
MAGIC010 Ergodic Theory Lecture 7

7. Entropy

§7.1 Introduction

A natural question in mathematics is the so-called ‘isomorphism problem’:
when are two mathematical objects of the same class ‘the same’ (in some
appropriately defined sense of sameness). In ergodic theory, one wants
to classify measure-preserving transformations typically up to a measure-
preserving isomorphism. Deciding whether two measure-preserving trans-
formations are isomorphic is a hard problem, and so instead one looks for
invariants: quantities that one can associate to each measure-preserving
transformation that remain unchanged under isomorphism. Here we discuss
one such invariant—the entropy—which, as well as its uses in ergodic the-
ory, also has wider applications, particularly to information theory and the
mathematical theory of communication.

Throughout we use logarithms to base 2.

§7.2 Entropy and information of a partition

Information is a function defined on a probability space with respect to a
finite or countable partition, and entropy is the expected value (i.e. integral)
of the information. There are many axiomatice characterisations of informa-
tion and entropy that show that, subject to some natural conditions, they
must be defined as they are. Here we just give a brief motivation for the
definition and trust that it gives a quantity that is of interest!

Suppose we have a probability space (X,B, µ) and we are trying to ‘lo-
cate’ a point x ∈ X. To do this, we assume that we have been given a finite
or countable partition α = {A1, A2, . . .} of measurable subsets of X. If we
know that x ∈ Aj then we have, in fact, received some information about
the location of x. It is natural to require the amount of information received
to be constant on each element of the partition, and moreover the amount
information received to be ‘large’ if Aj is ‘small’ (in the sense that µ(Aj) is
small), and conversely that the amount of information received is ‘small’ if
Aj is ‘large’. Thus, if I(α) denotes the information function of the partition
α, then

I(α)(x) =
∑
A∈α

χA(x)φ(µ(A))

for some suitable choice of function φ.
Suppose α = {A1, A2, . . .} and β = {B1, B2, . . .} are two partitions.

Define the join of α and β to be the partition

α ∨ β = {Ai ∩Bj | Ai ∈ α, Bj ∈ β}.
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We say that two partitions α and β are independent if

µ(Ai ∩Bj) = µ(Ai)µ(Bj)

for all i, j. It is natural to require that the amount of information obtained
by using two independent partitions should be equal to the sum of the
information received uing each partition separately, i.e.

I(α ∨ β) = I(α) + I(β).

Hence we require that

φ(µ(Ai ∩Bj)) = φ(µ(Ai)µ(Bj)) = φ(µ(Ai))φ(µ(Bj)).

If we also assume that φ is continuous then one can check that we are forced
to take φ(t) = − log t or a multiple thereof. (It is natural to include a minus
sign here as 0 ≤ t ≤ 1 so that − log t is positive.) Thus we make the following
definition.

Definition. Let α = {A1, A2, . . .} be a finite or countable partition of a
probability space (X,B, µ). The information function of α is defined to be

I(α)(x) = −
∑
A∈α

χA(x) log µ(A).

(Here and throughout we assume that 0× log 0 = 0.)
The entropy of a partition is defined to be the expected value of the

information.

Definition. Let α = {A1, A2, . . .} be a finite or countable partition of a
probability space (X,B, µ). The entropy of α is defined to be

H(α) =
∫

I(α) dµ = −
∑
A∈α

µ(A) log µ(A).

§7.3 Conditional information and entropy, and the basic identi-
ties

More generally, we can define conditional information and entropy. Let
(X,B, µ) be a probability space and suppose that A ⊂ B is a sub-σ-algebra.
Let α = {Ai | i = 1, 2, 3, . . . , Ai ∈ B} be a finite or countable partition of X.
The conditional information function I(α | A) of α given A can be thought
of as a measure of the amount of extra information we obtain by knowing
which element of the partition α a given point x ∈ X lies in, given that we
know which element of A it lies in.

