
MAGIC010 Ergodic Theory Lecture 6

6. Continuous transformations of compact metric
spaces

§6.1 Introduction

The context of the previous two lectures was that of a measure-preserving
transformation on a probability space. That is, we specified in advance the
measure and sought to prove that a given transformation preserved that
measure. In this lecture, we shift our focus slightly and consider, for a given
transformation T : X → X, the space M(X, T ) of all probability measures
that are invariant under T . In order to equip M(X, T ) with some structure
we will need to assume that the underlying space X is itself equipped with
some additional structure more specific than merely being a measure space;
throughout this lecture we will work in the context of X be a compact metric
space and T being a continuous transformation.

§6.2 Probability measures on compact metric spaces

Let X be a compact metric space equipped with the Borel σ-algebra B.
(Recall that the Borel σ-algebra is the smallest σ-algebra that contains all
the open subsets of X.)

Let C(X, R) = {f : X → R | f is continuous} denote the space of
real-valued continuous functions defined on X. Define the uniform norm of
f ∈ C(X, R) by

‖f‖ = sup
x∈X

|f(x)|.

With this norm C(X, R) is a Banach space.
An important property of C(X, R) that will prove to be useful later on

is that it is separable, that is, it contains a countable dense subset.
Let M(X) denote the set of all Borel probability measures on (X,B).

The following simple fact will be useful later on.

Proposition 6.1
The space M(X) is convex: if µ1, µ2 ∈ M(X) and 0 ≤ α ≤ 1 then αµ1 +
(1− α)µ2 ∈ M(X).

Proof. This is immediate from the definition of a measure. 2

It will be very important to have a sensible notion of convergence in
M(X); this is called weak∗ convergence. We say that a sequence of proba-
bility measures µn weak∗ converges to µ, as n →∞ if, for every f ∈ C(X, R),∫

f dµn →
∫

f dµ, as n →∞.
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If µn weak∗ converges to µ then we write µn ⇀ µ. We can make M(X) into
a metric space compatible with this definition of convergence by choosing
a countable dense subset {fn}∞n=1 ⊂ C(X) and, for µ1, µ2 ∈ M(X), and
setting

ρ(µ1, µ2) =
∞∑

n=1

1
2n‖fn‖∞

∣∣∣∣∫ fn dµ1 −
∫

fn dµ2

∣∣∣∣ .
It is easy to check that µn ⇀ µ if and only if ρ(µn, µ) → 0.

However, we will not need to work with a particular metric: what is
important is the definition of convergence.

Remark Note that with this definition it is not necessarily true that
µn(B) → µ(B), as n →∞, for B ∈ B.

Remark There is a continuous embedding of X in M(X) given by the
map X → M(X) : x 7→ δx, where δx is the Dirac measure at x:

δx(A) =
{

1 if x ∈ A,
0 if x /∈ A,

(so that
∫

f dδx = f(x)).

§6.3 The Riesz Representation Theorem

Let µ ∈ M(X) be a Borel probability measure. Then we can think of µ as
a functional that acts on C(X, R), namely

C(X, R) → R : f 7→
∫

f dµ.

We will often write µ(f) for
∫

f dµ.
Notice that this map enjoys several natural properties:

(i) the functional defined by µ is linear:

µ(λ1f1 + λ2f2) = λ1µ(f1) + λ2µ(f2)

where λ1, λ2 ∈ R and f1, f2 ∈ C(X, R).

(ii) the functional defined by µ is continuous: i.e. if fn ∈ C(X, R) and
fn → f then µ(fn) → µ(f).

(ii’) the functional defined by µ is bounded: i.e. if f ∈ C(X, R) then
|µ(f)| ≤ ‖f‖∞.

(iii) if f ≥ 0 then µ(f) ≥ 0 (i.e. the map µ is positive);

(iv) consider the function 1 defined by 1(x) ≡ 1 for all x; then µ(1) = 1
(i.e. the map µ is normalised).

