
MAGIC010 Ergodic Theory Lecture 4

4. Ergodicity and mixing

§4.1 Introduction

In the previous lecture we defined what is meant by an invariant measure.
In this lecture, we define what is meant by an ergodic measure. The pri-
mary motivation for ergodicity is that in this setting Birkhoff’s Ergodic
Theorem has a particularly simple statement: if T is an ergodic measure-
preserving transformation of the probability space (X,B, µ) then, for each
f ∈ L1(X,B, µ) we have that

1
n

n−1∑
j=0

f(T jx)→
∫
f dµ

as n → ∞, for µ-a.e. x ∈ X. Checking that a given measure-preserving
transformation is ergodic is often a non-trivial task. We will discuss other,
stronger, properties that a measure-preserving transformation may enjoy,
and that in some cases are easier to check.

§4.2 Ergodicity

We define what it means to say that a measure-preserving transformation
is ergodic.

Definition. Let (X,B, µ) be a probability space and let T : X → X be
a measure-preserving transformation. We say that T is an ergodic trans-
formation (or that µ is an ergodic measure) if whenever B ∈ B satisfies
T−1B = B then µ(B) = 0 or 1.

Remark Ergodicity can be viewed as an indecomposability condition. If
ergodicity does not hold then we can find a set B ∈ B such that T−1B = B
and 0 < µ(B) < 1. We can then split T : X → X into T : B → B and
T : X \ B → X \ B with invariant probability measures 1

µ(B)µ(· ∩ B) and
1

1−µ(B)µ(· ∩ (X \B)), respectively.
It will sometimes be convenient for us to weaken the condition T−1B = B

to µ(T−1B4B) = 0, where 4 denotes the symmetric difference:

A4B = (A \B) ∪ (B \A).

We will often write that A = B µ-a.e. or A = B mod 0 to mean that
µ(A4B) = 0.
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Remark It is easy to see that if A = B µ-a.e. then µ(A) = µ(B).

Lemma 4.1
Suppose that B ∈ B is such that µ(T−1B4B) = 0. Then there exists B′ ∈ B
with T−1B′ = B′ and µ(B4B′) = 0. (In particular, µ(B) = µ(B′).)

Proof. For each n ≥ 0, we have the inclusion

T−nB4B ⊂
n−1⋃
j=0

(
T−(j+1)B4T−jB

)

=
n−1⋃
j=0

T−j(T−1B4B).

Hence, as T preserves µ,

µ(T−nB4B) ≤ nµ(T−1B4B) = 0.

Let

B′ =
∞⋂
n=0

∞⋃
j=n

T−jB.

We have that

µ

B4 ∞⋃
j=n

T−jB

 ≤ ∞∑
j=n

µ(B4T−nB) = 0.

Since the sets
⋃∞
j=n T

−jB decrease as n increases we hence have µ(B4B′) =
0. Also,

T−1B′ =
∞⋂
n=0

∞⋃
j=n

T−(j+1)B

=
∞⋂
n=0

∞⋃
j=n+1

T−jB = B′,

as required. 2

Corollary 4.2
If T is ergodic and µ(T−1B4B) = 0 then µ(B) = 0 or 1.

We have the following convenient characterisation of ergodicity.

Proposition 4.3
Let T be a measure-preserving transformation of the probability space (X,B, µ).
The following are equivalent:
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(i) T is ergodic;

(ii) whenever f ∈ L1(X,B, µ) satisfies f ◦ T = f µ-a.e. we have that f is
constant µ-a.e.

Remark We can replace L1 in Proposition 4.3(ii) by measurable or by L2.

Proof. We prove that (i) implies (ii). Suppose that T is ergodic. Suppose
that f ∈ L1(X,B, µ) is such that f ◦ T = f µ-a.e. For k ∈ Z and n ∈ N,
define

X(k, n) =
{
x ∈ X | k

2n
≤ f(x) <

k + 1
2n

}
= f−1

([
k

2n
,
k + 1

2n

))
.

Since f is measurable, we have that X(k, n) ∈ B.
We have that

T−1X(k, n)4X(k, n) ⊂ {x ∈ X | f(Tx) 6= f(x)}

so that
µ(T−1X(k, n)4X(k, n)) = 0.