Recall that if A ⊂ B is a sub-σ-algebra then we have an operator

E(· | A) : L1(X,B, µ) → L1(X,A, µ)

determined by the requirements that if f ∈ L1(X,B, µ) then
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(i) E(f | A) is A-measurable, and

(ii) for all A ∈ A, we have
∫
A E(f | A) dµ =

∫
A f dµ.

Definition. Let A ⊂ B be a sub-σ-algebra. We define the conditional
probability of B ∈ B given A to be the function

µ(B | A) = E(χB | A).

We define conditional information and entropy as follows.

Definition. Let α = {A1, A2, . . .} be a finite or countable partition of a
probability space (X,B, µ) and let A be a sub-σ-algebra. The conditional
information function of α given A is defined to be

I(α | A)(x) = −
∑
A∈α

χA(x) log µ(A | A).

The conditional entropy of α given A is defined to be

H(α | A)(x) = −
∫

I(α | A) dµ = −
∫ ∑

A∈α

µ(A | A) log µ(A | A).

Let β = {Bj | j = 1, 2, 3, . . . , Bj ∈ B} be a finite or countable partition.
Then β determines a sub-σ-algebra of B formed by taking the collection of
all subsets of X that are unions of element of β. We abuse notation and
denote this sub-σ-algebra by β. The conditional expectation of an integrable
function is particularly easy to calculate in this case, namely:

E(f | β) =
∑
B∈β

χB(x)

∫
B

f dµ

µ(B)
.

Hence the conditional probability of a set A ∈ B given β is

µ(A | β) =
∑
B∈β

χB

∫
B

χA dµ

µ(B)
=
∑
B∈β

χB
µ(A ∩B)

µ(B)
.

(Thus the definition of conditional probability above is seen to be a gener-
alisation of the more familiar notion of conditional probability of sets.)

Lemma 7.1 (The Basic Identities)
For three countable partitions α, β, γ we have that

I(α ∨ β | γ) = I(α | γ) + I(β | α ∨ γ),
H(α ∨ β | γ) = H(α | γ) + H(β | α ∨ γ).
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Proof. We only need to prove the first identity, the second follows by
integration.

If x ∈ A ∩B, A ∈ α, B ∈ β, then

I(α ∨ β | γ)(x) = − log µ(A ∩B | γ)(x)

and
µ(A ∩B | γ) =

∑
C∈γ

χC
µ(A ∩B ∩ C)

µ(C)

(exercise). Thus, if x ∈ A ∩B ∩ C, A ∈ α, B ∈ β, C ∈ γ, we have

I(α ∨ β | γ)(x) = − log
(

µ(A ∩B ∩ C)
µ(C)

)
.

On the other hand, if x ∈ A ∩ C, A ∈ α, C ∈ γ, then

I(α | γ)(x) = − log
(

µ(A ∩ C)
µ(C)

)
and if x ∈ A ∩B ∩ C, A ∈ α, B ∈ β, C ∈ γ, then

I(β | α ∨ β)(x) = − log
(

µ(B ∩A ∩ C)
µ(A ∩ C)

)
.

Hence, if x ∈ A ∩B ∩ C, A ∈ α, B ∈ β, C ∈ γ, we have

I(α | γ)(x) + I(β | α ∨ γ)(x) = − log
(

µ(A ∩B ∩ C)
µ(C)

)
= I(α ∨ β | γ)(x).

2

Definition. Let α and β be countable partitions of X. We say that β is a
refinement of α and write α ≤ β if every set in α is a union of sets in β.

Corollary 7.2
If γ ≥ β then

I(α ∨ β | γ) = I(α | γ),
H(α ∨ β | γ) = H(α | γ).

