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8. Topological entropy

§8.1 Introduction

In the previous lecture we defined the entropy of a measure-preserving trans-
formations on a probability space. In this lecture we study entropy in the
context of continuous transformations of compact metric spaces. In partic-
ular, given a continuous transformation T : X → X of a compact metric
space X, we can study the map µ 7→ hµ(T ) : M(X,T ) 7→ R. For a wide
class of dynamical system this entropy function is bounded and attains its
supremum; we obtain ‘measures of maximal entropy’.

Entropy as we’ve defined it so far is a purely measure-theoretic con-
struction. Indeed, one often refers to hµ(T ) as the metric entropy of T ; here
‘metric’ is a contraction of ‘measure-theoretic’, it does not refer to a met-
ric or topological structure on the probability space X. There is a related
concept of topological entropy. It turns out that topological entropy and
measure-theoretic entropy are very closely related by a variational principle.

§8.2 Recap on entropy

Let (X.B, µ) be a probability space. Let T : X → X be a measure-preserving
transformation.

In the previous lecture we used α, β, . . . to denote finite or countable
partitions of X. In this lecture we will use ζ, η.

Let ζ = {Ai}, Ai ∈ B be a finite or countable partition of X. We define

Hµ(ζ) = −
∑
A∈ζ

µ(A) logµ(A)

to be the entropy of ζ.
If ζ and η are two partitions of X then we let ζ ∨ η. the join of ζ and η,

denote the partition {A ∩B | A ∈ ζ,B ∈ η}.
Let T−1ζ = {T−1A | A ∈ ζ}. We define

hµ(T, ζ) = lim
n→∞

1
n
Hµ

n−1∨
j=0

T−jζ


to be the entropy of T relative to ζ; the limit exists by subadditivity.

Finally, we define
hµ(T ) = suphµ(T, ζ) (8.1)
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where the supremum is taken over all finite or countable partitions ζ with
Hµ(ζ) <∞. Indeed, although we will not prove it, it is sufficient to take the
supremum just over finite partitions. We call hµ(T ) the entropy of T with
respect to µ; if T is fixed then we sometimes refer to hµ(T ) as the entropy
of µ.

Certain partitions ζ achieve the supremum in (8.1). A partition ζ is a
generator if

n∨
j=−n

T−jζ ↗ B

as n → ∞. Equivalently, ζ is a generator if ∨nj=−nT−jζ separates µ-almost
every pair of points: for almost every x, y ∈ X, x 6= y, there exists n such
that x and y are in different elements of the partition ∨nj=−nT−jζ. In this
case, we have the following theorem:

Theorem 8.1 (Sinai’s theorem)
Let T be a measure-preserving transformation of a probability space (X,B, µ).
Let ζ be a generator with Hµ(ζ) <∞. Then hµ(T ) = hµ(T, ζ).

§8.3 The entropy map and expansive homeomorphisms

§8.3.1 The weak∗ topology

Let X be a compact metric space equipped with the Borel σ-algebra B. Let
C(X,R) denote the space of all continuous real-valued functions on X. Let
M(X) denote the set of all Borel probability measures on X. Recall that
we equip M(X) with the weak∗ topology as follows: if µn, µ ∈ M(X) then
we say that µn ⇀ µ if

∫
f dµn →

∫
f dµ as n→∞ for all f ∈ C(X,R). The

space M(X) is weak∗ compact.
A measure µ is T -invariant if µ(T−1B) = µ(B) for all B ∈ B. Let

M(X,T ) denote the space of all T -invariant Borel probability measures.
We saw in Lecture 6 that M(X,T ) is a non-empty compact convex subset
of M(X).

§8.3.2 The entropy map

Let T be a continuous transformation of a compact metric space X. For each
invariant probability measure µ ∈ M(X,T ) we can calculate the entropy
hµ(T ). How does the entropy vary as a function of µ?

In general, the map µ 7→ hµ(T ) is not continuous, as the following ex-
ample shows.

Proposition 8.2
Let Σ2 = {(xj)∞j=0 | xj ∈ {0, 1}} denote the full one-sided 2-shift and let
σ : Σ2 → Σ2 denote the shift map. Then the map µ 7→ hµ(σ) is not weak∗
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continuous.

Proof. Recall that x = (xj) is a periodic point for σ with period n if
xj = xj+n for all j ∈ N. Thus a periodic point is determined by the first n
terms in the sequence x. Hence for each n ≥ 1, there are 2n points of period
n for σ. Let

µn =
1
2n

∑
x=σnx

δx

denote the measure supported on the set of periodic points of period n,
giving each periodic point mass 1/2n. It is clear that µn ∈M(X,T ).

As µn is atomic, it is a straightforward calculation to check that hµn(σ) =
0.

Let µ denote the Bernoulli (1/2, 1/2)-measure. We will show below that
µn ⇀ µ. The proposition follows as hµ(σ) = log 2.

