
MAGIC010 Ergodic Theory Lecture 10

10. The ergodic theory of hyperbolic dynamical
systems

§10.1 Introduction

In Lecture 8 we studied thermodynamic formalism for shifts of finite type
by defining a suitable transfer operator acting on a certain Banach space of
functions and studying its spectral properties. In Lecture 9 we gave some
applications of this methodology, mostly in the context of shifts of finite
type. In this lecture we show how the use of thermodynamic formalism can
be used to study a wide range of dynamical system that possesses some
degree of ‘hyperbolicity’.

§10.2 Anosov diffeomorphisms

Let M be a compact Riemannian manifold without boundary, with metric d
on M derived from the Riemannian metric. For x ∈ M let TxM denote the
tangent space at x and let TM denote the tangent bundle. Let T : M → M
be a C1 diffeomorphism of M and let DxT : TxM → TT (x)M denote the
derivative of T .

Definition. We say that T : M → M is an Anosov diffeomorphism if the
tangent bundle TM has a continuous splitting into a Whitney sum of two
DT -invariant sub-bundles TM = Es ⊕ Eu such that there exist constant
C > 0 and λ ∈ (0, 1) such that for all n ≥ 0

‖DxTnv‖ ≤ Cλn‖v‖, for all v ∈ Es
x,

‖DxT−nv‖ ≤ Cλn‖v‖, for all v ∈ Eu
x .

We call Es and Eu the stable and unstable sub-bundles, respectively.
Thus T is an Anosov diffeomorphism if each tangent plane splits into two

complementary directions; one of which contracts exponentially fast under
iteration and the other expands exponentially fast under iteration. (Note
that contraction by DT−1 corresponds to expansion by DT ; for technical
reasons that we shall see below it is more convenient to describe expansion
by T in terms of contraction by T−1.)

The subspace Es
x is a subspace of the tangent space TxM at x. It is

tangent to the stable manifold W s(x) through x. The stable manifold is an
immersed submanifold in M and is characterised by:

W s(x) = {y ∈ M | d(Tnx, Tny) → 0 as n →∞}. (10.1)
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One can show that the convergence in (10.1) is necessary exponential, thus
W s(x) is characterised by

W s(x) = {y ∈ M | d(Tnx, Tny) → 0 exponentially fast as n →∞}.

Similarly, there exist unstable manifolds. The unstable manifold W u(x)
is an immersed manifold through x tangent to Eu

x and characterised by

W s(x) = {y ∈ M | d(T−nx, T−ny) → 0 as n →∞}.

This illustrates why it makes sense to define the unstable directions in terms
of contraction in backwards time. The manifold M is compact and the
metric d gives M finite diameter; hence d(Tnx, Tny) cannot tend to infinity
(although, if x and y are sufficiently close then for all sufficiently small n we
do have that d(Tnx, Tny) increases exponentially fast).

§10.2.1 Example: the cat map

Recall that the cat map T : R2/Z2 → R2/Z2 is defined by

T

(
x
y

)
=
(

2 1
1 1

)(
x
y

)
mod 1.

Let A denote this 2× 2 matrix. Then A has two eigenvalues

λu =
3 +

√
5

2
> 1, λs =

3−
√

5
2

∈ (0, 1),

with corresponding eigenvectors

vu =

(
1,
−1 +

√
5

2

)
, vs =

(
1,
−1−

√
5

2

)
,

respectively.
Let x ∈ M . Then TxM can be decomposed as the direct sum of two

subspaces, Eu
x and Es

x, that are parallel to vu and vs, respectively. It is easy
to see that DxT maps Eu

x to Eu
Tx and expands vectors by a factor of λu,

and maps Es
x to Es

Tx and expands vectors by a factor of λs. This gives us
the unstable and stable bundles.

Each subspace Es
x is tangent to a one-dimensional submanifold of M in

the direction vs. This is the stable manifold through x and is the geodesic
through x in direction vs. As the two components of vs are rationally inde-
pendent, this geodesic is dense in M . Thus each stable manifold is dense in
M . Similarly, we can construct the unstable manifolds.
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§10.2.2 Which manifolds support Anosov diffeomorphisms?

It is an important open question to determine which manifolds M support an
Anosov diffeomorphism, and, indeed, to classify all Anosov diffeomorphisms.

Recall that two continuous transformations T1 : X1 → X1, T2 : X2 → X2

are said to be topologically conjugate if there is a homeomorphism h : X1 →
X2 such that hT1 = T2h. If X1, X2 are manifolds then one can impose higher
regularity conditions on the conjugacy h and speak of Cr-conjugate dynam-
ical systems. In the context of hyperbolic dynamical systems it is natural
to assume that a conjugacy h is C1+α, meaning that h is differentiable and
the derivative is Hölder continuous.

By generalising the construction of the cat map and using a hyperbolic
matrix in SL(k, Z), it is clear that any k-dimensional torus (with k ≥ 2)
supports an Anosov diffeomorphism. More specifically, if A ∈ SL(k, Z) has
no eigenvalues of modulus 1 then A determines an Anosov diffeomorphism
T : Rk/Zk → Rk/Zk. We call such a map an Anosov automorphism of a
torus. Note that the restriction k ≥ 2 is necessary: there are no Anosov
diffeomorphisms on a circle as the circle is 1-dimensional and the presence
of stable and unstable bundles requires at least 2 dimensions.