Proof. If γ ≥ β then β ⊂ γ ⊂ α∨γ and so I(β | α∨γ) ≡ 0, H(β | α∨γ) =
0. The result now follows from the Basic Identities. 2

Corollary 7.3
If α ≥ β then

I(α | γ) ≥ I(β | γ),
H(α | γ) ≥ H(β | γ).
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Proof. If α ≥ β then

I(α | γ) = I(α ∨ β | γ) = I(β | γ) + I(α | β ∨ γ) ≥ I(β | γ).

The same argument works for entropy. 2

We next need to show the harder result that if γ ≥ β then H(α | β) ≥
H(α | γ). This requires the following inequality.

Proposition 7.4 (Jensen’s Inequality)
Let φ : [0, 1] → R+ be continuous and concave (i.e., for 0 ≤ p ≤ 1, φ(px +
(1 − p)y) ≥ pφ(x) + (1 − p)φ(y)). Let f : X → [0, 1] be measurable (on
(X,B)) and let A be a sub-σ-algebra of B. Then

φ(E(f | A)) ≥ E(φ(f) | A) µ-a.e.

Proof. Omitted. 2

As a consequence we obtain:

Lemma 7.5
If γ ≥ β then H(α | β) ≥ H(α | γ).

Remark The corresponding statement for information is not true.

Proof. Set φ(t) = −t log t, 0 < t ≤ 1, φ(0) = 0; this is continuous and
concave on [0, 1]. Pick A ∈ α and define f(x) = µ(A | γ)(x) = E(χA | γ)(x).
Then, applying Jensen’s Inequality with β = A ⊂ γ = B, we have

φ(E(f | β)) ≥ E(φ(f) | β).

Now, by one of the properties of conditional expectation,

E(f | β) = E(E(χA | γ) | β) = E(χA | β) = µ(A | β).

Therefore, we have that

−µ(A | β) log µ(A | β) = φ(µ(A | β)) ≥ E(−µ(A | γ) log µ(A | γ) | β).

Integrating, we can remove the conditional expectation on the right-hand
side and obtain∫

−µ(A | β) log µ(A | β) dµ ≥
∫
−µ(A | γ) log µ(A | γ) dµ.

Finally, summing over A ∈ α gives H(α | β) ≥ H(α | γ). 2
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§7.4 The entropy of a measure-preserving transformation

We will begin by defining the entropy of a measure-preserving transforma-
tion T relative to a partition α (with H(α) < +∞). Later we shall remove
the dependence on α to obtain the genuine entropy.

We first need the following standard analytic lemma.

Lemma 7.6
Let an be a sub-additive sequence of real numbers (i.e. an+m ≤ an + am).
Then the sequence an/n converges to its infimum as n →∞.

Proof. Omitted. (As an exercise in straightforward analysis, you might
want to try to prove this.) 2

Definition. Let α be a countable partition of X. Then T−1α denotes the
countable partition {T−1A | A ∈ α}.

Note that

H(T−1α) = −
∑
A∈α

µ(T−1A) log µ(T−1A) = −
∑
A∈α

µ(A) log µ(A) = H(α),

as µ is an invariant measure. Let us write

Hn(α) = H

(
n−1∨
i=0

T−iα

)
.

Using the basic identity (with γ equal to the trivial partition) we have that

Hn+m(α) = H

(
n+m−1∨

i=0

T−iα

)

= H

(
n−1∨
i=0

T−iα

)
+ H

(
n+m−1∨

i=n

T−iα

∣∣∣∣∣
n−1∨
i=0

T−iα

)

≤ H

(
n−1∨
i=0

T−iα

)
+ H

(
n+m−1∨

i=n

T−iα

)

= H

(
n−1∨
i=0

T−iα

)
+ H

(
T−n

m−1∨
i=0

T−iα

)
= Hn(α) + Hm(α).

We have just shown that Hn(α) is a sub-additive sequence. Therefore,
by Lemma 7.6,

lim
n→∞

1
n

Hn(α)

exists and we can make the following definition.
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Definition. We define the entropy of a measure-preserving transformation
T relative to a partition α (with H(α) < +∞) to be

hµ(T, α) = lim
n→∞

1
n

H

(
n−1∨
i=0

T−iα

)
.