To see that µn ⇀ µ we have to show that
∫
f dµn →

∫
f dµ for all con-

tinuous function f : Σ2 → R. It is clear that we only need check this for
a dense subset of continuous functions. By the Stone-Weierstrass Theorem,
functions f : Σ2 → R that depend only on finitely many co-ordinates, that
is functions of the form f(x) = f(x0, . . . , xm) for some m ≥ 0, are dense in
C(Σ2,R). (We often refer to such functions as being locally constant.) Hence
we only need check that

∫
f dµn →

∫
f dµ when f is locally constant. As lo-

cally constant functions are finite linear combinations of characteristic func-
tions of cylinders, we need only check that

∫
χ[x0,...,xm] dµn →

∫
χ[x0,...,xm] dµ

for each cylinder [x0, . . . , xm]. However, it is clear that if n ≥ m then∫
χ[x0,...,xm] dµn =

1
2m

=
∫
χ[x0,...,xm] dµ.

2

Although in general the map µ 7→ hµ(T ) is not continuous, in many
situations it is upper semi-continuous.

Definition. The entropy map µ 7→ hµ(T ) is upper semi-continuous if
whenever µn ⇀ µ we have lim supn→∞ hµn(T ) ≤ hµ(T ).

(There are examples to show that in general the entropy map is not upper
semi-continuous.)

Proposition 8.3
Suppose T : X → X is a homeomorphism with the following property: there
exists δ > 0 such that every finite partition ζ of (X,B) with diam ζ < δ is a
generator:

∞∨
j=−∞

T−jζ = B.

Then then entropy map µ 7→ hµ(T ) is upper semi-continuous.
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Remark Recall that if µn ⇀ µ then it does not follow that µn(B)→ µ(B)
for all B ∈ B. However, one can prove that if µn ⇀ µ then µn(B) → µ(B)
for all B ∈ B with µ(∂B) = 0. (Indeed, this is equivalent to µn ⇀ µ.)

Proof. We first claim that one can find a finite partition ζ = {B1, . . . , Bk}
of X such that diam ζ < δ and µ(∂Bi) = 0. To see this, first note that for any
x ∈ X there exists δ′ < δ such that µ(∂B(x, δ′)) = 0 (as we cannot have an
uncountable collection of disjoint sets of positive measure). There is a finite
open cover β = {A1, . . . , Ar} by open balls of radius < δ/2 and µ(∂Ai) = 0.
Let B1 = A1 and define inductively Bn = An \ (B1 ∪ · · · ∪ Bn−1). Then
ζ = {B1, . . . , Bn} forms a partition of X such that diamBi ≤ diamAi ≤ δ
and, as ∂Bi ⊂

⋃i
j=1 ∂Ai, µ(∂Bi) = 0.

Let ζ be a finite partition ofX with diam ζ < δ. Then, as ζ is a generator,
by Sinai’s theorem we have that for each µ ∈M(X,T ),

hµ(T ) = hµ(T, ζ) ≤ Hµ(ζ) ≤ log card ζ <∞.

Suppose that µj ∈ M(X,T ) is such that µj ⇀ µ. Choose a finite
partition ζ = {B1, . . . , B`} with diam ζ < δ and µ(∂Bi) = 0, 1 ≤ i ≤ `.
Then

hµj (T ) = hµj (T, ζ) ≤ 1
n
Hµj

n−1∨
j=0

T−jζ

 . (8.2)

Note that, if µ(∂Bi) = 0 for all Bi ∈ ζ then

Hµj (ζ) = −
∑̀
i=1

µj(Bi) logµj(Bi)→ −
∑̀
i=1

µ(Bi) logµ(Bi) = Hµ(ζ).

More generally, as a typical element of the partition
∨n−1
j=0 T

−jξ has the form⋂n−1
k=0 T

−kBik and ∂(
⋂n−1
k=0 T

−kBik) ⊂
⋃n−1
k=0 T

−k∂Bik , we have

Hµj

n−1∨
j=0

T−jζ

→ Hµ

n−1∨
j=0

T−jζ

 .

Letting j →∞ in (8.2) we see that for each n,

lim sup
j→∞

hµj (T ) ≤ 1
n
Hµ

n−1∨
j=0

T−jζ

 .

Letting n→∞ we obtain

lim sup
j→∞

hµj (T ) ≤ hµ(T ).

2
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§8.3.3 Expansive homeomorphisms

We want to find a wide class of examples of dynamical systems that satisfy
the hypotheses of Proposition 8.3.

Definition. Let X be a compact metric space. A homeomorphism T :
X → X is said to be expansive if there exists δ > 0 such that if d(Tnx, Tny) ≤
δ for all n ∈ Z then x = y. We call δ an expansive constant.

Remark Thus T is expansive if the orbits of any two distinct points x, y ∈
X are, at some time, distance at least δ apart.

Proposition 8.4
A two-sided shift of finite type is expansive.

Proof. Let σ : ΣA → ΣA be a shift of finite type. Recall that the metric
d on ΣA is defined, essentially, as d(x, y) = 1/2|n| where n is the first place
in which the sequences x, y disagree.

Let δ = 1/2. Suppose x = (xj)∞j=−∞, y = (yj)∞j=−∞ ∈ ΣA. If x 6= y then
there exists n such that xn 6= yn. Hence d(σnx, σny) = 1 ≥ δ. 2

Proposition 8.5
Let A be a k×k matrix with integer coefficients and detA = ±1. Define the

linear toral automorphism T : Rk/Zk → Rk/Zk by Tx = Ax mod 1. Then
T is expansive if and only if A is hyperbolic.