One can view this construction in the following way: a matrix A ∈
SL(k, Z) determines an automorphism of the abelian group Rk. This auto-
morphism leaves the discrete subgroup Zk ⊂ Rk invariant and so determines
a well-defined map on the quotient space Rk/Zk.

Recall that a Lie group G is a group that is also a smooth manifold (and
the group operations are continuous). If G is a topological group then the
commutator [G, G] of G is the closed subgroup generated by elements of the
form ghg−1h−1. We say that G is nilpotent if Gk is trivial for some k, where
Gk is defined inductively by G0 = G, Gk = [Gk−1, G]. Notice that abelian
Lie groups, such as the k-dimensional torus, are nilpotent Lie groups.

Definition. Let N be a connected nilpotent Lie group and let Γ ⊂ N be
a discrete subgroup such that N/Γ is compact. (We do not assume that Γ
is normal.) We call N/Γ a nilmanifold.

As an example of a nilpotent Lie group that is not abelian, consider the
Heisenberg group, namely the group of matrices

N =


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ R

 .

The subgroup

Γ =


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z


is a cocompact lattice, and so N/Γ is a nilmanifold.
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Let N be a connected Lie group and let Γ ⊂ N be a cocompact lattice.
Suppose that A : N → N is an automorphism of N such that A(Γ) = Γ.
Then A induced a diffeomorphism T : N/Γ → N/Γ of the nilmanifold N/Γ
defined by T (gN) = A(g)N . The derivative DeA of A at the identity is a
linear map defined on the tangent space TeN of N at the identity (this is the
Lie algebra of N). If the linear map DeA : TeN → TeN has no eigenvalues
of modulus 1 then T : N/Γ → N/Γ is an Anosov diffeomorphism. We call
it an Anosov automorphism of a nilmanifold.

Of course, the above construction works for any automorphism of a con-
nected Lie group G that leaves invariant a cocompact lattice Γ. However,
if the quotient map on G/Γ is Anosov then the group G must be nilpo-
tent. Not every nilmanifold admits an Anosov diffeomorphism; indeed, the
smallest dimension in which one exists has dim N = 6. (See the references.)

Essentially, Anosov automorphisms are the only known examples of Anosov
diffeomorphisms.

Theorem 10.1
Let T : M → M be a C1+α Anosov diffeomorphism. Then T is C1+α′

conjugate to an Anosov automorphism of a torus, nilmanifold, or infranil-
manifold.

(An infranilmanifold is a manifold that has a nilmanifold as a finite cover.)
The question for C1 conjugacy is more subtle (see the references).

It is a major open problem to determine if these are all the Anosov
diffeomorphisms. If a manifold admits an Anosov diffeomorphism then this
requires very strong homological properties of the manifold; one can show
that there are no Anosov diffeomorphisms on a Möbius band or Klein bottle,
for example.

§10.3 Hyperbolic dynamical systems

Let T : M → M be a C1 diffeomorphism of a smooth compact Riemannian
manifold without boundary. Instead of requiring TxM to have a hyperbolic
splitting for all x ∈ M (which, as we have seen, is a very strong assumption),
we could instead require the spliting to exist only on a T -invariant compact
subset Λ ⊂ M . We will not necessarily assume that Λ is a submanifold.
Indeed, in many cases, Λ will be topologically very complicated; for example,
Λ may be a Cantor set.

Definition. A compact T -invariant set Λ ⊂ M is said to be a locally
maximal hyperbolic set or a basic set if the following conditions hold:

(i) there exists a continuous DT -invariant splitting of the tangent bundle
of M restricted to Λ:

TxM = Es
x ⊕ Eu

x for all x ∈ Λ
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and constants C > 0, λ ∈ (0, 1) such that for all n ≥ 0

‖DxTnv‖ ≤ Cλn‖v‖, for all v ∈ Es
x, ‖DxT−nv‖ ≤ Cλn‖v‖, for all v ∈ Eu

x ;

(ii) T : Λ → Λ has a dense set of periodic points and a dense orbit;

(iii) there exists an open set U ⊃ Λ such that

∞⋂
n=−∞

T−nU = Λ.

In addition, we will normally assume that Λ is larger than a single orbit.
For brevity, we shall often say that T : Λ → Λ is hyperbolic.

Note that condition (iii) says that orbits that start nearby to Λ will
converge to Λ under either forwards or backwards iteration.

Definition. We say that a locally maximal hyperbolic set Λ is a hyper-
bolic attractor if all sufficiently nearby points converge to Λ under forwards
iteration. That is, in (iii) above we have that

∞⋂
n=0

TnU = Λ.

It will be useful to impose an extra condition on the dynamics of T .

Definition. A continuous transformation T of a compact metric space X
is said to be topologically transitive if for all non-empty open sets U, V ⊂ X,
there exists n ∈ N such that T−nU ∩ V 6= ∅. It is straightforward to show
that T is topologically transitive if and only if there is a dense orbit.

Moreover, we say that T is topologically mixing if for all non-empty
open sets U, V ⊂ X, there exists N ∈ N such that for all n ≥ N we have
T−nU ∩ V 6= ∅. (Compare this with the measure-theoretic notion of strong-
mixing in Lecture 5.)