2



MAGIC010 Ergodic Theory Lecture 6

Remark It is well-known that a linear functional is continuous if and only
if it is bounded. Thus in the presence of (i), we have that (ii) is equivalent
to (ii’).

The Riesz Representation Theorem says that the above properties char-
acterise all Borel probability measures on X. That is, if we have a map
w : C(X, R) → R that satisfies the above four properties, then w must be
given by integrating with respect to a Borel probability measure. This will
be a very useful method of constructing measures: we need only construct
continuous positive normalised linear functionals.

Theorem 6.2 (Riesz Representation Theorem)
Let w : C(X, R) → R be a functional such that:

(i) w is bounded: i.e. for all f ∈ C(X, R) we have |w(f)| ≤ ‖f‖∞;

(ii) w is linear: i.e. w(λ1f1 + λ2f2) = λ1w(f1) + λ2w(f2);

(iii) w is positive: i.e. if f ≥ 0 then w(f) ≥ 0;

(iv) w is normalised: i.e. w(1) = 1.

Then there exists a Borel probability measure µ ∈ M(X) such that

w(f) =
∫

f dµ.

Moreover, µ is unique.

Thus the Riesz Representation Theorem allows us to identify M(X) with
the intersection of the positive cone and the unit ball in the dual space of
C(X, R).

Remark The Riesz Representation Theorem in the context of Hilbert
spaces is often stated as follows. Let X be a (real) Hilbert space with
inner product 〈·, ·〉. Let X∗ denote the dual space of X, namely the space
of continuous linear functionals X → R. Then there is a natural isomor-
phism between X and X∗ given by x 7→ 〈x, ·〉. The Riesz Representation
Theorem above says that the probability measures are naturally isomorphic
to the intersection of the positive cone with the unit ball in the dual space
of C(X, R). More generally, if we allow ‘signed’ measures (i.e. measures
that can take negative as well as positive values) then we obtain a natural
isomorphism between the space of signed measures and the dual space of
C(X, R).

Corollary 6.3
The space M(X) is weak∗ compact.
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Proof. This is a restatement of Alaoglu’s theorem: if X is a Banach space
then the unit ball in the dual space X∗ is weak∗ compact.

By the Riesz Representation Theorem, we can regard M(X) as the in-
tersection of the unit ball in the dual space C(X, R)∗ with the positive cone.
The unit ball in C(X, R)∗ is weak∗ compact by Alaoglu’s theorem. More-
over, the intersection of the unit ball with the positive cone is closed. Hence
M(X) is weak∗ compact. 2

§6.4 Invariant measures for continuous transformations

Let X be a compact metric space equipped with the Borel σ-algebra and let
T : X → X be a continuous transformation. It is clear that T is measurable.

The transformation T induces a map on the set M(X) of Borel proba-
bility measures by defining T∗ : M(X) → M(X) by

(T∗µ)(B) = µ(T−1B).

It is easy to see that T∗µ is a Borel probability measure.
The following result tells us how to integrate with respect to T∗µ.

Lemma 6.4
For f ∈ L1 we have ∫

f d(T∗µ) =
∫

f ◦ T dµ.

Proof. From the definition, for B ∈ B,∫
χB d(T∗µ) =

∫
χB ◦ T dµ.

Thus the result also holds for simple functions. If f ∈ C(X, R) is such
that f ≥ 0, we can choose an increasing sequence of simple functions fn

converging to f pointwise. We have∫
fn d(T∗µ) =

∫
fn ◦ T dµ

and, applying the Monotone Convergence Theorem to each side, we obtain∫
f d(T∗µ) =

∫
f ◦ T dµ.

The result extends to an arbitrary f ∈ L1 by considering positive and neg-
ative parts. 2

Recall that a measure µ is said to be T -invariant if µ(T−1B) = µ(B) for
all B ∈ B. Hence µ is T -invariant if and only if T∗µ = µ. Write

M(X, T ) = {µ ∈ M(X) | T∗µ = µ}
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to denote the space of all T -invariant Borel probability measures.
The following result gives a useful criterion for checking whether a mea-

sure is T -invariant.