Hence µ(X(k, n)) = 0 or µ(X(k, n)) = 1.
For each fixed n, the union

⋃
k∈ZX(k, n) is equal to X up to a set of

measure zero, i.e.,

µ

(
X4

⋃
k∈Z

X(k, n)

)
= 0;

moreover, this union is disjoint. Hence we have∑
k∈Z

µ(X(k, n)) = µ(X) = 1

and so there is a unique kn for which µ(X(kn, n)) = 1. Let

Y =
∞⋂
n=1

X(kn, n).

Then µ(Y ) = 1 and, by construction, f is constant on Y , i.e., f is constant
µ-a.e.

Conversely, we prove that (ii) implies (i). Suppose that B ∈ B is such
that T−1B = B. Then χB ∈ L1(X,B, µ) and χB ◦ T (x) = χB(x) for all
x ∈ X. Hence χB is constant µ-a.e. Since χB only takes the values 0 and 1,
we must have χB = 0 µ-a.e. or χB = 1 µ-a.e. Therefore

µ(B) =
∫
X
χB dµ = 0 or 1,

and T is ergodic. 2
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§4.3 Examples: Using Fourier series to prove ergodicity

In the previous lecture we studied a number of examples of dynamical sys-
tems defined on the circle or the torus and we proved that Lebesgue measure
is invariant. We show how Proposition 4.3 can be used in conjuction with
Fourier Series to determine whether Lebesgue measure is ergodic.

§4.3.1 Rotations on a circle

Fix α ∈ R and define T : R/Z → R/Z by T (x) = x + α mod 1. We have
already seen that T preserves Lebesgue measure. The following result gives
a necessary and sufficient condition for T to be ergodic.

Theorem 4.4
Let T (x) = x+ α mod 1.

(i) If α ∈ Q then T is not ergodic with respect to Lebesgue measure.

(ii) If α 6∈ Q then T is ergodic with respect to Lebesgue measure.

Proof. Suppose that α ∈ Q and write α = p/q for p, q ∈ Z with q 6= 0.
Define

f(x) = e2πiqx ∈ L2(X,B, µ).

Then f is not constant but

f(Tx) = e2πiq(x+p/q) = e2πi(qx+p) = e2πiqx = f(x).

Hence T is not ergodic.
Suppose that α 6∈ Q. Suppose that f ∈ L2(X,B, µ) is such that f ◦T = f

a.e. Suppose that f has Fourier series

∞∑
n=−∞

cne
2πinx.

Then f ◦ T has Fourier series

∞∑
n=−∞

cne
2πinαe2πinx.

Comparing Fourier coefficients we see that

cn = cne
2πinα,

for all n ∈ Z. As α 6∈ Q, we see that e2πinα 6= 1 unless n = 0. Hence cn = 0
for n 6= 0. Hence f has Fourier series c0, i.e. f is constant a.e. 2
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§4.3.2 The doubling map

Let X = R/Z. Recall that if f ∈ L2(X,B, µ) has Fourier series
∞∑

n=−∞
cne

2πinx

then the Riemann-Lebesgue lemma tells us that cn → 0 as n→∞.

Proposition 4.5
The doubling map T : X → X defined by T (x) = 2x mod 1 is ergodic with
respect to Lebesgue measure µ.

Proof. Let f ∈ L2(X,B, µ) and suppose that f ◦ T = f µ-a.e. Let f have
Fourier series

f(x) =
∞∑

n=−∞
cne

2πinx (in L2).

For each p ≥ 0, f ◦ T p has Fourier series
∞∑

n=−∞
cne

2πin2px.

Comparing Fourier coefficients we see that

cn = c2pn

for all n ∈ Z and each p = 0, 1, 2, . . .. By the Riemann-Lebesgue lemma,
for each n 6= 0, c2pn → 0 as p → ∞. Hence cn = 0 for n 6= 0. Thus f has
Fourier series c0, and so must be equal to a constant a.e. Hence T is ergodic
with respect to µ. 2

§4.3.3 Toral endomorphisms

The argument for the doubling map can be generalised using higher-dimensional
Fourier series to study toral endomorphisms. Let X = Rk/Zk and let µ de-
note Lebesgue measure. Recall that f ∈ L2(X,B, µ) has Fourier series∑

n∈Zk

cne
2πi〈n,x〉,

where n = (n1, . . . , nk), x = (x1, . . . , xk). Define |n| = max1≤j≤n |nj |. Then
the Riemann Lebesgue lemma tells us that cn → 0 as |n| → ∞.

Let A be a k× k integer matrix with detA = ±1 and define T : X → X
by

T (x1, . . . , xk) = A(x1, . . . , xk) mod 1.