Thus topological mixing implies topological transitivity, but not conversely.
If σ : Σ → Σ is a shift of finite type determined by a 0− 1 transition matrix
A then σ is topologically transitive if and only if A is irreducible, and σ is
topologically mixing if and only if A is aperiodic.

One can show that if T : Λ → Λ is hyperbolic, then Λ decomposes into a
disjoint union Λ =

⋃k−1
j=0 Λj such that T (Λj) = Λj+1 mod k and T k : Λj → Λj

is a topologically mixing hyperbolic map. Thus by replacing T by an iterate
and decomposing Λ, we can, without loss of generality, assume that T is
topologically mixing.
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§10.4 Examples

§10.4.1 The Smale horseshoe

Let ∆ ⊂ R2 be a rectangle. Let T : ∆ → R2 be a diffemorphism of ∆ onto
its image such that the intersection ∆ ∩ T (∆) consists of two horizontal
‘bands’ stretching across ∆. Moreover, we assume that T , when restricted
to ∆ is a hyperbolic affine map that contracts in the vertical direction and
expands in the horizontal direction.

It is clear that Tn(∆) consists of 2n pairwise disjoint horizontal bands
of exponentially shrinking height. Moreover, T−n(∆) consists of 2n pairwise
disjoint vertical bands of exponentially shrinking width.

The set Λ = ∩∞n=−∞Tn∆ ⊂ ∆ is a T -invariant subset of ∆. It is clear
from the above discussion that Λ is the product of two Cantor sets. The
dynamics of T restricted to Λ is conjugate to the full two-sided 2-shift, and
hence has dense periodic orbits and a dense orbit. It is clear the Λ is a
locally maximal hyperbolic set.

Figure 10.1: The Smale horseshoe and its first two iterates

§10.4.2 The solenoid

Let M = {(z, w) ∈ C2 | |z| = 1, |w| ≤ 1} = S1 ×D denote the solid torus.
Define T : M → M by

T (z, w) =
(
z2,

z

2
+

w

4

)
.

Then each disc {z} ×D is mapped onto the disc {z2} ×D with centre
z/2 and radius w/4. Hence T (M) intersects {z2}×D in two discs of radius
1/4, one with centre at z/2 and the other with centre at −z/2. Thus T acts
by taking the solid torus M and wrapping it around twice, stretching it by
a factor of two in one direction and contracting it by a factor of 1/4 in the
other.

Inductively, Tn wrap M around itself 2n times. Thus Tn(M) intersects
each disc {z} ×D in 2n discs each of radiu 1/4n.

Let Λ = ∩∞n=0T
n(M). Then Λ has topological dimension 1. It intersects

discs {z} × D in a Cantor set. Through each x ∈ Λ there is a unique line
Lx contained in Λ which wraps around the solid torus forever.

One can easily see that Λ is a hyperbolic attractor.

6



MAGIC010 Ergodic Theory Lecture 10

Figure 10.2: The solenoid

Figure 10.3: A cross-section of the solenoid after two iterations

§10.4.3 Relation to Axiom A

Locally maximal hyperbolic sets are related to Smale’s Axiom A.
Let T : M → M be a C1 diffeomorphism of a smooth compact Rieman-

nian manifold M . A point x ∈ M is said to be non-wandering if for each
open neighbourhood U of x there exists n > 0 such that T−nU ∩ U 6= ∅.
The non-wandering set Ω of T is defined to be the set of all non-wandering
points. Then Ω is a compact T -invariant subset of M and is the largest sub-
set of M on which the dynamics of T is ‘interesting’ (in terms of studying
its recurrence properties).

Definition. The diffeomorphism T is said to satisfy Axiom A if

(i) the tangent bundle restricted to Ω has a hyperbolic splitting;

(ii) the periodic points are dense in Ω.

The following theorem then allows us to decompose the dynamics of an
Axiom A diffeomorphism into locally maximal hyperbolic sets.

Theorem 10.2 (Smale’s spectral decomposition)
Let T be an Axiom A diffeomorphism with non-wandering set Ω. Then Ω
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can be written as a disjoint union Ω = Ω1∪· · ·∪Ωn where each Ωi is a basic
set.

Thus in defining locally maximal hyperbolic sets we re just abstracting the
properties of the basic sets that appear in Smale’s spectral decomposition
of an Axiom A diffeomorphism restricted to its non-wandering set.

§10.5 Markov partitions

Let Λ be a locally maximal hyperbolic set and let T : Λ → Λ be hyperbolic.
We assume that T is topologically mixing. We want to code the dynamics
of T by using an aperiodic shift of finite type.

Let x ∈ Λ. We have already seen that there will be a stable manifold
W s(x) and unstable manifold W u(x) passing through x. Typically, W s(x)
and W u(x) will be dense in Λ. Instead we want to work with a small region
of W s(x) that contains x. We define the local stable and local unstable
manifolds to be the following:

W s
ε (x) = {y ∈ M : d(Tnx, Tny) ≤ ε for all n ≥ 0}

W u
ε (x) = {y ∈ M : d(T−nx, T−ny) ≤ ε for all n ≥ 0}.