Remark Since

Hn(α) ≤ Hn−1(α) + H(α) ≤ · · · ≤ nH(α)

we have
0 ≤ hµ(T, α) ≤ H(α).

We can give an alternative formula for hµ(T, α) that, despite appearing
more complex, is often of use in calculating entropy. We will need the
following technical result.

Theorem 7.7 (Increasing Martingale Theorem)
Let A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · be an increasing sequence of σ-algebras such
that An ↑ A (i.e. ∪nAn generates A). Then E(f | An) → E(f | A) both
µ-almost everywhere, and in L1(X,B, µ).

Here is an alternative formula for hµ(T, α). Let

αn = α ∨ T−1α ∨ · · · ∨ T−(n−1)α.

Then

H(αn) = H(α | T−1α ∨ · · · ∨ T−(n−1)α) + H(T−1α ∨ · · · ∨ T−(n−1)α)
= H(α | T−1α ∨ · · · ∨ T−(n−1)α) + H(αn−1).

Hence

H(αn)
n

=
H(α | T−1α ∨ · · · ∨ T−(n−1)α)

n

+
H(α | T−1α ∨ · · · ∨ T−(n−2)α)

n

+ · · ·+ H(α | T−1α)
n

+
H(α)

n
.

Since

H(α | T−1α∨· · ·∨T−(n−1)α) ≤ H(α | T−1α∨· · ·∨T−(n−2)α) ≤ · · · ≤ H(α)

and

H
(
α | T−1α ∨ · · · ∨ T−(n−1)α

)
→ H

(
α |

∞∨
i=1

T−iα

)
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(by the Increasing Martingale Theorem), we have

hµ(T, α) = lim
n→∞

1
n

H(αn) = H

(
α |

∞∨
i=1

T−iα

)
.

Finally, we can define the entropy of T with respect to the measure µ.

Definition. Let T be a measure-preserving transformation of the proba-
bility space (X,B, µ). Then the entropy of T with respect to µ is defined to
be

hµ(T ) = suphµ(T, α)

where the supremum is taken over all finite or countable partitions α with
H(α) < ∞.

§7.5 Calculating entropy via generators and Sinai’s theorem

A major complication in the definition of entropy is the need to take the
supremum over all finite entropy partitions. Sinai’s theorem guarantees that
hµ(T ) = hµ(T, α) for a partition α whose refinements generate the full σ-
algebra.

We begin by proving the following result.

Theorem 7.8 (Abramov’s theorem)
Suppose that α1 ≤ α2 ≤ · · · ↑ B are countable partitions such that H(αn) <
∞ for all n ≥ 1. Then

hµ(T ) = lim
n→∞

hµ(T, αn).

Proof. Choose any countable partition α such that H(α) < ∞. Then

H(αk) ≤ H(αk ∨ αk
n) ≤ H(αk

n) + H(αk | αk
n).

Observe that

H(αk | αk
n)

= H(α | αn) + H(T−1α | T−1αn) + · · ·+ H(T−(k−1)α | T−(k−1)αn)
= kH(α | αn)

Hence

hµ(T, α) = lim
k→∞

H(αk)
k

≤ lim
k→∞

H(αk
n)

k
+ H(α | αn)

= hµ(T, αn) + H(α | αn).
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We now prove that H(α | αn) → 0 as n →∞. To do this, it is sufficient
to prove that I(α | αn) → 0 in L1 as n →∞. Recall that

I(α | αn)(x) = −
∑
A∈α

χA(x) log µ(A | αn)(x) = − log µ(A | αn)(x)

if x ∈ A. By the Increasing Martingale Theorem, we know that

µ(A | αn)(x) → χA a.e.

Hence for x ∈ A
I(α | αn)(x) → − log χA = 0.