Proposition 4.6
A linear toral automorphism T is ergodic with respect to µ if and only if no
eigenvalue of A is a root of unity.
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Remark In particular, hyperbolic toral automorphisms (i.e. no eigenval-
ues of modulus 1) are ergodic with respect to Lebesgue measure.

Proof. We prove that (i) implies (ii). Suppose that T is ergodic but, for
a contradition, that A has a pth root of unity as an eigenvalue. We choose
p > 0 to be the least such integer. Then Ap has 1 as an eigenvalue, and so
n(Ap − I) = 0 for some non-zero vector n = (n1, . . . , nk) ∈ Rk. Since A is
an integer matrix, we have that Ap − I is an integer matrix, and so we can
in fact take n ∈ Zk. Note that

e2πi〈n,A
px〉 = e2πi〈nA

p,x〉 = e2πi〈n,x〉.

Define

f(x) =
p−1∑
j=0

e2πi〈n,A
jx〉.

Then f ∈ L2(X,B, µ) and is T -invariant. Since T is ergodic, we must have
that f is constant. But the only way in which this can happen is if n = 0,
a contradiction.

We prove that (ii) implies (i). Suppose that f ∈ L2(X,B, µ) is T -
invariant µ-a.e. We show that f is constant µ-a.e. Associate to f its Fourier
series: ∑

n∈Zk

cne
2πi〈n,x〉.

Since fT p = f µ-a.e., for all p > 0, we have that∑
n∈Zk

cne
2πi〈nAp,x〉 =

∑
n∈Zk

cne
2πi〈n,x〉.

Comparing Fourier coefficients we see that, for every n ∈ Zk,

cn = cnA = · · · = cnAp = · · · .

If cn 6= 0 then there can only be finitely many indices in the above list,
for otherwise it would contradict the fact that cn → 0 as |n| → ∞, by
the Riemann-Lebesgue lemma. Hence there exists q1 > q2 > 0 such that
nAq1 = nAq2 . Letting p = q1 − q2 > 0 we see that nAp = n. Thus n is
either equal to 0 or is an eigenvector for Ap with eigenvalue 1. In the latter
case, A would have a pth root of unity as an eigenvalue; hence n = 0. Hence
cn = 0 unless n = 0 and so f is equal to the constant c0 µ-a.e. Thus T is
ergodic. 2

§4.4 Using the Kolmogorov Extension Theorem to prove ergod-
icity

We illustrate a method for proving that a given transformation is ergodic
using the Kolmogorov Extension Theorem. The key observation is the fol-
lowing technical lemma.
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Lemma 4.7
Let (X,B, µ) be a probability space and suppose that A ⊂ B is an algebra
that generates B. Suppose there exists K > 0 such that

µ(B)µ(I) ≤ Kµ(B ∩ I) (4.1)

for all I ∈ A. Then µ(B) = 0 or 1.

Proof. Let ε > 0. As A generates B there exists I ∈ A such that
µ(Bc4I) < ε. Hence |µ(Bc)−µ(I)| < ε. Moreover, note that B∩I ⊂ Bc4I
so that µ(B ∩ I) < ε. Hence

µ(B)µ(Bc) ≤ µ(B)(µ(I)+ε) ≤ µ(B)µ(I)+µ(B)ε ≤ Kµ(B∩I)+ε ≤ (K+1)ε.

As ε > 0 is arbitrary, it follows that µ(B)µ(Bc) = 0. Hence µ(B) = 0 or 1.
2

Remark We will often apply Lemma 4.7 when A is an algebra of finite
unions of intervals or cylinders. In this case, we need only check that there
exists a constant K > 0 such that (4.1) holds for intervals or cylinders. To
see this, let I =

⋃k
j=1 Ij be a finite union of disjoint sets in A. Then if (4.1)

holds for Ij then

µ(B)µ(I) = µ(B)µ

 k⋃
j=1

Ij

 =
k∑
j=1

µ(B)µ(Ij)

≤ K
k∑
j=1

µ(B ∩ Ij) = Kµ

B ∩ k⋃
j=1

Ij

 = Kµ(B ∩ I).

We will also use the change of variables formula for integration. Recall
that if I, J ⊂ R are intervals, u : I → J is a differentiable bijection, and
f : J → R is integrable, then∫

J
f(x) dx =

∫
I
f(u(x))|u′(x)| dx.