Lemma 6.5
Let T : X → X be a continuous mapping of a compact metric space. The
following are equivalent:

(i) µ ∈ M(X, T );

(ii) for all f ∈ C(X, R) ∫
f ◦ T dµ =

∫
f dµ. (6.1)

Proof. We prove (i) implies (ii). Suppose µ ∈ M(X, T ). Then, by
Lemma 6.4, for any f ∈ C(X, R) we have∫

f ◦ T dµ =
∫

f d(T∗µ) =
∫

f dµ.

Conversely, Lemma 6.4 allows us to write (6.1) as: µ(f) = (T∗µ)(f) for
all f ∈ C(X, R). Hence µ and T∗µ determine the same linear functional
on C(X, R). By uniqueness in the Riesz Representation theorem we have
T∗µ = µ. 2

§6.5 Existence of invariant measures

Given a continuous mapping T : X → X of a compact metric space, it is
natural to ask whether invariant measures necessarily exist, i.e., whether
M(X, T ) 6= ∅. The next result shows that this is the case.

Theorem 6.6
Let T : X → X be a continuous mapping of a compact metric space. Then
there exists at least one T -invariant probability measure.

Proof. Let ν ∈ M(X) be a probability measure (for example, we could
take ν to be a Dirac measure). Define the sequence µn ∈ M(X) by

µn =
1
n

n−1∑
j=0

T j
∗ ν,

so that, for B ∈ B,

µn(B) =
1
n

(ν(B) + ν(T−1B) + · · ·+ ν(T−(n−1)B)).
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Since M(X) is weak∗ compact, some subsequence µnk
converges, as

k → ∞, to a measure µ ∈ M(X). We shall show that µ ∈ M(X, T ).
By Lemma 6.5, this is equivalent to showing that∫

f dµ =
∫

f ◦ T dµ ∀f ∈ C(X).

To see this, note that∣∣∣∣∫ f ◦ T dµ−
∫

f dµ

∣∣∣∣ = lim
k→∞

∣∣∣∣∫ f ◦ T dµnk
−
∫

f dµnk

∣∣∣∣
= lim

k→∞

∣∣∣∣∣∣ 1
nk

∫ nk−1∑
j=0

(f ◦ T j+1 − f ◦ T j) dν

∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣ 1
nk

∫
(f ◦ Tnk − f) dν

∣∣∣∣
≤ lim

k→∞

2‖f‖∞
nk

= 0.

Therefore, µ ∈ M(X, T ), as required. 2

We will need the following additional properties of M(X, T ).

Theorem 6.7
Let T : X → X be a continuous mapping of a compact metric space. Then
M(X, T ) is weak∗ compact and convex subset of M(X).

Proof. The fact that M(X, T ) is convex is clear from the definition.
To see that M(X, T ) is weak∗ compact it is sufficient to show that it is a

weak∗ closed subset of the weak∗ compact M(X). This follows easily from
the definitions. Suppose that µn ∈ M(X, T ) is such that µn ⇀ µ ∈ M(X).
We need to show that µ ∈ M(X, T ). To see this, observe that for any
f ∈ C(X, R) we have that∫

f ◦ T dµ = lim
n→∞

∫
f ◦ T dµn = lim

n→∞

∫
f dµn =

∫
f dµ.

2

§6.6 Ergodic measures for continuous transformations

§6.6.1 Extremal points for convex sets

A point in a convex set is called an extremal point if it cannot be written
as a non-trivial convex combination of (other) elements of the set. More
precisely, µ is an extremal point of M(X, T ) if whenever

µ = αµ1 + (1− α)µ2,

with µ1, µ2 ∈ M(X, T ), 0 < α < 1 then we have µ1 = µ2 = µ.
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Remarks.

(i) Let Y be the unit square

Y = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} ⊂ R2.

Then the extremal points of Y are the corners (0, 0), (0, 1), (1, 0), (1, 1).

(ii) Let Y be the (closed) unit disc

Y = {(x, y) : x2 + y2 ≤ 1} ⊂ R2.