Hence for any countable partition α with H(α) < ∞ we have that
hµ(T, α) ≤ limn→∞ hµ(T, αn). The result follows by taking the supremum
over all such α. 2

Definition. We say that a countable partition α is a generator if T is
invertible and

n−1∨
j=−(n−1)

T−jα → B

as n →∞.
We say that a countable partition α is a strong generator if

n−1∨
j=0

T−jα → B

as n →∞.

Remark To check whether a partition α is a generator (respectively, a
strong generator) it is sufficient to check that it separates almost every pair
of points. That is, for almost every x, y ∈ X, there exists n such that
x, y are in different elements of the partition

∨n−1
j=−(n−1) T−jα (

∨n−1
j=0 T−jα,

respectively).
The following important theorem will be the main tool in calculating

entropy.

Theorem 7.9 (Sinai’s theorem)
Suppose α is a strong generator or that T is invertible and α is a generator.
If H(α) < ∞ then

hµ(T ) = hµ(T, α).

Proof. The proofs of the two cases are similar, we prove the case when T
is invertible and α is a generator of finite entropy.

9



MAGIC010 Ergodic Theory Lecture 7

Let n ≥ 1. Then

hµ(T,

n−1∨
j=−(n−1)

T−jα)

= lim
k→∞

1
k
H(Tn−1α ∨ · · · ∨ T−(n−1)α ∨ T−(n−2)α ∨ · · · ∨ T−(n+k−2)α)

= lim
k→∞

1
k
H(α ∨ · · · ∨ T−(2n+k−3)α)

= hµ(T, α)

for each n. As α is a strong generator, we have that
n−1∨

j=−(n−1)

T−jα → B.

By Abramov’s theorem, hµ(T, α) = hµ(T ). 2

§7.6 Examples

§7.6.1 Subshifts of finite type

Let A be an irreducible k × k matrix with entries from {0, 1}. Recall that
we define the shifts of finite type to be the spaces

ΣA = {(xn)∞n=−∞ ∈ {1, . . . , k}Z | A(xn,xn+1) = 1 for all n ∈ Z},
Σ+

A = {(xn)∞n=0 ∈ {1, . . . , k}N | A(xn,xn+1) = 1 for all n ∈ N},

and the shift maps σ : ΣA → ΣA, σ : Σ+
A → Σ+

A by (σx)n = xn+1.
Throughout this section we shall work with one-sided shifts; however,

everything we do carries naturally over to the two-sided case.
Let P be a stochastic matrix and let p be a normalised left eigenvector

so that pP = p. Suppose that P is compatible with A, so that Pi,j > 0 if
and only if A(i, j) = 1. Recall that we define the Markov measure µP by
defining it on cylinder sets by

µP [i0, i1, . . . , in−1] = pi0Pi0i1 · · ·Pin−2in−1 ,

and then extending it to the full σ-algebra by using the Kolmogorov Exten-
sion Theorem.

We shall calculate hµP (σ) using Sinai’s theorem.
Let α be the partition {[1], . . . , [k]} of Σ+

A into cylinders of length 1.
Then

H(α) = −
k∑

i=1

µP [i] log µP [i]

= −
k∑

i=1

pi log pi < ∞.
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The partition αn =
∨n−1

j=0 σ−jα consists of all allowed cylinders of length
n:

n−1∨
j=0

σ−jα = {[i0, i1, . . . , in−1] | A(ij , ij+1) = 1, j = 0, . . . , n− 1}.

It follows that α is a strong generator: if x 6= y then clearly they must
eventually lie in different cylinders.