Proof. Omitted. 2

Remark More generally, Anosov diffeomorphisms are expansive, as are
Axiom A diffeomorphisms on their basic sets.

We will need the following technical result.

Lemma 8.6
Let T be an expansive homeomorphism of a compact metric space with
expansive constant δ > 0.

(i) The following holds: ∀ε > 0, ∃N ∈ N such that if d(T jx, T jy) ≤ δ for
−N ≤ j ≤ N then d(x, y) < ε.

(ii) Let ζ = {B1, . . . , Bk} be a finite partition of X with diam ζ ≤ δ. Then

diam
n∨

j=−n
T−jζ → 0

as n→∞.
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(iii) If {ζn} is a sequence of finite partitions of X such that diam ζn → 0
then the smallest σ-algebra containing all the elements of

∨n
j=1 ζj ,

n ≥ 1, is B, i.e.
∞∨
j=1

ζn = B.

Proof. We prove (i). Suppose that the statement in (i) fails: i.e. ∃ε >
0 such that ∀N ∈ N, ∃xN , yN with d(T jxN , T jyN ) ≤ δ, −N ≤ j ≤ N
but d(xN , yn) ≥ ε. By compactness, we can choose subsequences xNi →
x, yNi → y. Then d(T jx, T jy) ≤ δ for all j ∈ Z but d(x, y) ≥ ε > 0,
contradicting expansiveness.

We prove (ii). First note that diam
∨n
j=−n T

−jζ decreases as n increases.
Let ε > 0. Choose N as in part (i). Note that if x, y are in the same element
of the partition

∨N
j=−N T

−jζ then T jx, T jy are in the same element of ζ, for
−N ≤ j ≤ N . Hence d(T jx, T jy) ≤ δ for −N ≤ j ≤ N . Hence, by part (i),
d(x, y) < ε. Hence diam

∨N
j=−N T

−jζ < ε. As this is a decreasing sequence,
diam

∨n
j=−n T

−jζ < ε for all n ≥ N .
We prove (iii). It is sufficient to prove that every open ball B(x, ε) is

in
∨∞
n=1 ζn. For each k, choose Nk such that if nNk then diam ζn ≤ 1/k.

For k > [1/ε], let Ek denote the union of all sets in ζNk
that intersect

B(x, ε− 1/k). Then

B(x, ε− 1/k) ⊂ Ek ⊂ B(x, ε).

Hence
⋃∞
k=1Ek = B(x, ε). Since Ek is in the σ-algebra generated by ζNk

we
have that

∞⋃
k=1

Ek ∈
∞∨
n=1

ζn.

2

Proposition 8.7
Let T be an expansive homeomorphism of a compact metric space X and
let δ be an expansive constant for T . Let ζ be a finite partition of X with
diam ζ < δ. Then

∞∨
j=−∞

T−jζ = B.

Proof. Let ζn =
∨n
j=−n T

−jζ. Then, by Lemma 8.6(ii), diam ζn → 0 as
n→∞. By Lemma 8.6(iii) we have

B =
∞∨
n=1

ζn =
∞∨

j=−∞
T−jζ.

2
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Combining Proposition 8.3 and Proposition 8.7 we see that the entropy map
for expansive homeomorphisms is upper semi-continuous.

Theorem 8.8
Let T be an expansive homeomorphism of the compact metric space X.
Then the entropy map

µ 7→ hµ(T ) : M(X,T )→ R

is upper semi-continuous in the weak∗ topology.

§8.4 Topological entropy

Let X be a compact metric space and let T : X → X be continuous. We
introduce topological entropy - a topological analogue of metric entropy.

§8.4.1 Definition in terms of open covers

Recall that an open cover α of a metric space X is a collection of open sets
α = {Ui, i ∈ I} such that

⋃
Ui∈α Ui = X. In most cases. the sets Ui ∈ α will

not be pairwise disjoint.
First recall that if X is a compact metric space then every open cover

has a finite subcover. For a given open cover there may be lots of different
ways of choosing a finite subcover. However, given an open cover we can
always choose a finite subcover of smallest cardinality.

Definition. Let α be an open cover of X. We define the entropy of α to
be

Htop(α) = logN(α)

where N(α) is the cardinality of the smallest finite subcover of α.

We can form joins and refinements as with metric entropy:

Definition. Let α, β be open covers of X. We define the join α ∨ β to be
the open cover of X by sets of the form A ∩B, where A ∈ α,B ∈ β.

Definition. Let α, β be open covers of X. We say that β is a refinement
of α and write α ≤ β if every member of β is a subset of an element of α.

Note that α ≤ α ∨ β for all open covers α, β.

Definition. Let T : X → X be a continuous transformation. We define
T−1α to be the open cover of X by sets of the form T−1A, A ∈ α.

It is straightforward to check from the definitions that T−1(α∨β) = T−1α∨
T−1β, and if α ≤ β then T−1α ≤ T−1β.

Here are some easy, but useful, properties of H(α).

7
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Lemma 8.9
(i) If α ≤ β then Htop(α) ≤ Htop(β).

(ii) If α and β are open covers then Htop(α ∨ β) ≤ Htop(α) +Htop(β).

(iii) If T is continuous then Htop(T−1α) ≤ Htop(α). If, in addition, T is
surjective then Htop(T−1α) = Htop(α).