One can check that if y ∈ W s
ε (x) then d(Tnx, Tny) → 0 exponentially fast

as n → ∞ (and similarly for W u
ε (x)). Thus W s

ε (x) is a neighbourhood
of x in W s(x); in particular W s

ε (x) is tangent to Es
x. The corresponding

statements are also true for W u
ε (x). (Here ε > 0 is chosen to be small—it is

not necessary (at least here) to state precisely how small.)
If x, y ∈ Λ are sufficiently close then we define their product to be

[x, y] = W u
ε (x) ∩W s

ε (y).

Provided that ε is sufficiently small, this intersection is a single point. Note
that [x, y] has the same forward asymptotic dynamics as y and the same
backward asymptotic dynamics as x.

A subset R ⊂ Λ is called a rectangle if x, y ∈ R implies [x, y] ∈ R. We
say that a rectangle R is a proper rectangle if it is equal to the closure of
its interior (as subsets of Λ).

If R is a proper rectangle and x ∈ intR then we define W s(x, R) =
W s

ε (x)∩R and W u(x,R) = W u
ε (x)∩R. Throughout we assume that diam R

is small in comparison with ε.

Definition. A finite collection R = {R1, . . . , Rk} of proper rectangles is
called a Markov partition of Λ if

⋃k
j=1 Rj = Λ, the interiors of the Rjs are

pairwise disjoint, and

• if x ∈ intRi and Tx ∈ intRj then T (W s
ε (x, Ri)) ⊂ W s(Tx,Rj),
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• if x ∈ intRi and T−1x ∈ intRj then T−1(W u
ε (x,Ri)) ⊂ W u(Tx,Rj).

Thus, if x ∈ intRi then the possible rectangles that Tx can lie in is de-
termined only by Ri (and not by the sequence of rectangles that contain
T−nx). This is directly analogous to the definition of a shift of finite type,
where the rules that say when symbol i can be followed by the symbol j in a
sequence are determined by the symbol i, and not on the preceding symbols.

Proposition 10.3
Let T : Λ → Λ be a hyperbolic map on a basix set. Then there exists a
Markov partition with an arbitrarily small diameter.

Proof. See the references. 2

If we have a Markov partition R = {R1, . . . , Rk} then we introduce a
two-sided shift of finite type Σ on k symbols with transition matrix Ai,j = 1
if and only if T (int Ri) ∩ intRj 6= ∅. We can code each point x ∈ Λ by
recording the sequence of elements of R that the orbit of x visits. Thus the
map

π : Σ → Λ : (xj)∞j=−∞ 7→
∞⋂

j=−∞
T−jRxj

is a semiconjugacy from the shift map on Σ to T . (The hyperbolicity of T
ensures that this intersection consists of only one point.) Note that, as the
elements of the Markov partition may overlap on their boundaries, there is
some ambiguity as to how to code points whose orbit hits the boundary of
R; however this is a small set in both a measure-theoretic and topological
sense.

Proposition 10.4
The map π : Σ → Λ is

(i) Hölder continuous (for some θ ∈ (0, 1)) and surjective,

(ii) injective on a set of full-measure (for any ergodic T -invariant measure
of full support) and on a dense residual set,

(iii) bounded-to-one,

(iv) and π conjugates the dynamics of the shift σ : Σ → Σ to T : Λ → Λ,
i.e. Tπ = πσ.

§10.6 Markov partitions for Anosov automorphisms of tori

For a given hyperbolic map, there is no canonical Markov partition. In some
cases a Markov partition can be identified either by inspection or by simple
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R0

R3

R4

R1

R2

0BBBB@
1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

1CCCCA

This gives the matrix:

Figure 10.4: A Markov partition for the Cat map; the sides of the rectan-
gles are parallel to the eigenvalues vs, vu

calculation. In the case of the cat map, a Markov partition can easily be
found and is illustrated below.

However, for a general Anosov diffeomorphism, explicitly constructing a
Markov partition is a non-trivial task. Indeed, even for Anosov automor-
phisms of tori, the rectangles that make up a Markov partition need not be
rectangles in a geometrical sense. There are examples of Anosov automor-
phisms on the 3-dimensional torus for which the boundary of any Markov
partition is nowehere differentiable.

§10.7 Ergodic theory of hyperbolic dynamical systems

We want to study some ergodic-theoretic properties of a hyperbolic map
T : Λ → Λ. To do this, we choose a Markov partition and code the dynamics
as a shift of finite type. As T is invertible, this will be a two-sided shift of
finite type. As thermodynamic formalism only works (at least in the way
that we have presented it) for non-invertible maps, we need a method that
allows us to pass from the two-sided shift to the one-sided.

We first consider invariant measures.

§10.7.1 Invariant measures and one- and two-sided shifts of finite
type

Let A be an aperiodic k× k matrix with entries from {0, 1}. Then A deter-
mines a one-sided shift of finite type Σ+ and a two-sided shift of finite type
Σ. In both cases, let σ denote the shift map. Equip Σ+ and Σ with their
Borel σ-algebras, B+,B, respectively.
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Let µ be a σ-invariant probability measure on (Σ+,B+). We show how
µ can be extended to give an invariant probability measure on (Σ,B).