We have

H

n−1∨
j=0

σ−jα


= −

∑
[i0,i1,...,in−1]∈αn

µ[i0, i1, . . . , in−1] log µ[i0, i1, . . . , in−1]

= −
∑

[i0,i1,...,in−1]∈αn

pi0Pi0i1 · · ·Pin−2in−1 log(pi0Pi0i1 · · ·Pin−2in−1)

= −
k∑

i0=1

· · ·
k∑

in=1

pi0Pi0i1 · · ·Pin−2in−1 log(pi0Pi0i1 · · ·Pin−2in−1)

= −
k∑

i0=1

· · ·
k∑

in=1

pi0Pi0i1 · · ·Pin−2in−1(log pi0 + log Pi0i1 + · · ·+ log Pin−2in−1)

= −
k∑

i0=1

pi0 log pi0 − (n− 1)
k∑

i,j=1

piPi,j log Pi,j ,

where we have used the identities
∑k

j=1 Pij = 1 and
∑k

i=1 piPij = pj .
Therefore

hµP (σ) = hµP (σ, α)

= lim
n→∞

1
n

H

n−1∨
j=0

σ−jα


= −

k∑
i,j=1

piPi,j log Pij .

Remark One can easily check that the Bernoulli (p1, . . . , pk)-measure has
entropy −

∑
i pi log pi.

Remark We can model a language (written in the Roman alphabet) as a
shift on 26 symbols, one symbol for each letter in the alphabet. We can then
attempt to approximate a language, say, English, as a Markov measure on
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an appropriate shift of finite type. For example PQU should be close to 1 as
it is highly likely that any Q is followed by a U . Similarly, the combination
FZ is unlikely (but not impossible—it appears in this sentence!), so we
expect PFZ to be near zero). Experimentally, one can estimate that the
entropy of English is around 1.6. Note that the Bernoulli (1/26, . . . , 1/26)-
measure has entropy log 26 = 4.7. According to Shannon’s Information
Theory, this suggests that there is a lot of redundancy in English. This has
the implication that English should have good error-correcting properties.
To use an example of Shannon’s, if we see the word CHOCQLATE, then
we can be reasonably sure that there has been an error and it should be
CHOCOLATE. If, however, all symbols were equally likely then we would
not be able to decide which of the 26 possible words of the form CHOC·LATE
was intended. Conversely, suppose that the entropy of English is very low.
Then, given a string of letters, say S·EE·, there are lots of possible ways
of filling in the blanks: SPEED, SWEEP, STEER, SLEET for example.
One can show that the entropy of English is sufficiently high to allow the
easy construction of two-dimensional crosswords, but not three-dimensional
crosswords.

§7.6.2 The continued fraction map

Recall that the continued fraction map is defined by T (x) = 1/x mod 1 and
preserves Gauss’ measure µ defined by

µ(B) =
1

log 2

∫
B

1
1 + x

dx.

Let An = (1/(n + 1), 1/n) and let α be the partition α = {An | n =
1, 2, 3, . . .}.

It is easy to check that H(α) < ∞.
We claim that α is a strong generator for T . To see this, recall that each

irrational x has a distinct continued fraction expansion. Hence α separates
irrational, hence almost all, points.

For notational convenience let

[x0, . . . , xn−1] = A0 ∩ T−1A1 ∩ · · · ∩ T−(n−1)An−1

= {x ∈ [0, 1] | T j(x) ∈ Aj for j = 0, . . . , n− 1}

so that [x0, . . . , xn−1] is the set of all x ∈ [0, 1] whose continued fraction
expansion starts x0, . . . , xn−1.

If x ∈ [x0, . . . , xn] then

I(α | T−1α ∨ · · · ∨ T−nα) = − log
µ([x0, . . . , xn])
µ([x1, . . . , xn])

.
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We will use the following fact: if In(x) is a nested sequence of intervals
such that In(x) ↓ {x} as n →∞ then

lim
n→∞

1
λ(In(x))

∫
In(x)

f(y) dy = f(x)

where λ denotes Lebesgue measure. We will also need the fact that

lim
n→∞

λ([x0, . . . , xn])
λ([x1, . . . , xn])

=
1

|T ′(x)|
.