Proof. (i) Suppose that α ≤ β. Choose a subcover {B1, . . . , BN(β)} of β
of minimal cardinality. For each i, choose AI ∈ α such that Bi ⊂ Ai.
Then {A1, . . . , AN(β)} is a finite subcover of α of cardinality N(β).
Hence N(α) ≤ N(β).

(ii) Let α = {A1, . . . , AN(α)}, β = {B1, . . . , BN(β)} be subcovers of mini-
mal cardinality of α, β, respectively. Then

{Ai ∩Bj | 1 ≤ i ≤ N(α), 1 ≤ j ≤ N(β)}

is a finite subcover of α∨β of cardinality N(α)N(β). Hence N(α∨β) ≤
N(α)N(β). Taking logs we see that Htop(α∨β) ≤ Htop(α) +Htop(β).

(iii) Let {A1, . . . , AN(α)} be a finite subcover of α of minimal cardinal-
ity. Then {T−1A1, . . . , T

−1AN(α)} is a subcover of T−1α. Hence
N(T−1α) ≤ N(α).

Conversely, suppose that {T−1A1, . . . , T
−1AN(T−1α)} is a subcover of

T−1α of minimal cardinality. As T is surjective, {A1, . . . , AN(T−1α)}
is a subcover of α. Hence N(α) ≤ N(T 1α).

2

We can now define the entropy of T relative to an open cover α.

Definition. Let T : X → X be a continuous transformation of a compact
metric space X and let α be an open cover. Define

htop(T, α) = lim
n→∞

1
n
Htop

n−1∨
j=0

T−jα

 (8.3)

to be the topological entropy of T relative to α.

To check that the limit exists it is sufficient to check that quantities in (8.3)
form a subadditive sequence. This follows as

Htop

n+m−1∨
j=0

T−jα

 = Htop

n−1∨
j=0

T−jα ∨
n+m−1∨
j=n

T−jα


≤ Htop

n−1∨
j=0

T−jα

+Htop

T−n m−1∨
j=0

T−jα


8
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≤ Htop

n−1∨
j=0

T−jα

+Htop

m−1∨
j=0

T−jα


by Lemma 8.9.

Finally, we can now define the topological entropy of T .

Definition. Let T be a continuous transformation of a compact metric
space X. We define the topological entropy of T to be

htop(T ) = sup{htop(T, α) | α is an open cover of X}.

§8.4.2 Bowen’s definition

Let X be a compact metric space with metric d. For x ∈ X, r > 0, we define
the open and closed balls with centre x and radius r to be

B(x, r) = {y ∈ X | d(x, y) < r}
D(x, r) = {y ∈ X | d(x, y) ≤ r}.

Let T : X → X be continuous. For each n ≥ 1 we define the metric dn
by

dn(x, y) = max
0≤j≤n−1

d(T jx, T jy).

Thus an dn-open ball with centre x and radius ε is

Bn(x, ε) =
n−1⋂
j=0

T−jB(T jx, ε).

Alternatively, a point y is within dn-distance ε of x if the first n iterates of
both x and y remain within distance ε of each other; i.e. dn(x, y) < ε if and
only if d(T jx, T jy) < ε for 0 ≤ j ≤ n− 1.

Definition. Let n ≥ 1, ε > 0. A subset F ⊂ X is said to (n, ε)-span X
with respect to T if the set of dn-balls of radius ε and centres in F covers
X. That is,

X =
⋃
x∈F

Bn(x, ε).

We want to make (n, ε)-spanning sets as small as possible. This motivates
the following definition.

Definition. Let n ≥ 1, ε > 0. Let pn(ε) denote the smallest cardinality of
an (n, ε)-spanning set with respect to T .

Remarks.

9
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(i) Note that as X is compact with respect to the dn-metric, it follows
that pn(ε) <∞.

(ii) It is clear from the definition that if ε1 < ε2 then pn(ε1) ≥ pn(ε2).

As n increases, we would expect the quantity pn(ε) to grow exponentially
fast. This motivates the following definition:

Definition. Let ε > 0. Define

p(ε) = lim sup
n→∞

1
n
pn(ε).

Possibly p(ε) could be ∞.
As pn(ε) increases as ε ↘ 0, it follows that p(ε) increases as ε ↘ 0.

Hence we can make the following definition.

Definition. We define the entropy of T to be

htop(T ) = lim
ε→0

p(ε).

We shall show below that this definition agrees with the definition in 8.4.1.
Before we do this, it is useful to have another definition of h(T ).

Definition. Let n ≥ 1, ε > 0. A subset E ⊂ X is said to (n, ε)-separate
X if the dn-distance between any two points in E is greater than ε: i.e. for
all x, y ∈ E, x 6= y, dn(x, y) > ε.

We want to make (n, ε)-separated sets as large as possible. Thus we define:

Definition. Let n ≥ 1, ε > 0. Let qn(ε) denote the largest cardinality of
an (n, ε)-separated set.

There is a nice relation between qn(ε) and pn(ε).

Lemma 8.10
Let ε > 0. Then pn(ε) ≤ qn(ε) ≤ pn(ε/2).