Let C = [i0, . . . , ik−1]m = {x = (xj)∞j=−∞ | xj+m = ij , 0 ≤ j ≤ k − 1} be
a cylinder where we fix the symbols that appear in places m to m+k−1. It
follows that σ−mC depends only on positive indices, and so can be regarded
as a subset of Σ+. Define µ(C) = µ(σ−nC) where n is chosen so that σ−nC
depends only on future co-ordinates. As µ is σ-invariant, this is well-defined
and independent of the choice of n.

Thus we have defined a measure on the algebra of cylinders in Σ. By the
Kolmogorov Extension Theorem, this then extends to a measure defined on
B. As µ is σ-invariant on cylinders, it again follows from the Kolmogorov
Extension Theorem that µ is a σ-invariant Borel probability measure defined
on (Σ,B).

§10.7.2 Functions of the future

Let θ ∈ (0, 1). We can define metrics on both Σ and Σ+ as follows. For the
one-sided shift of finite type Σ+ we define n(x, y) = sup{j | xj = yj , 0 ≤
j ≤ n − 1}. For the two-sided shift of finite type Σ we define n(x, y) =
sup{j | xj = yj ,−(n− 1) ≤ j ≤ n− 1}. (In both cases we define n(x, y) = 0
if x = y.) We then define a metric on the respective spaces by setting
dθ(x, y) = θn(x,y). (With a small abuse of notation we use dθ to denote a
metric on both the one-sided and two-sided shifts.)

Let Fθ(Σ, R) and Fθ(Σ+, R) denote the space of functions defined on
Σ,Σ+, respectively, that are θ-Holder with respect to dθ. That is, Fθ(Σ, R)
consists of functions f : Σ → R such that

|f |θ = sup
x,y∈Σ,x 6=y

|f(x)− f(y)|
dθ(x, y)

< ∞,

and similarly for Fθ(Σ+, R).
Given a point x = (xj)∞j=−∞ ∈ Σ, we regard (xj)∞j=0 as ‘the future’ and

(xj)0j=−∞ as ‘the past’.
If f ∈ Fθ(Σ, R) then f(x) will typically depend on both the future and

the past of x. However, if f(x) depends only on x0, x1, x2, . . ., i.e. f depends
only on the future of x, then f can be regarded as a function defined on Σ+.

Recall that two functions f, g are said to be cohomologous if there exists
a function u such that f = g + uσ − u.

The following proposition shows that any Hölder function on Σ is coho-
mologous to a function that depends only on future co-ordinates. Note that
to achieve this we may have to increase the Hölder exponent from θ to θ1/2.

Proposition 10.5
Let f ∈ Fθ(Σ, R). Then there exists u, g ∈ Fθ1/2(Σ+, R) such that f =
g + uσ − u and g depends only on future co-ordinates.
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Proof. For each symbol k choose an ‘allowable past’, that is, a sequence
(i(k)

j )0j=−∞ such that i
(k)
0 = k and A

i
(k)
j ,i

(k)
j+1

= 1 for all j < 0. Define a map

φ : Σ → Σ by

(φ(x))j =

{
xj if j ≥ 0
i
(k)
j if j ≤ 0 and x0 = k.

Thus φ(x) takes a sequence x and replaces its past by the past chosen above,
determined by x0.

Define

u(x) =
∞∑

n=0

f(σn(x))− f(σn(φ(x))).

Note that σn(x), σn(φ(x)) agree in at least places −n ≤ j < ∞. Hence

|f(σn(x))− f(σn(φ(x)))| ≤ |f |θdθ(σn(x), σn(φ(x))) ≤ |f |θθn,

and it follows that u(x) is well-defined.
Note that

u(x)− u(σ(x))

=
∞∑

n=0

f(σn(x))− f(σn(φ(x)))−
∞∑

n=0

f(σn+1(x))− f(σnφ(σ(x)))

= f(x)−

(
f(φ(x)) +

∞∑
n=0

f(σn+1(φ(x)))− f(σn(φ(σ(x))))

)
. (10.2)

Denote the bracketed term in (10.2) by g(x) and notice that g(x) depends
only on the future co-ordinates.

It remains to show that u, and therefore g, belongs to Fθ1/2(Σ, R). Let
x = (xj)∞j=0, y = (yj)∞j=0 ∈ Σ be such that xj = yj for −2N ≤ j ≤ 2N .
Then for 0 ≤ n ≤ N

|f(σn(x))− f(σn(y))|, |f(σn(φ(x)))− f(σn(φ(y)))| ≤ |f |θθ2N−n.

Moreover, for all n ≥ 0 we have

|f(σn(x))− f(σn(φ(x)))|, |f(σn(x))− f(σn(φ(x)))| ≤ |f |θθn.

Hence

|u(x)− u(y)| ≤ 2|f |θ
N∑

n=0

θ2N−n + 2|f |θ
∞∑

n=N+1

θn

= 2|f |θθ2N

(
θ−N−1 − 1
θ−1 − 1

)
+ 2|f |θ

θN+1

1− θ

≤ 4|f |θ
θN

1− θ
.

It follows that u ∈ Fθ1/2(Σ, R). 2
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§10.8 Applications

We give some applications of how to use thermodynamic formalism to prove
results about hyperbolic maps.

§10.8.1 Existence of equilibrium states

Let X be a compact metric space equipped with the Borel σ-algebra and let
T : X → X be a continuous transformation.