Hence

µ([x0, . . . , xn])
µ([x1, . . . , xn])

=

∫
[x0,...,xn]

dx
1+x∫

[x1,...,xn]
dx

1+x

=

( ∫
[x0,...,xn]

dx
1+x

λ([x0, . . . , xn])

/ ∫
[x1,...,xn]

dx
1+x

λ([x1, . . . , xn])

)
× λ([x0, . . . , xn])

λ([x1, . . . , xn])

→
(

1
1 + x

/
1

1 + Tx

)
1

|T ′(x)|
.

Hence

I

α |
∞∨

j=1

T−jα

 = − log
(

1 + Tx

1 + x

1
|T ′(x)|

)
.

Using the fact that µ is T -invariant we see that

H

α |
∞∨

j=1

T−jα

 =
∫

I

α |
∞∨

j=1

T−jα

 dµ

=
∫
− log

1
|T ′(x)|

dµ

=
∫

log |T ′(x)| dµ.

Now T (x) = 1/x mod 1 so that T ′(x) = −1/x2. Hence

hµ(T ) = H

α |
∞∨

j=1

T−jα

 = − 2
log 2

∫
log x

1 + x
dx,

which cannot be simplified much further.

13
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§7.7 Entropy as an invariant

Recall the definition of what it means to say that two measure-preserving
transformations are metrically isomorphic.

Definition. We say that two measure-preserving transformations (X,B, µ, T )
and (Y, C,m, S) are (measure theoretically) isomorphic if there exist M ∈ B
and N ∈ C such that

(i) TM ⊂ M , SN ⊂ N ,

(ii) µ(M) = 1, m(N) = 1,

and there exists a bijection φ : M → N such that

(i) φ, φ−1 are measurable and measure-preserving (i.e. µ(φ−1A) = m(A)
for all A ∈ C),

(ii) φ ◦ T = S ◦ φ.

We prove that two metrically isomorphic measure-preserving transfor-
mations have the same entropy.

Theorem 7.10
Let T : X → X be a measure-preserving of (X,B, µ) and let S : Y → Y be a
measure-preserving transformation of (Y, C,m). If T and S are isomorphic
then hµ(T ) = hm(S).

Proof. Let M ⊂ X, N ⊂ Y and φ : M → N be as above. If α is a
partition of Y then (changing it on a set of measure zero if necessary) it
is also a partition of N . The inverse image φ−1α = {φ−1A | A ∈ α} is a
partition of M and hence of X. Furthermore,

Hµ(φ−1α) = −
∑
A∈α

µ(φ−1A) log µ(φ−1A)

= −
∑
A∈α

m(A) log m(A)

= Hm(α).

More generally,

Hµ

n−1∨
j=0

T−j(φ−1α)

 = Hµ

φ−1

n−1∨
j=0

S−jα


= Hm

n−1∨
j=0

S−jα

 .

14
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Therefore, dividing by n and letting n →∞, we have

hm(S, α) = hµ(T, φ−1α).

Thus

hm(S) = sup{hm(S, α) | α partition of Y, Hm(α) < ∞}
= sup{hµ(T, φ−1α) | α partition of Y, Hm(α) < ∞}
≤ sup{hµ(T, β) | β partition of X, Hµ(β) < ∞}
= hµ(T ).

By symmetry, we also have hµ(T ) ≤ hm(S). Therefore hµ(T ) = hm(S). 2

Note that the converse to Theorem 7.10 is false in general: if two measure-
preserving transformations have the same entropy then they are not neces-
sarily metrically isomorphic. However, for Markov measures on two-sided
shifts of finite type entropy is a complete invariant:

Theorem 7.11 (Ornstein’s theorem)
Any two 2-sided Bernoulli shifts with the same entropy are metrically iso-
morphic.

Theorem 7.12 (Ornstein and Friedman)
Any two 2-sided aperiodic Markov shifts with the same entropy are metri-
cally isomorphic.