Proof. Let E be an (n, ε)-separated set of maximal cardinality qn(ε). Then
E must be (n, ε)-spanning (if not, there would be a point in X of dn-distance
at least ε from all the points in E, contradicting maximality). Hence pn(ε) ≤
qn(ε).

For the other inequality, again suppose that E is an (n, ε)-separated set
of maximal cardinality qn(ε). Let F be an (n, ε/2)-spanning set. Let x ∈ E.
Then there exists y ∈ F such that dn(x, y) < ε/2. The map that sends
x 7→ y : E → F is injective. (If not, then two different points x, x′ ∈ E
could map to the same y ∈ F . Then dn(x, x′) ≤ dn(x, y) + dn(y, x′) < ε,
contradicting the fact that E is (n, ε)-separated. Hence the cardinality of F
is greater than qn(ε), that is, qn(ε) ≤ pn(ε/2). 2

10
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It follows that if we define

q(ε) = lim sup
n→∞

1
n

log qn(ε)

then
htop(T ) = lim

ε→0
q(ε).

§8.4.3 The two definitions of topological entropy coincide

We will show that the definition of topological entropy using open covers and
the definition using separated/spanning sets coincide. Let us (temporarily)
introduce the notation hoc(T ) to denote the topological entropy of T using
open covers, and hs(T ) to denote the topological entropy of T using either
separated or spanning sets.

It will be useful to recall the notion of a Lebesgue number for an open
cover.

Definition. Let α be an open cover of a metric space X. We say that
r > 0 is a Lebesgue number for α if for every x ∈ X there exists A ∈ α such
that B(x, r) ⊂ A.

If X is compact then every open cover has a finite Lebesgue number.
If α is an open cover then we define the diameter of α to be diamα =

supA∈α diamA. Suppose that α is an open cover for X with Lebesgue num-
ber r > 0. Suppose that β is another open cover of X and diamβ < r. Then
every element of β is contained in an element of α. Hence α ≤ β.

The following result is useful in calculating hoc(T ); it is the topological
analogue of Abramov’s theorem in the calculation of metric entropy.

Proposition 8.11
Let T : X → X be a continuous transformation of a compact metric spaceX.
Suppose that αn is a sequence of open covers of X such that diamαn → 0.
Then

hoc(T ) = lim
n→∞

hoc(T, αn).

Proof. Let ε > 0. Choose an open cover β such that

hoc(T, β) =
{
hoc(T )− ε if hoc(T ) <∞
1/ε if hoc(T ) =∞.

Let r be a Lebesgue number for β. Choose N such that if n ≥ N then
diamαn < r. Hence β ≤ αn for all n ≥ N . Hence hoc(T, αn) ≥ hoc(T, β).
Letting n → ∞ and then letting ε → 0 shows that limn→∞ hoc(T, αn) =
hoc(T ). 2

The following is the key technical result.

11
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Proposition 8.12
Let X be a compact metric space and let T : X → X be continuous.

(i) Let α be an open cover of X with Lebesgue number r > 0. Then

N

n−1∨
j=0

T−jα

 ≤ pn(r/2) ≤ qn(r/2).

(ii) Let β be an open cover with diamβ < ε. Then

pn(ε) ≤ qn(ε) ≤ N

n−1∨
j=0

T−jβ

 .

Proof. We already know that pn(ε) ≤ qn(ε).
We prove (i). Let F be an (n, r/2)-spanning set of minimal cardinality

pn(r/2) so that

X =
⋃
x∈F

Bn(x, r/2) =
⋃
x∈F

n−1⋂
j=0

T−jB(T jx, r/2).

For each j, B(T jx, r/2) is an open set of diameter r. As r is a Lebesgue
number for α, it follows that, for each j, B(T jx, r/2) is a subset of an
element of α. Hence

N

n−1∨
j=0

T−jα

 ≤ pn(r/2).

We prove (ii). Let E be an (n, ε)-separated set of cardinality qn(ε). No
member of the open cover

n−1∨
j=0

T−jβ

can contain two elements of E. Hence

qn(ε) ≤ N

n−1∨
j=0

T−jβ

 .

2

Finally we can prove the two definitions of topological entropy coincide.

Theorem 8.13
Let X be a compact metric space and let T : X → X be continuous. Then

hoc(T ) = hs(T ).

12
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Proof. Let ε > 0. Let αε denote the open cover of X using all open balls
(using the metric d) of radius 3ε. Note that αε has Lebesgue number 2ε.
Let βε be any cover by open balls of radius ε/2. Then by Proposition 8.12
we have

N

n−1∨
j=0

T−jαε

 ≤ pn(ε) ≤ qn(ε) ≤ N

n−1∨
j=0

T−jβε

 . (8.4)

Taking logarithms, dividing by n and letting n→∞ in (8.4) gives

hoc(T, αε) ≤ p(ε) ≤ q(ε) ≤ hoc(T, βε).

Let ε = 1/k. Letting k →∞ and using Proposition 8.11 we obtain

hoc(T ) ≤ hs(T ) ≤ hoc(T )

and the result follows. 2

§8.5 Calculating topological entropy

Let T be a continuous homeomorphism of a compact metric space X. Let
α = {A1, . . . , Ak} be a finite open cover for X. For each point x ∈ X we can
look at the sequence of elements of α that the orbit of x visits (in the same
way that we coded, for example, the orbits of the doubling map in Lecture 1).
Note that x ∈ X has coding (ij)∞j=−∞ precisely when x ∈

⋂∞
j=−∞ T

−jAij .
Note that, in general, two points may have the same coding.

