \mathrm{~s}, 2 \mathrm{~s}$ with no restrictions $\}$
Example
Let $A=\left(\begin{array}{ccc}1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1\end{array}\right)$.
Then $\Sigma_{A}=\{$ all sequences of symbols $1, \ldots, k\}$.
We call this the full k-shift.
We need hypotheses on A to ensure that Σ_{A} has sufficient structure to be of interest.

Definition

A $k \times k 0-1$ matrix A is irreducible if: $\forall i, j \exists n>0$ s.t. $A_{i j}^{n}>0$.

Definition

A $k \times k 0-1$ matrix A is irreducible if: $\forall i, j \exists n>0$ s.t. $A_{i j}^{n}>0$. A $k \times k 0-1$ matrix A is aperiodic if: $\exists n>0$ s.t. $\forall i, j, A_{i j}^{n}>0$.

Definition

A $k \times k 0-1$ matrix A is irreducible if: $\forall i, j \exists n>0$ s.t. $A_{i j}^{n}>0$. A $k \times k 0-1$ matrix A is aperiodic if: $\exists n>0$ s.t. $\forall i, j, A_{i j}^{n}>0$.

Fact:
$A_{i j}^{n}:=$ the $(i, j)^{t h}$ entry of $A^{n}=$ the number of distinct paths in Γ of length n from vertex i to vertex j.

Definition

A $k \times k 0-1$ matrix A is irreducible if: $\forall i, j \exists n>0$ s.t. $A_{i j}^{n}>0$. A $k \times k 0-1$ matrix A is aperiodic if: $\exists n>0$ s.t. $\forall i, j, A_{i j}^{n}>0$.

Fact:
$A_{i j}^{n}:=$ the $(i, j)^{t h}$ entry of $A^{n}=$ the number of distinct paths in Γ of length n from vertex i to vertex j.
Hence
A is irreducible \Longleftrightarrow For all vertices i, j, there exists a path in Γ (with length depending on i, j) from i to j.

Definition

A $k \times k 0-1$ matrix A is irreducible if: $\forall i, j \exists n>0$ s.t. $A_{i j}^{n}>0$. A $k \times k 0-1$ matrix A is aperiodic if: $\exists n>0$ s.t. $\forall i, j, A_{i j}^{n}>0$.

Fact:
$A_{i j}^{n}:=$ the $(i, j)^{t h}$ entry of $A^{n}=$ the number of distinct paths in Γ of length n from vertex i to vertex j.
Hence
A is irreducible \Longleftrightarrow For all vertices i, j, there exists a path in Γ (with length depending on i, j) from i to j.
A is aperiodic \Longleftrightarrow as above, but the length of the path can be chosen to be independent of i, j.

Examples

not irreducible

Examples

not irreducible

not irreducible

Examples

not irreducible

not irreducible
irreducible but not aperiodic

Examples

not irreducible

irreducible but not aperiodic

not irreducible

aperiodic

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:
Let $x=\left(x_{j}\right)_{j=0}^{\infty}, y=\left(y_{j}\right)_{j=0}^{\infty} \in \Sigma_{A}^{+}$. Fix any $\theta \in(0,1)$.

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:
Let $x=\left(x_{j}\right)_{j=0}^{\infty}, y=\left(y_{j}\right)_{j=0}^{\infty} \in \Sigma_{A}^{+}$. Fix any $\theta \in(0,1)$.
Let

$$
n(x, y)= \begin{cases}\sup \left\{n \mid x_{j}=y_{j}, j=0,1, \ldots, n-1\right\} & \text { if } x \neq y \tag{*}\\ \infty & \text { if } x=y\end{cases}
$$

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:
Let $x=\left(x_{j}\right)_{j=0}^{\infty}, y=\left(y_{j}\right)_{j=0}^{\infty} \in \Sigma_{A}^{+}$. Fix any $\theta \in(0,1)$.
Let

$$
n(x, y)= \begin{cases}\sup \left\{n \mid x_{j}=y_{j}, j=0,1, \ldots, n-1\right\} & \text { if } x \neq y \tag{*}\\ \infty & \text { if } x=y\end{cases}
$$

Define $d_{\theta}(x, y)=\theta^{n(x, y)}$. Then d_{θ} is a metric on Σ_{A}^{+}.

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:
Let $x=\left(x_{j}\right)_{j=0}^{\infty}, y=\left(y_{j}\right)_{j=0}^{\infty} \in \Sigma_{A}^{+}$. Fix any $\theta \in(0,1)$.
Let

$$
n(x, y)= \begin{cases}\sup \left\{n \mid x_{j}=y_{j}, j=0,1, \ldots, n-1\right\} & \text { if } x \neq y \tag{*}\\ \infty & \text { if } x=y\end{cases}
$$

Define $d_{\theta}(x, y)=\theta^{n(x, y)}$. Then d_{θ} is a metric on Σ_{A}^{+}. (There is a similar formula for the two-sided case - replace $j \in\{0,1 \ldots, n\}$ by $j \in\{-n, \ldots, 0, \ldots, n\}$ in $(*)$.