Definition. Let f : X → R be measurable. We say that a T -invariant
probability measure µf is an equilibrium state for f if

hµf
(T ) +

∫
f dµf = suphµ(T ) +

∫
f dµ (10.3)

where the supremum is taken over all T -invariant Borel probability mea-
sures. We denote the supremum in (10.3) by P (f) (or PT (f) if we wish to
indicate the dependence on T ) and call it the pressure of f .

This allows us to extend the definition of pressure, which was previously only
defined for Hölder functions on shifts of finite type, to continuous functions
on compact metric spaces.

It is natural to ask: (i) for which class of function f is there an equilib-
rium state, and (ii) if an equilibrium state exists, is it necessarily unique?
We have already seen in Lecture 8 that, in the setting of a one-sided ape-
riodic shift of finite type, each Hölder continuous function has a unique
equilibrium state. We can use symbolic dynamics to prove the same result
for hyperbolic systems.

For convenience we first record the result for two-sided shifts of finite
type.

Lemma 10.6
Let σ : Σ → Σ be an aperiodic shift of finite type and let f ∈ Fθ(Σ, R).
Then f has a unique equilibrium state.

Proof. Choose u ∈ Fθ1/2(Σ, R) and g ∈ Fθ1/2(Σ+, R) such that f = uσ −
u+g. Then g has a unique equilibrium state; this is a σ-invariant probability
measure on Σ+ which we can extend to a σ-invariant probability measure µf

on Σ. From §10.7.1 it follows that σ-invariant Borel probability measure on
the two-sided shift of finite type Σ are in one-to-one correspondence with σ-
invariant Borel probability measures on the one-sided shift of finite type Σ+.
Noting that

∫
f dµ =

∫
g dµ for any σ-invariant Borel probability measure

on Σ, it follows that

hµf
(σ) +

∫
f̂ dµf = suphµ(σ) +

∫
f̂ , dµ

13
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where the supremum is taken over all σ-invariant Borel probability measures
on Σ, and µf is the only such measure that achieves this supremum. 2

We now prove the result for a hyperbolic map T : Λ → Λ on a hyperbolic
basic set Λ. We assume, without loss of generality, that T is topologically
mixing.

Proposition 10.7
Let T : Λ → Λ be a hyperbolic map restricted to a basic set Λ. Let f : Λ → R
be Hölder continuous. Then there exists a unique equilibrium state for f .

Proof. Choose a Markov partition and coding map π : Σ → Λ, for an
appropriate two-sided aperiodic shift of finite type Σ. Note that π is Hölder
continuous. Hence f̂ = f ◦ π ∈ Fθ(Σ, R) for an appropriate θ ∈ (0, 1). Let
µ̂f denote the unique equilibrium state for f̂ .

Let R be an element of the Markov partition. Let ∂R denote the bound-
ary of R as a subset of Λ and decompose ∂R = ∂sR ∪ ∂uR where

∂sR = {x ∈ R | x 6∈ intW u(x,R)}
∂uR = {x ∈ R | x 6∈ intW s(x,R)}.

(The geometric intuition is that ∂sR are the ‘edges’ of R in the stable
direction, and ∂uR are the ‘edges’ of R in the unstable direction.) De-
note ∂sR =

⋃
R∈R ∂sR and ∂uR =

⋃
R∈R ∂uR. Let Ds = π−1(∂sR) and

Du = π−1(∂uR). Then Ds, Du are non-empty strict closed subsets of Σ.
Moreover, σDs ⊂ Ds and σ−1Du ⊂ Du. As µ̂f is σ-invariant, it follows that
µ̂f (σnDs) = µ̂f (Ds). As σn+1Ds ⊂ σnDs, it follows that

µ̂f

( ∞⋂
n=0

σnDs

)
= µ̂f (Ds).

As
⋂∞

n=0 σnDs is σ-invariant and µ̂f is ergodic, this intersection has measure
either 0 or 1. Hence µ̂f (Ds) = 0 or 1. As the complement of Ds ⊂ Σ is a non-
empty open subset, it follows that µ̂f (Ds) must be 0. Similarly, µ̂f (Du) = 0.

Define µf = π∗µ̂f (so that µf (B) = µ̂f (π−1B)). Then µf is a T -invariant
probability measure defined on Λ. The above discussion shows that π :
Σ → Λ is a measure-theoretic isomorphism between between σ (with respect
to µ̂f ) and T (with respect to µf ). We will show that µf is the unique
equilibrium state for f .

As σ and T are measure-theoretically isomorphic (with respect to the
measures µ̂f and µf , respectively), it follows that hµ̂f

(σ) = hµf
(T ). Hence

hµf
(T ) +

∫
f dµf = hµ̂f

(σ) +
∫

f̂ dµ̂f

= Pσ(f̂).

The following result is easily proved:

14
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Lemma 10.8
Let Tj : Xj → Xj , j = 1, 2, be continuous transformations of compact
metric spaces. Suppose that T2 is a factor of T1, i.e. there exists a continuous
surjection π : X1 → X2 such that T2π = πT1. Let f : X2 → R be continuous.
Then PT1(fπ) ≥ PT2(f).