Then the set of extremal points of Y is precisely the unit circle {(x, y) |
x2 + y2 = 1}.

Definition. If Y is a convex set then we denote by Ext(Y ) the set of all
extremal points of Y .

We shall also need the following definition.

Definition. Let Z be a subset of a topological vector space V . The closed
convex hull of Z is the smallest closed convex set that contains Z and is
denoted by Cov(Z). Equivalently

Cov(Z) = {t1v1 + · · ·+ tkvk | tj ∈ [0, 1],
k∑

j=1

tj = 1, vj ∈ Z}.

The following theorem tells us that the set of extremal points is a large set.

Theorem 6.8 (Krein-Milman)
Let X be a topological vector space on which X∗ separates points. Let
K ⊂ X be a non-empty compact convex subset. Then K is the closed
convex hull of its extremal points: K = Cov(Ext(K)).

§6.6.2 Existence of ergodic measures

The next result will allow us to show that ergodic measures for continuous
transformations on compact metric spaces always exist.

Theorem 6.9
The following are equivalent:

(i) the T -invariant probability measure µ is ergodic;

(ii) µ is an extremal point of M(X, T ).
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Proof. We prove (ii) ⇒ (i): if µ is extremal then it is ergodic. In fact,
we shall prove the contrapositive. Suppose that µ is not ergodic; we show
that µ is not extremal. As µ is not ergodic, there exists B ∈ B such that
T−1B = B and 0 < µ(B) < 1.

Define probability measures µ1 and µ2 on X by

µ1(A) =
µ(A ∩B)

µ(B)
, µ2(A) =

µ(A ∩ (X \B))
µ(X \B)

.

(The condition 0 < µ(B) < 1 ensures that the denominators are not equal
to zero.) Clearly, µ1 6= µ2, since µ1(B) = 1 while µ2(B) = 0.

Since T−1B = B, we also have T−1(X \B) = X \B. Thus we have

µ1(T−1A) =
µ(T−1A ∩B)

µ(B)

=
µ(T−1A ∩ T−1B)

µ(B)

=
µ(T−1(A ∩B))

µ(B)

=
µ(A ∩B)

µ(B)
= µ1(A)

and (by the same argument)

µ2(T−1A) =
µ(T−1A ∩ (X \B))

µ(X \B)
= µ2(A),

i.e., µ1 and µ2 are both in M(X, T ).
However, we may write µ as the non-trivial (since 0 < µ(B) < 1) convex

combination
µ = µ(B)µ1 + (1− µ(B))µ2,

so that µ is not extremal.
We prove (i) ⇒ (ii). Suppose that µ is ergodic and that µ = αµ1 + (1−

α)µ2, with µ1, µ2 ∈ M(X, T ) and 0 < α < 1. We shall show that µ1 = µ (so
that µ2 = µ, also). This will show that µ is extremal.

If µ(A) = 0 then µ1(A) = 0, so µ1 � µ. Therefore the Radon-Nikodym
derivative dµ1/dµ ≥ 0 exists. One can easily deduce from the statement of
the Radon-Nikodym Theorem that µ1 = µ if and only if dµ1/dµ = 1 µ-a.e.
We shall show that this is indeed the case by showing that the sets where,
respectively, dµ1/dµ < 1 and dµ1/dµ > 1 both have µ-measure zero.

Let

B =
{

x ∈ X :
dµ1

dµ
(x) < 1

}
.
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Now

µ1(B) =
∫

B

dµ1

dµ
dµ =

∫
B∩T−1B

dµ1

dµ
dµ +

∫
B\T−1B

dµ1

dµ
dµ (6.2)

and

µ1(T−1B) =
∫

T−1B

dµ1

dµ
dµ =

∫
B∩T−1B

dµ1

dµ
dµ +

∫
T−1B\B

dµ1

dµ
dµ. (6.3)

As µ1 ∈ M(X, T ), we have that µ1(B) = µ1(T−1B). Hence comparing the
last summand in both (6.2) and (6.3) we obtain∫

B\T−1B

dµ1

dµ
dµ =

∫
T−1B\B

dµ1

dµ
dµ. (6.4)

In fact, these integrals are taken over sets of the same µ-measure:

µ(T−1B \B) = µ(T−1B)− µ(T−1B ∩B)
= µ(B)− µ(T−1B ∩B)
= µ(B \ T−1B).