Definition. We say that a finite open cover α is a (topological) generator
if for each sequence (ij)∞−∞ ∈ {1, . . . , k}Z we have

card
∞⋂

j=−∞
T−jAij = 0 or 1.

(Here, A denotes the closure of A.)

Remark In other words, α is a generator if every possible sequence has
at most one point with that coding.

The existence of a generator is very closely related to expansivity prop-
erties of the dynamics.

Proposition 8.14
The following are equivalent:

(i) T is an expansive homeomorphism;

(ii) there exists a (topological) generator;

13
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(iii) there exists a (topological) weak generator, i.e. a finite open cover
α = {A1, . . . , Ak} such that for every sequence (ij)∞−∞ ∈ {1, . . . , k}Z
we have

card
∞⋂

j=−∞
T−jAij = 0 or 1.

Proof. Omitted. See Walters. 2

The following is the analogue of Sinai’s theorem for topological entropy.

Proposition 8.15
Let T be an expansive homeomorphism of a compact metric space X and
let α be a (topological) generator. Then htop(T ) = htop(T, α).

Proof. By definition, htop(T, α) ≤ htop(T ).
We first claim that diam

∨n
j=−n T

−jα → 0 as n → ∞. Certainly this
sequence decreases, so suppose for a contradiction that diam

∨n
j=−n T

−jα→
ε0 > 0 as n → ∞. So for all n ≥ 1, there exists xn, yn in the same element
of
∨n
j=−n T

−jα. Hence d(xn, yn) ≥ ε0/2. By compactness, we may take a
subsequence so that xnj → x, ynj → y. Let xnj , ynj ∈

⋂nj

k=−nj
T−kAnj ,k.

Fix k. Then infinitely many of the Anj ,k are the same, as α is a finite open
cover, Anj ,k = A′j say. Then x, y ∈ T−jAj′ . Hence x, y ∈

⋂∞
j=−∞ T

−jAj′ , so
x = y, a contradiction.

Let β be any open cover of X and let r > 0 be a Lebesgue number for
β. Choose N such that diam

∨N
j=−N T

−jα ≤ r. Then β <
∨N
j=−N T

−jα.
Hence

htop(T, β) ≤ htop

T, N∨
j=−N

T−jα


= lim

n→∞

1
n
Htop

n−1∨
i=0

T−i
N∨

j=−N
T−jα


= lim

n→∞

1
n
Htop

N+n−1∨
j=−N

T−jα


= lim

n→∞

2N + n− 1
n

1
2N + n− 1

Htop

2N+n−1∨
j=0

T−jα


= htop(T, α).

Hence htop(T, β) ≤ htop(T, α). Taking the supremum over all open covers
β, we have htop(T ) ≤ htop(T, α). 2

We can now calculate the topological entropy for some shifts.

14
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Proposition 8.16
Let σ : Σk → Σk denote the full two-sided k-shift on symbols {1, . . . , k}.
Then htop(T ) = log k.

Proof. Let α = {[1], . . . , [k]} denote the partition of Σk into cylinders of
length 1. Note that α is an open cover of Σk. As cylinders are also closed,
it is straightforward to see that α is a (topological) generator.

Note that the elements of
∨n
j=0 σ

−jα is the partition of Σk into cylinders
of length n, of which there are kn. Hence

htop(σ) = h(σ, α)

= lim
n→∞

1
n
Htop

n−1∨
j=0

σ−jα


= lim

n→∞

1
n

log kn

= log k.

2

More generally, we can calculate the topological entropy of a shift of
finite type.

Proposition 8.17
Let A be an irreducible k× k matrix with entries in {0, 1} and let σ : ΣA →
Σa be the corresponding shift of finite type. Then htop(σ) = log λ where λ
is the largest positive eigenvalue of A.

Remark The largest (in modulus) eigenvalue of an irreducible matrix is
always real by the Perron-Frobenius theorem.

Proof. Let α = {[1], . . . , [k]}. Again, α is a finite open cover and a (topo-
logical) generator.

We have already seen that
∨n−1
j=0 σ

−jα is the partition of ΣA into cylinders
of length n. Hence

Htop

n−1∨
j=0

σ−jα

 = log card {no. of cylinders of length n in ΣA}.

Note that the cylinder [i0, . . . , in−1]∩ΣA 6= ∅ if and only ifAi0,i1Ai1,i2 · · ·Ain−2,in−1 =
1. Hence the number of cylinders of length n that intersect ΣA is ‖An‖ where
‖ · ‖ is the matrix norm given by ‖B‖ =

∑
i,j |Bi,j |.

15
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Hence

htop(σ) = htop(σ, α)

= lim
n→∞

1
n
Htop

n−1∨
j=0

σ−jα


= lim

n→∞

1
n

log ‖An‖

= log λ

by the spectral radius formula. 2

§8.5.1 The variational principle

The following important result relates metric and topological entropy.

Theorem 8.18 (The variational principle)
Let T : X → X be a continuous transformation of a compact metric space
X. Then

htop(T ) = sup
µ∈M(X,T )

hµ(T ).