A topology on $\Sigma_{A}, \Sigma_{A}^{+}$

Our intuition is that two sequences should be 'close' if they agree for a large number of initial places.
Define a metric on Σ_{A} as follows:
Let $x=\left(x_{j}\right)_{j=0}^{\infty}, y=\left(y_{j}\right)_{j=0}^{\infty} \in \Sigma_{A}^{+}$. Fix any $\theta \in(0,1)$.
Let

$$
n(x, y)= \begin{cases}\sup \left\{n \mid x_{j}=y_{j}, j=0,1, \ldots, n-1\right\} & \text { if } x \neq y \\ \infty & \text { if } x=y\end{cases}
$$

Define $d_{\theta}(x, y)=\theta^{n(x, y)}$. Then d_{θ} is a metric on Σ_{A}^{+}. (There is a similar formula for the two-sided case - replace $j \in\{0,1 \ldots, n\}$ by $j \in\{-n, \ldots, 0, \ldots, n\}$ in (*).)

Remark

The exact choice of θ is, for the moment, unimportant: any $\theta \in(0,1)$ gives the same topology.

Suppose A is aperiodic.

Suppose A is aperiodic. With this metric, Σ_{A}^{+}is a

- compact
- totally disconnected
- perfect (= equal to its limit points) metric space.

Suppose A is aperiodic. With this metric, Σ_{A}^{+}is a

- compact
- totally disconnected
- perfect (= equal to its limit points) metric space. (Topologically, Σ_{A}^{+}is a Cantor set.)

Suppose A is aperiodic. With this metric, Σ_{A}^{+}is a

- compact
- totally disconnected
- perfect (= equal to its limit points) metric space. (Topologically, Σ_{A}^{+}is a Cantor set.) The shift map is chaotic:

Suppose A is aperiodic.
With this metric, Σ_{A}^{+}is a

- compact
- totally disconnected
- perfect (= equal to its limit points)
metric space. (Topologically, Σ_{A}^{+}is a Cantor set.)
The shift map is chaotic:
- sensitive dependence on initial conditions
- the periodic points are dense
- there is a dense orbit.
(See exercises.)

Markov partitions and symbolic coding

Markov partitions and symbolic coding

The reason for introducing shifts of finite type is that they can be used to model a wide range of dynamical systems that possess some degree of "hyperbolicity".

Markov partitions and symbolic coding

The reason for introducing shifts of finite type is that they can be used to model a wide range of dynamical systems that possess some degree of "hyperbolicity".
For example we have already seen that the doubling map can be coded by the full one-sided 2-shift:

Markov partitions and symbolic coding

The reason for introducing shifts of finite type is that they can be used to model a wide range of dynamical systems that possess some degree of "hyperbolicity".
For example we have already seen that the doubling map can be coded by the full one-sided 2-shift:

$$
T x=2 x \bmod 1
$$

$$
\pi\left(x_{j}\right)=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}
$$

We will not give a precise definition of what makes a dynamical system 'hyperbolic'.

Heuristically, hyperbolicity means that there is local uniform expansion and (in the case of invertible maps) local uniform contraction in a complementary direction.

We will not give a precise definition of what makes a dynamical system 'hyperbolic'.

Heuristically, hyperbolicity means that there is local uniform expansion and (in the case of invertible maps) local uniform contraction in a complementary direction.

For example, the doubling map locally expands by a factor of 2 .

We will not give a precise definition of what makes a dynamical system 'hyperbolic'.

Heuristically, hyperbolicity means that there is local uniform expansion and (in the case of invertible maps) local uniform contraction in a complementary direction.

For example, the doubling map locally expands by a factor of 2 .

Definition

A linear toral automorphism $T=T_{A}$ is hyperbolic if A has no eigenvalues of modulus 1 .

Example

The Cat map $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is hyperbolic.

Example

The Cat map $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is hyperbolic.

Example

The Cat map $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is hyperbolic.

Example
The Cat map $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is hyperbolic.

Example
The Cat map $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is hyperbolic.

Proposition

Let T be a hyperbolic linear toral automorphism.

Proposition

Let T be a hyperbolic linear toral automorphism. Then there exists an aperiodic shift of finite type Σ and a map $\pi: \Sigma \rightarrow \mathbb{R}^{k} / \mathbb{Z}^{k}$ such that

Proposition

Let T be a hyperbolic linear toral automorphism. Then there exists an aperiodic shift of finite type Σ and a map $\pi: \Sigma \rightarrow \mathbb{R}^{k} / \mathbb{Z}^{k}$ such that

- π is continuous
- π is surjective
- π is injective, except on a small set

Proposition

Let T be a hyperbolic linear toral automorphism. Then there exists an aperiodic shift of finite type Σ and a map $\pi: \Sigma \rightarrow \mathbb{R}^{k} / \mathbb{Z}^{k}$ such that

- π is continuous
- π is surjective
- π is injective, except on a small set

Remark

It follows that T is chaotic.
One can use symbolic dynamics to prove many other results about hyperbolic dynamical systems.

Next lecture

Next lecture

Recall that ergodic theory is concerned about the distribution of typical orbits of a dynamical system.

Next lecture

Recall that ergodic theory is concerned about the distribution of typical orbits of a dynamical system.
In the next lecture we study a related problem: the distribution of fractional parts of real numbers.

Next lecture

Recall that ergodic theory is concerned about the distribution of typical orbits of a dynamical system.
In the next lecture we study a related problem: the distribution of fractional parts of real numbers.
We will also see some applications to number theory.