Remark Both of these theorems are false for 1-sided shifts. The isomor-
phism problem for 1-sided shifts is a very subtle problem.

§7.8 References

The material in this lecture is standard in ergodic theory and can be found
in most books on the subject; the presentation here follows that in

W. Parry, Topics in Ergodic Theory, C.U.P., Cambridge, 1981.

Entropy was first studied by Claude Shannon as a tool in information
theory and the study of digital communications. His account of this is still
a standard reference and is well-worth reading:

C. Shannon and W. Weaver, The Mathematical Theory of Communication,
University of Illinois Press, 1949.

Entropy was first introduced into ergodic theory by Kolmogorov in 1958,
and with some simplifications in the definition due to Sinai in 1959. Sinai
then used entropy to solve what had, up until that point, been one of the
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outstanding open problems in ergodic theory: is the Bernoulli (1/2, 1/2)-
shift isomorphic to the Bernoulli (1/3, 1/3, 1/3)-shift. (The answer is no:
the former has entropy log 2 and the latter log 3.) Ornstein’s theorem, on
the complete invariance of entropy for 2-sided Bernoulli shifts dates from
1968.

It is surprisingly hard to construct non-trivial examples of non-isomorphic
ergodic measure-preserving transformations of the same entropy. One way
of doing this is to look for factors of zero entropy. A factor of a measure-
preserving transformation T of a probability space (X,B, µ) is a measure-
preserving transformation S of a probability space (Y,A,m) for which there
exists a measurable measure-preserving surjection φ : X → Y for which
φT = Sφ. It is possible to construct measure-preserving transformations
T1, T2 with the same entropy but with non-isomorphic factors of entropy
zero (and so T1, T2 cannot be isomorphic). One could look at systems which
do not possess zero entropy factors; such a system is said to have completely
positive entropy, and this is equivalent to being a K-automorphism (see Lec-
ture 4). However, there are many examples (due to Ornstein, Rudolph, and
others) of non-isomorphic K-automorphisms of the same entropy. In some
sense, Bernoulli systems are ‘the most random’.

It is hard to overstate the importance that entropy had on the develop-
ment of ergodic theory. For a very readable account of ergodic theory just
prior to the introduction of entropy, see

P.R. Halmos, Lectures on Ergodic Theory, Chelsea, 1956.

§7.9 Exercises

Exercise 7.1
Show that if α ≤ β then I(α | β) = 0. (This corresponds to an intuitive
understand as to how information should behave: if α ≤ β then we receive
no information knowing which element of α a point is in, given that we know
which element of β it lies in.)

Exercise 7.2
Let T : X → X be a measure-preserving transformation of a probability

space (X,B, µ). Show that hµ(T k) = khµ(T ) for k ∈ N. If T is invertible,
show that hµ(T k) = |k|hµ(T ) for all k ∈ Z.

Exercise 7.3
Let X = {x0, x1, . . . , xn−1} be a finite set of n distinct points equipped with
the full σ-algebra. Define a probability measure µ on X by assigning mass
1/n to each points of X. Define T : X → X by T (xi) = xi+1 mod 1. Show
that T is an ergodic transformation of X with respect to µ and has entropy
0.

16
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Let T be a measurable transformation of an arbitrary measure-space
(X,B). Suppose that x = Tnx is a periodic point with least period n. Let
µ = n−1

∑−1
j=0 δT jx. Show that T has zero entropy with respect to µ.

Exercise 7.4
Let β > 1 by the golden mean, so that β2 = β +1. Define T (x) = βx mod 1.
Define the density

k(x) =


1

1
β

+ 1
β3

on [0, 1/β)
1

β
“

1
β

+ 1
β3

” on [1/β, 1).

and define the measure

µ(B) =
∫

B
k(x) dx.

In a previous exercise, we saw that µ is T -invariant. Assuming that α =
{[0, 1/β), [1/β, 1]} is a strong generator, show that hµ(T ) = log β.
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