Note that on the left-hand side of (6.4), the integrand dµ1/dµ < 1. However,
on the right-hand side of (6.4), the integrand dµ1/dµ ≥ 1. Thus we mus have
that µ(B\T−1B) = µ(T−1B\B) = 0, which is to say that µ(T−1B4B) = 0,
i.e. T−1B = B µ-a.e. Therefore, since µ is ergodic, we have that µ(B) = 0
or µ(B) = 1.

We can rule out the possibility that µ(B) = 1 by observing that if
µ(B) = 1 then

1 = µ1(X) =
∫

X

dµ1

dµ
dµ =

∫
B

dµ1

dµ
dµ < µ(B) = 1,

a contradiction. Therefore µ(B) = 0.
If we define

C =
{

x ∈ X | dµ1

dµ
(x) > 1

}
then repeating essentially the same argument gives µ(C) = 0.

Hence

µ

{
x ∈ X | dµ1

dµ
(x) = 1

}
= µ(X \ (B ∪ C))

= µ(X)− µ(B)− µ(C) = 1,

i.e., dµ1/dµ = 1 µ-a.e. Therefore µ1 = µ, as required. 2
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Theorem 6.10
Let T : X → X be a continuous mapping of a compact metric space. Then
there exists at least one ergodic measure in M(X, T ).

Proof. We know that M(X, T ) is a convex, weak∗ compact subset of
M(X). By the Krein-Milman Theorem, M(X, T ) is equal to its convex hull.
As M(X, T ) is non-empty, this means that there exist extremal points. By
Theorem 6.9 these are precisely the ergodic measures. 2

§6.7 An example: the North-South map

For many dynamical systems there exist uncountably many different ergodic
measures. This is the case for the doubling map, shifts of finite type, toral
automorphisms, etc. Here we give an example of a dynamical system T :
X → X in which one can construct M(X, T ) and E(X, T ) explicitly.

Let X ⊂ R2 denote the circle of radius 1 centred at (0, 1) in R2. Call
(0, 2) the North Pole (N) and (0, 0) the South Pole (S) of X. Define a map
φ : X \ {N} → R × {0} by drawing a straight line through N and x and
denoting by φ(x) the unique point on the x-axis that this line crosses (this
is just stereographic projection of the circle). Define T : X → X by

T (x) =
{

φ−1
(

1
2φ(x)

)
if x ∈ X \ {N},

N if x = N.

Hence T (N) = N , T (S) = S and if x 6= N,S then Tn(x) → S as n →∞.

K
~

S

Tx

x

N

u
2

u

T (N) = N

We call T the north-south map.
Clearly both N and S are fixed points for T . Hence δN and δS (the Dirac

delta measures at N , S, respectively) are T -invariant. It is easy to see that
both δN and δS are ergodic.

Now let µ ∈ M(X, T ) be an invariant measure. We claim that µ assigns
zero measure to the set X \ {N,S}. Let x ∈ X be any point in the right
semi-circle (for example, take x = (1, 1) ∈ R2) and consider the arc I of
semi-circle from x to T (x). Then ∪∞n=−∞T−nI is a disjoint union of arcs of
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semi-circle and, moreover, is equal to the entire right semi-circle. Now

µ

( ∞⋃
n=−∞

T−nI

)
=

∞∑
n=−∞

µ(T−nI) =
∞∑

n=−∞
µ(I)

and the only way for this to be finite is if µ(I) = 0. Hence µ assigns zero
measure to the entire right semi-circle. Similarly, µ assigns zero measure to
the left semi-circle.