From this lemma it follows that Pσ(f̂) ≥ PT (f). Hence

hµf
(T ) +

∫
f dµf

≥ PT (f)

= suphµ(T ) +
∫

f dµ

where the infimum is taken over all T -invariant Borel probability measures.
Hence µf achieves this supremum and so is an equilibrium state for f .

Finally, we show that µf is the unique equilibrium state for f , i.e. µf

is the only T -invariant probability measure that achieves the supremum in
(10.3). We need the following lemma:

Lemma 10.9
Let µ ∈ M(Λ, T ) be a T -invariant Borel probability measure. Then there
exists a σ-invariant Borel probability measure ν ∈ M(Σ, σ) such that π∗ν =
µ.

Let µ be any equilibrium state for f . Choose ν as in the lemma so that
π∗ν = µ. Then hν(σ) ≥ hµ(T ). Hence

hν(σ) +
∫

f̂ dν ≥ hµ(f) +
∫

f dµ

= PT (f)
= Pσ(f̂).

Hence ν is an equilibrium state for f̂ . As we know that Hölder functions
defined on shifts of finite type have a unique equilibrium state, it follows
that ν = µ̂f . Hence µ = π∗ν = µf , and so f has a unique equilibrium state.

2

§10.8.2 SRB measures

As we have seen, for a given dynamical system there may be many different
ergodic measures. If the dynamical system is defined on a space with some
additional structure, say a Riemannian manifold, then we may want to pick
out ergodic measures that are related to this structure. We begin with the
following observation.

Let X be a compact metric space equipped with the Borel σ-algebra B
and let T : X → X be continuous. Let µ be an ergodic Borel probability

15
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measure for T . Recall that C(X, R) is separable and choose a countable
dense subset {fi} ⊂ C(X, R). Then for each i there exists a set Ni ∈ B with
µ(Ni) = 0 such that

lim
n→∞

1
n

n−1∑
j=0

fi(T jx) →
∫

fi dµ (10.4)

for all x 6∈ Ni. Let N =
⋃∞

i=1 Ni and note that µ(N) = 0. Clearly (10.4)
holds for each i, for all x ∈ N . By approximating an arbitrary continuous
function f ∈ C(X, R) by functions of the form fi it is easy to see that

lim
n→∞

1
n

n−1∑
j=0

f(T jx) →
∫

f dµ for all x ∈ N.

Thus, for continuous transformations of compact metric spaces and con-
tinuous observables, the set of measure zero for which Birkhoff’s Ergodic
Theorem fails can be chosen to be independent of the observation f .

Let M be a compact Riemannian manifold equipped with the Rieman-
nian volume m. Let T : M → M be a diffeomorphism of M and let
f : M → R be continuous. We are interested in understanding the limit

lim
n→∞

1
n

n−1∑
j=0

f(T jx) (10.5)

for m-a.e. x ∈ M . Typically the Riemannian volume will not be T -invariant;
even if it is invariant then it need not be ergodic. Hence there is no reason
to assume that (10.5) converges, or if it does, that it converges to

∫
f dm.

However, the Riemannian volume is a distinguished measure in the sense
that we view m-almost every point as being ‘typical’.

Suppose that T : M → M contains a locally maximal (not necessarily
hyperbolic) attractor. That is, there exists a T -invariant subset Λ ⊂ M and
an open set U ⊃ Λ such that ∩∞n=0T

nU = Λ. Given Λ, we call the largest
such U the basin of attraction of Λ and denote it by B(Λ). Thus the basin
of attraction B(Λ) of Λ is the set of all points whose orbits accumulate on
Λ under forward iteration by T . As B(Λ) is an open set, it has positive
measure with respect to the Riemannian volume. Now consider ergodic
averages of the form (10.5) for m-almost every point of B(Λ); it is natural
to expect (10.5) to converge to

∫
f dµ for some measure µ supported on the

attractor Λ.

Definition. Let T : M → M be a diffeomorphism of a compact Rieman-
nian manifold M with Riemannian volume m. Suppose Λ is an attractor
for T with basin B(Λ). We say that a probability measure µ (necessarily

16
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supported on Λ) is an SRB measure, or Sinai-Ruelle-Bowen measure, if

1
n

n−1∑
j=0

f(T jx) →
∫

f dµ

for m-almost every point x ∈ B(Λ) and for every continuous function f :
M → R.

Example. Let X ⊂ R2 denote the circle of radius 1 centred at (0, 1) in
R2. Call (0, 2) the North Pole (N) and (0, 0) the South Pole (S) of X. The
Riemannian volume m is Lebesgue measure.

Recall that we defined the North-South map T : X → X as follows.
Define φ : X \ {N} → R× {0} by drawing a straight line through N and x
and denoting by φ(x) the unique point on the x-axis that this line crosses
(this is just stereographic projection of the circle). Now define T : X → X
by

T (x) =
{

φ−1
(

1
2φ(x)

)
if x ∈ X \ {N},

N if x = N.

Hence T (N) = N , T (S) = S and if x 6= N then Tn(x) → S as n → ∞.
Thus Λ = {S} is an attractor with basin B(Λ) = X \ {N}. Note that

Thus if x 6= N and f : X → R is continuous then we have

1
n

n−1∑
j=0

f(T jx) → f(S) =
∫

f dδS .