Proof. We use α, β, . . . to denote open covers (used in the calculation of
topological entropy) of X, and ζ, η, . . . to denote partitions (used in the
calculation of metric entropy) of X.

First note that one can also define metric entropy as

hµ(T ) = suphµ(T, ζ)

where the supremum is taken over finite partitions. (Our previous definition
had the supremum taken over all partitions of finite entropy.)

Let µ ∈M(X,T ). We show that hµ(T ) ≤ htop(T ). Let ζ = {A1, . . . , Ak}
be a finite partition of X. Choose ε > 0 such that ε < 1/k log k. We can
choose compact sets Bj such that Bj ⊂ Aj and µ(Aj \ Bj) ≤ ε, 1 ≤ j ≤ k.
Let η denote the partition η = {B0, B1, . . . , Bk} where B0 = X \

⋃k
j=1Bj .

Note that µ(B0) ≤ kε.
We calculate the conditional entropy of ζ given η. Indeed,

Hµ(ζ | η) = −
k∑
i=0

µ(Bi)
k∑
j=1

µ(Aj ∩Bi)
µ(Bi)

log
µ(Aj ∩Bi)
µ(Bi)

= −µ(B0)
k∑
j=1

µ(Aj ∩B0)
µ(B0)

log
µ(Aj ∩B0)
µ(B0)

≤ µ(B0) log k
≤ kε log k
≤ 1

16
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since, for i 6= 0, µ(Aj ∩Bi)/µ(Bi) = 0 or 1. Hence

hµ(T, ζ) ≤ hµ(T, η) +Hµ(ζ | η) ≤ hµ(T, η) + 1. (8.5)

For i 6= 0, we have that B0 ∪Bi = X \ ∪j 6=iBj is open. Hence

β = {B0 ∪B1, . . . , B0 ∪Bk}

is an open cover of X. Moreover,

Hµ

n−1∨
j=0

T−jη

 ≤ log

card
n−1∨
j=0

T−jη


≤ log

2nN

n−1∨
j=0

T−jβ


= n log 2 + logN

n−1∨
j=0

T−jβ

 ,

so that
hµ(T, η) ≤ log 2 + htop(T, β) ≤ log 2 + h(T ) (8.6)

Combining (8.5) and (8.6) we have that

hµ(T, ζ) ≤ htop(T ) + log 2 + 1.

Taking the supremum over all finite partitions ζ we have

hµ(T ) ≤ htop(T ) + log 2 + 1. (8.7)

This holds for all continuous transformations T . In particular, replacing
T by Tn for each n ≥ 1 and using exercise 8.4, we have

nhµ(T ) = hµ(Tn) ≤ htop(Tn) + log 2 + 1 = nhtop(T ) + log 2 + 1.

Dividing by n and letting n→∞ gives hµ(T ) ≤ htop(T ).
Conversely, we show that htop(T ) ≥ suphµ(T ) where the supremum is

taken over all µ ∈ M(X,T ). Let ε > 0. To show that htop(T ) ≥ suphµ(T )
it is sufficient to construct µ ∈M(X,T ) such that hµ(T ) ≥ q(ε).

Let En be an (n, ε)-separated set of cardinality qn(ε). Define

σn =
1

qn(ε)

∑
x∈En

δx ∈M(X).

Let

µn =
1
n

n−1∑
j=0

T j∗σn.

Since M(X) is weak∗ compact, µn has a weak∗ convergent subsequence with
limit µ ∈ M(X,T ) (see Lecture 6). One can then show (with some work)
that hµ(T ) ≥ q(ε). 2

17
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§8.5.2 Measures of maximal entropy

We are interested in measures which maximise the entropy.

Definition. A measure µ ∈ M(X,T ) is called a measure of maximal en-
tropy if hµ(T ) = htop(T ).

Let Mmax(X,T ) denote the set of all invariant measures whose entropy
achieves the maximum:

Mmax(X,T ) = {µ ∈M(X,T ) | hµ(T ) = htop(T )}.

It is possible for Mmax(X,T ) to be empty. However, under reasonable
assumptions there is always at least one measure of maximal entropy.

Proposition 8.19
Suppose that the entropy map µ 7→ hµ(T ) : M(X,T ) → R is upper semi-
continuous. Then Mmax(X,T ) 6= ∅.

Proof. An upper semi-continuous function on a compact metric space at-
tains its supremum. 2

More interesting is the case when there is only one invariant measure
that maximises entropy.

Definition. We say that T has a unique measure of maximal entropy if
Mmax(X,T ) contains exactly one point.

Lemma 8.20
Suppose T has a unique measure of maximal entropy µ. Then µ is ergodic.

Proof. Exercise. 2

We can show that shifts of finite type have measures of maximal entropy.

Proposition 8.21
Let Σk denote the full one-sided k-shift with shift map σ : Σk → Σk. Then
the Bernoulli (1/k, . . . , 1/k)-measure is the unique measure of maximal en-
tropy.

Proof. We already know that the topological entropy, htop(σ), is equal to
log k. The entropy of the Bernoulli (1/k, . . . , 1/k)-measure is also log k.