Hence µ is concentrated on the two points N , S, and so must be a convex
combination of the Dirac delta measures δN and δS . Hence

M(X, T ) = {αδN + (1− α)δS | α ∈ [0, 1]}

and the ergodic measures are the extremal points of M(X, T ), namely δN , δS .

§6.8 Unique Ergodicity

We conclude this lecture by looking at the case where T : X → X has a
unique invariant probability measure.

Definition. Let T : X → X be a continuous transformation of a compact
metric space X. If there is a unique T -invariant probability measure then
we say that T is uniquely ergodic.

Remark You might wonder why such T are not instead called ‘uniquely
invariant’. Recall that the extremal points of M(X, T ) are precisely the
ergodic measures. If M(X, T ) consists of just one measure then that measure
is extremal, and so must be ergodic.

Unique ergodicity implies the following strong convergence result.

Theorem 6.11 (Oxtoby’s ergodic theorem)
Let X be a compact metric space and let T : X → X be a continuous
transformation. The following are equivalent:

(i) T is uniquely ergodic;

(ii) for each f ∈ C(X, R) there exists a constant c(f) such that

1
n

n−1∑
j=0

f(T jx) → c(f),

uniformly for x ∈ X, as n →∞.
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Remark Our intuition behind Oxtoby’s Ergodic Theorem is as follows.
By Birkhoff’s Ergodic Theorem, we know that

1
n

n−1∑
j=0

f(T jx) (6.5)

converges for µ-almost all x ∈ X, where µ is an ergodic measure. If µ1 and
µ2 are distinct ergodic measures then they must be mutually singular (this is
a simple exercise). Thus, for example, the set of zero µ1-measure for which
(6.5) fails to converge to

∫
f dµ1 contains a set of full µ2-measure for which

it converges to
∫

f dµ2 (it also contains sets of full measure for other ergodic
measures for which (6.5) converges to the integral of f , along with the set
of points for which (6.5) fails to converge at all. If T is uniquely ergodic,
then the only possibility for a limit for (6.5) as n → 0 is

∫
f dµ where µ

is the unique invariant measure; and hence one should expect this to hold
everywhere, assuming (6.5) converges.

Proof. (ii) ⇒ (i): Suppose that µ, ν are T -invariant probability measures;
we shall show that µ = ν.

Integrating the expression in (ii), we obtain∫
f dµ = lim

n→∞

1
n

n−1∑
j=0

∫
f ◦ T j dµ

=
∫

lim
n→∞

1
n

n−1∑
j=0

f ◦ T j dµ

=
∫

c(f) dµ = c(f),

and, by the same argument ∫
f dν = c(f).

Therefore ∫
f dµ =

∫
f dν ∀f ∈ C(X)

and so µ = ν (by the Riesz Representation Theorem).
(i) ⇒ (ii): Let M(X, T ) = {µ}. If (ii) is true, then, by the Dominated

Convergence Theorem, we must necessarily have c(f) =
∫

f dµ. Suppose
that (ii) is false. Then we can find f ∈ C(X) and sequences nk ∈ N and
xk ∈ X such that

lim
k→∞

1
nk

nk−1∑
j=0

f(T jxk) 6=
∫

f dµ.
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For each k ≥ 1, define a measure νk ∈ M(X) by

νk =
1
nk

nk−1∑
j=0

T j
∗ δxk

,

so that ∫
f dνk =

1
nk

nk−1∑
j=0

f(T jxk).

By the following the proof of Theorem 6.6, it is easy to see that νk has a sub-
sequence which converges weak∗ to a measure ν ∈ M(X, T ). In particular,
we have ∫

f dν = lim
k→∞

∫
f dνk 6=

∫
f dµ.

Therefore, ν 6= µ, contradicting unique ergodicity. 2

§6.8.1 Example: The Irrational Rotation

Let X = R/Z, T : X → X : x 7→ x + α mod 1, α irrational. Then T is
uniquely ergodic (and µ = Lebesgue measure is the unique invariant prob-
ability measure).

Proof. Let m be an arbitrary T -invariant probability measure; we shall
show that m = µ.