Thus in this case, for m-almost every point x (10.5) converges to
∫

f dδS

for every continuous function f . Hence the Dirac measure supported at the
south pole is an SRB measure.

It is natural to ask when an SRB measure exists, and if it exists if it is
unique.

Proposition 10.10
Let T : M → M be a C1+α diffeomorphism of a compact Riemannian
manifold M . Suppose that Λ ⊂ M is a locally maximal hyperbolic attractor
for T . Then there is a unique SRB measure supported on Λ and it is the
equilibrium state of the Hölder continuous function − log DT |Eu .

Proof. See the references for the (lengthy) proof; the idea is as follows.
Recall that for a shift of finite type σ and Hölder function f , the equilibrium
state µf of f has an alternative characterisation as a Gibbs measure: there
exist constants C1, C2 > 0 such that

C1 ≤
µf [x0, . . . , xn−1]

e
Pn−1

j=0 f(σjx)−nP (f)
≤ C2,

17
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that is, the measure of a cylinder is approximated by the ergodic sum of f
of a point in that cylinder (subject to a correction by the pressure P (f) to
eliminate the potential linear growth in this sum).

Let T : Λ → Λ be a hyperbolic map on a basic set Λ and choose a
Markov partition R = {R1, . . . , Rk}. The natural analogue of a cylinder is
a set of the form

[x0, . . . , xn−1] = Rx0 ∩ T−1Rx1 ∩ · · · ∩ T−(n−1)Rxn−1 .

Let m denote the Riemannian volume. By the change of variables formula,
it seems reasonable to expect that

m[x0, . . . , xn−1] ∼ DTn(x)−1m(Rxn−1) ∼ Ce−
Pn−1

j=0 log DT |Eu (T jx).

This indicates why it is natural to expect − log DT |Eu to appear; the (many
and lengthy) details are in the references. 2

§10.9 References

Anosov diffeomorphisms were first discussed in

D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds with Nega-
tive Curvature, Proc. Steklov Inst., vol. 90, Amer. Math. Soc., Prov., Rhode
Isl., 1969

as discrete time analogues of Anosov flows. Anosov flows were introduced
as a generalisation of the geodesic flows on a compact Riemannian manifold
with negative sectional curvatures.

The definition of Axiom A, and its abstraction to hyperbolic maps on
basic sets, was first developed in

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73
(1973), 747–817,

which also discusses in detail many of the examples given in this lecture. In
particular, an Anosov automorphism of a nilmanifold (that is not a torus) is
constructed. A particularly readable treatment that includes the examples
discussed above can be found in

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynam-
ical Systems, Encyclopædia of Math., vol. 54, C.U.P., Cambridge, 1995.

The construction of Markov partitions at this level of generality goes
back to

R. Bowen, Markov partitions for axiom A diffeomorphisms, Amer. J. Math.
92, 725–747
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(although the idea for symbolically coding a dynamical system goes back to
at least 1934 (Hedlund’s proof that the geodesic flow on a surface of constant
negative curvature is ergodic with respect to the Liouville measure)). The
material on equilibrium states and SRB measures can be found in

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomor-
phisms, Lecture Notes in Math., vol. 470, Springer, Berlin, 1975.

§10.10 Exercises

Exercise 10.1
Show that the solenoid T : Λ → Λ is topologically conjugate to an automor-
phism of a compact abelian group. (Hint: consider 2-adic numbers.)

Exercise 10.2
Let T : R/Z → R/Z be a continuous map on the unit circle with sup |T ′(x)| ≥
r > 1 for some r. We regard the circle as being equal to [0, 1] with the end-
points identified. Suppose there exist points 0 = a0 ≤ a1 ≤ · · · an−1 ≤ an =
1 such that (denoting [aj , aj+1] by Rj) for each j, T (Rj) is a union of sets
of the form Ri. Then we call T a Markov map of the interval.

(The doubling map Tx = 2x mod 1 is an example: take a0 = 0, a1 =
1/2, a2 = 1 and let R0 = [0, 1/2] and R1 = [1/2, 1]. Then T (R0) = R0∪R1 =
T (R1).)

(i) Define a 0− 1 matrix A by Ai,j = 1 if and only if Rj ⊂ T (Ri) and let
Σ denote the corresponding one-sided shift of finite type. Show that
there exists a continuous surjective map π : Σ → R/Z defined by

π(x0, x1, · · ·) =
∞⋂

j=0

T−jRxj .

Show that Tπ = πσ. Show that π is injective except on a countable
set.

(ii) Suppose that the matrix A is aperiodic. Let f : [0, 1] → R be Hölder.
Show that f has a unique equilibrium state.

Exercise 10.3
Prove Lemmas 10.8 and 10.9.

(Hint for Lemma 10.9: Let µ ∈ M(Λ, T ) and define a continuous lin-
ear functional w(fπ) =

∫
f dµ on the subspace of continuous functions in

C(Σ, R) of the form fπ for some f ∈ C(Λ, T ). Use the Hahn-Banach theo-
rem to extend this to a functional on all of C(Σ, R) and then use the Hahn-
Banach theorem to find a measure ν on Σ such that π∗ν = µ. Consider
weak-∗ limits of n−1

∑n−1
j=0 σj

∗ν to find a suitable invariant measure.

19