Let µ ∈M(X,T ) and suppose that hµ(σ) = log k. We need to show that
µ is the Bernoulli (1/k, . . . , 1/k)-measure. By the Kolmogorov Extension
Theorem, we need only check that the µ-measure of each cylinder of length
n is 1/kn.

18
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Let ζ denote the partition into cylinders of length 1: ζ = {[1], . . . , [k]}.
By Sinai’s theorem, hµ(σ, ζ) = hµ(σ) = log k. Moreover, for each n ≥ 1,

log k = hµ(σ, ζ) ≤ 1
n
Hµ

n−1∨
j=0

σ−jζ

 ≤ 1
n

log kn = log k.

Hence

Hµ

n−1∨
j=0

T−jζ

 = log kn. (8.8)

We need the following fact: if φ(x) is strictly concave then

k∑
j=1

ajφ(xj) ≤ φ

 k∑
j=1

ajxj

 (8.9)

where aj ≥ 0,
∑k

j=1 aj = 1, with equality if and only if all the xj corre-
sponding to non-zero aj are equal. Let η = {A1, . . . , Ak} be a partition with
k elements. Note that φ(x) = −x log x is strictly concave. Putting aj = 1/k
and xj = µ(Aj) into (8.9) we see that Hµ(η) ≤ log k with equality precisely
when µ(Aj) = 1/k, 1 ≤ j ≤ k. As there are kn elements in the partition∨n−1
j=0 T

−jζ, it follows from (8.8) that every element in
∨n−1
j=0 T

−jζ has the
same µ-measure, namely 1/kn.

Hence µ agrees with the Bernoulli (1/k, . . . , 1/k)-measure on cylinders.
By the Kolmogorov Extension Theorem, µ is the Bernoulli (1/k, . . . , 1/k)-
measure. 2

One can generalise the above result to shifts of finite type defined by
irreducible matrices.

Let A be an irreducible k×k matrix with entries in {0, 1}. Let ΣA denote
the corresponding shift of finite type with shift map σ : ΣA → ΣA.

Let P be a stochastic matrix and let p be a left probability eigenvector,
so that pP = p. Recall that we can define a Markov measure µ on ΣA by
defining it on cylinders by

µ[i0, . . . , in] = pi0Pi0,i1 · · ·Pin−1,in .

We will need the following well-known result:

Theorem 8.22 (Perron-Frobenius)
Let A be a non-negative aperiodic k × k matrix. Then:

(i) there exists a positive eigenvalue λ > 0 such that all other eigenvalues
λi ∈ C satisfy |λi| < λ,
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(ii) the eigenvalue λ is simple (i.e. the corresponding eigenspace is one-
dimensional),

(iii) there is a unique right-eigenvector v = (v1, . . . , vk)T such that vj > 0,∑n
j=1 |vj | = 1 and

Av = λv,

(iv) there is a unique positive left-eigenvector u = (u1, . . . , uk) such that
uj > 0,

∑n
j=1 |uj | = 1 and

uA = λu,

(v) eigenvectors corresponding to eigenvalues other than λ are not positive:
i.e. at least one co-ordinate is positive and at least one co-ordinate is
negative.

By the Perron-Frobenius theorem there exists a unique maximal eigen-
value λ for A with corresponding left and right eigenvalues u = (u1, . . . , uk)
and v = (v1, . . . , vk), respectively. Define

Pi,j =
Ai,jvj
λvi

pi =
uivi
c

where c =
∑k

i=1 uivi. Then P is a stochastic matrix and pP = p. Thus P
defines a Markov measure µ on ΣA. We call µ the Parry measure.

Theorem 8.23
Let σ : ΣA → ΣA be a two-sided shift of finite type defined by an irreducible
matrix A. Then the Parry measure is the unique measure of maximal en-
tropy.

Proof. Omitted. See Walters. 2
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§8.5.4 Exercises

Exercise 8.1
Let D = {0} ∪ {1/n} and let X = DZ. Let σ : X → X be the shift map.
Let µn be the measure which is the direct product of the measure on D
which assigns measure 1/2 to each of the atoms 1/n, 1/n + 1. Show that
µn ∈ M(X,T ) and that σ, with respect to µn, is isomorphic to the full 2-
shift. Show that µn ⇀ δ0∞ where δ0∞ is the Dirac δ-measure supported on
(. . . , 0, 0, 0, . . .). Show that the entropy map is not upper semi-continuous.

Exercise 8.2
Show that the topological entropy of a homeomorphism of a circle is 0.

Exercise 8.3
Two continuous transformations Ti of metric spaces Xi, i = 1, 2, are said to
be topologically conjugate if there exists a homeomorphism φ : X1 → X2

such that T2φ = φT1. Show that topological entropy is an invariant of
topological conjugacy.

Exercise 8.4
Show that htop(Tm) = mhtop(T ) for m ≥ 1. If T is a homeomorphism show
that htop(T ) = htop(T−1).

Exercise 8.5
Prove Lemma 8.20. (Hint: there are two cases. When htop(T ) = ∞ show
that if T has a unique measure of maximal entropy then it is uniquely
ergodic. When htop(T ) < ∞ show that Mmax(X,T ) is convex and that
the extremal points in Mmax(X,T ) are precisely the ergodic measures in
Mmax(X,T ).)
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