Write ek(x) = e2πikx. Then∫
ek(x) dm =

∫
ek(Tx) dm

=
∫

ek(x + α) dm

= e2πikα

∫
ek(x) dm.

Since α is irrational, if k 6= 0 then e2πikα 6= 1 and so∫
ek dm = 0. (6.6)

Let f ∈ C(X) have Fourier series
∑∞

k=−∞ akek, so that a0 =
∫

f dµ. For
n ≥ 1, we let σn denote the average of the first n partial sums. Then σn → f
uniformly as n →∞. Hence

lim
n→∞

∫
σn dm =

∫
f dm.

However using (6.6), we may calculate that∫
σn dm = a0 =

∫
f dµ.

Thus we have that
∫

f dm =
∫

f dµ, for every f ∈ C(X), and so m = µ. 2
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§6.9 Appendix: Radon-Nikodym derivatives

In the above we used Radon-Nikodym derivatives. Here we give a brief
statement of the required results.

Definition. Let µ be a measure on (X,B). We say that a measure ν
is absolutely continuous with respect to µ and write ν � µ if ν(B) = 0
whenever µ(B) = 0, B ∈ B.

Remark Thus ν is absolutely continuous with respect to µ if sets of µ-
measure zero also have ν-measure zero (but there may be more sets of ν-
measure zero). For example, let f ∈ L1(X,B, µ) be non-negative and define
a measure ν by

ν(B) =
∫

B
f dµ.

Then ν � µ.
The following theorem says that, essentially, all absolutely continuous

measures occur in this way.

Theorem 6.12 (Radon-Nikodym)
Let (X,B, µ) be a probability space. Let ν be a measure defined on B and
suppose that ν � µ. Then there is a non-negative measurable function f
such that

ν(B) =
∫

B
f dµ, for all B ∈ B.

Moreover, f is unique in the sense that if g is a measurable function with
the same property then f = g µ-a.e.

If ν � µ then it is customary to write dν/dµ for the function given by the
Radon-Nikodym theorem, that is

ν(B) =
∫

B

dν

dµ
dµ.

The following (easily-proved) relations indicate why this notation is used.

(i) If ν � µ and f is a µ-integrable function then∫
f dν =

∫
f

dν

dµ
dµ.

(ii) If ν1, ν2 � µ then
d(ν1 + ν2)

dµ
=

dν1

dµ
+

dν2

dµ
.

(iii) If λ � ν � µ then
dλ

dµ
=

dλ

dν

dν

dµ
.

14
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§6.10 Extension to arbitrary measure spaces

Throughout this lecture, the setting has been that of a continuous transfor-
mation of a compact metric space equipped with the Borel σ-algebra. In
previous lectures, the setting has been that of a measurable transformation
of a probability space (X,B, µ). One can often embed the latter in the
former, as follows.

Recall that the Borel σ-algebra on [0, 1] is the smallest σ-algebra that
contains the open sets. There is another, larger, σ-algebra that is often
of use, namely the Lebesgue σ-algebra. Recall that a set B is Lebesgue
measurable if for all sets A ⊂ [0, 1] we have

λ∗(A) = λ∗(A ∩B) + λ∗(A ∩Bc)

where λ∗ denotes the Lebesgue outer measure. The collection of all Lebesgue
measurable sets forms a σ-algebra which contains, but is strictly larger
than, the Borel σ-algebra. Lebesgue outer measure restricts to a measure,
Lebesgue measure, on the Lebesgue σ-algebra. Any Lebesgue measurable
set is almost everywhere equal to a Borel set.

A finite measure space (X,B, µ) is said to be a Lebesgue measure space
if there is a bi-measurable measure-preserving bijection φ from (X,B, µ) to
the unit interval [0, 1] equipped with the Lebesgue σ-algebra and Lebesgue
measure, together with a countable number of point masses. (Note that φ
being measurable does not imply that φ−1 is measurable, and this is why
we have to say ‘bi-measurable’.) It is worth noting that one has to go to a
great deal of pathological effort to construct a non-Lebesgue measure space.

Proposition 6.13
Let (X,B, µ) be a Lebesgue measure space and let T : X → X be a measure-
preserving transformation. Then there exists a compact metric space X ′, a
continuous transformation T ′ : X ′ → X ′, a measure µ′ on the completion
B̄(X) of the Borel σ-algebra of X ′, and a measure-preserving bimeasurable
isomorphism V : (X,B, µ) → (X ′, B̄(X), µ′) between T and T ′.

Hence, up to measurable isomorphism, there is often no loss in assuming
that a measure-preserving transformation of a probability space is a contin-
uous transformation of a compact metric space, and the invariant measure
is a probability measure on the completion of the Borel σ-algebra.

§6.11 References

A particularly readable account of the material in this lecture can be found
in:

P. Walters, An introduction to ergodic theory, Springer, Berlin, 1982.
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The connections between the space of ergodic measures and the extremal
points go much deeper than the material presented above using ideas from
convexity theory. The standard reference on convex sets is

R. Phelps, Lectures on Choquet’s Theorem, van Nostrand, New York, 1966.

Precise statements, together with proofs, about embedding Lebesgue mea-
surable spaces in compact metric spaces can be found in

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem
in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49.

§6.12 Exercises

Exercise 6.1
Give an example to show that µn ⇀ µ does not necessarily imply that
µn(B) → µ(B) for all B ∈ B.

Exercise 6.2
Show that the map δ : X → M(X) : x 7→ δx is continuous in the weak∗

topology. Show that the map T∗ : M(X) → M(X) is continuous in the
weak∗ topology. (Hint: This is really just unravelling the underlying defini-
tions.)

Exercise 6.3
Let X be a compact metric space. For µ ∈ M(X) define

‖µ‖ = sup
f∈C(X),‖f‖∞≤1

∣∣∣∣∫ f dµ

∣∣∣∣ .
We say that µn converges strongly to µ if ‖µn − µ‖ → 0 as n → ∞. The
topology this determines is called the strong topology (or the operator topol-
ogy).

(i) Show that if µn → µ strongly then µn ⇀ µ in the weak∗ topology.

(ii) Show that X ↪→ M(X) : x 7→ δx is not continuous in the strong
topology.

(iii) Prove that ‖δx − δy‖ = 2 if x 6= y. (You may use Urysohn’s Lemma:
Let A and B be disjoint closed subsets of a metric space X. Then
there is a continuous function f ∈ C(X, R) such that 0 ≤ f ≤ 1 on X
while f ≡ 0 on A and f ≡ 1 on B.)

Hence prove that M(X) is not compact in the strong topology when
X is infinite.

16
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Exercise 6.4
Let T : X → X be a continuous transformation of a compact metric space
X.

(i) Suppose that µ is an ergodic measure for T . Prove that there exists a
set Y ∈ B with µ(Y ) = 1 such that

1
n

n−1∑
j=0

f(T jx) →
∫

f dµ

for all x ∈ Y , for all f ∈ C(X, R). (That is, the set of full measure
for which convergence holds in the Birkhoff Ergodic Theorem can be
chosen to work simultaneously for all continuous functions.)

(ii) Let µ ∈ M(X, T ) be a T -invariant measure. Prove that µ is ergodic if
and only if

1
n

n−1∑
j=0

δT jx ⇀ µ for µ− a.e x ∈ X.

(iii) Hence give another proof that the only ergodic measures for the North-
South map are δN , δS .

Exercise 6.5
Let T : X → X be a continuous transformation of a compact metric space
X. Let B = {g ◦ T − g | g ∈ C(X, R)} (this is often called the space of
coboundaries of T ) and let B̄ ⊂ C(X, R) denote its closure in the uniform
topology. Prove that T is uniquely ergodic if and only if C(X, R) = B̄ ⊕ R
(here R denotes the space of constant functions). (Hint: use the Hahn-
Banach Theorem and the Hahn Decomposition Theorem.)
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