§4.4.1 Bernoulli shifts

Let S = {1, . . . , k} be a finite set of symbols and let Σ = {x = (xj)∞j=0 | xj ∈
{1, 2, . . . , k}} denote the shift space on k symbols. Let σ : Σ → Σ denote
the left shift map, so that (σ(x))j = xj+1.

Recall that we defined the cylinder [i0, . . . , in−1] to be the set of all
sequences in Σ that start with symbols i0, . . . , in−1, that is

[i0, . . . , in−1] = {x = (xj)∞j=0 ∈ Σ | xj = ij , j = 0, 1, . . . , n− 1}.
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Let p = (p(1), . . . , p(k)) be a probability vector (that is, p(j) > 0,∑k
j=1 p(j) = 1). We defined the Bernoulli measure µp on cylinders by setting

µp[i0, . . . , in−1] = p(i0)p(i1) · · · p(in−1).

We have already seen that µp is a σ-invariant measure.

Proposition 4.8
Let µp be a Bernoulli measure. Then µp is ergodic.

Proof. We first make the following observation: let I = [i0, . . . , ip−1],
J = [j0, . . . , jq−1] be cylinders of ranks p, q, respectively. Consider I ∩ σ−nJ
where n ≥ p. Then

I ∩ σ−nJ
= {x = (xj)∞j=0 ∈ Σ | xj = ij for j = 0, 1, . . . , p− 1, xj+n = yj for j = 0, 1, . . . , q − 1}

=
⋃

xp,...,xn−1

[i0, i1, . . . , ip−1, xp, . . . , xn−1, j0, . . . , jq−1],

a disjoint union. Hence

µp(I ∩ σ−nJ) (4.2)

=
∑

xp,...,xn−1

µp[i0, i1, . . . , ip−1, xp, . . . , xn−1, j0, . . . , jq−1]

=
∑

xp,...,xn−1

p(i0)p(i1) · · · p(in−1)p(xp) · · · p(xn−1)p(j0)p(j1) · · · p(jq−1)

= p(i0)p(i1) · · · p(in−1)p(j0)p(j1) · · · p(jq−1) as
∑
xp

p(xp) = · · · =
∑
xn−1

p(xn−1) = 1

= µp(I)µp(J). (4.3)

Let B ∈ B be σ-invariant. By Proposition 4.7 it is sufficient to prove
that µp(B ∩ I) ≤ µp(B)µp(I) for each cylinder I. Let ε > 0. We first
approximate the invariant set B by a finite union of cylinders. As the
algebra of finite unions of cylinders generates the Borel σ-algebra, we can
find a finite disjoint union of cylinders A =

⋃r
j=1 Jj such that µp(B4A) < ε.

Note that |µp(A)− µp(B)| < ε.
Let n be any integer greater than the rank of I. Note that σ−nB4σ−nA =

σ−n(B4A). Hence

µp(σ−nB4σ−nA) = µp(σ−n(B4A)) = µp(B4A) < ε,

where we have used the facts that σ−nB = B and that µp is an invariant
measure. Hence |µp(σ−nB)− µp(σ−nA)| < ε.

8
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As A =
⋃r
j=1 Jj is a finite union of cylinders and n is greater than the

rank of I, it follows from (4.3) that

µp(σ−nA ∩ I) = µp

σ−n
 r⋃
j=1

Jj

 ∩ I
 =

r∑
j=1

µp(σ−nJj ∩ I)

=
r∑
j=1

µp(Jj)µp(I) = µp

 r⋃
j=1

Jj

µp(I)

= µp(A)µp(I).

Finally, note that (σ−nA ∩ I)4(σ−nB ∩ I) ⊂ (σ−nA)4(σ−nB). Hence
µp((σ−nA∩ I)4(σ−nB ∩ I)) < ε so that µp(σ−nA∩ I) < µp(σ−nB ∩ I) + ε.
Hence

µp(B)µp(I) = µp(σ−nB)µp(I) ≤ µp(σ−nA)µp(I) + ε

= µp(σ−nA ∩ I) + ε ≤ µp(σ−nB ∩ I) + 2ε
= µ(B ∩ I) + 2ε.

As ε > 0 is arbitrary, we have that µp(B)µp(I) ≤ µp(B ∩ I) for any cylinder
I. By Proposition 4.7, it follows that µp(B) = 0 or 1. Hence µp is ergodic.

2

Remark One can use a similar argument to show that Markov measures
corresponding to irreducible or aperiodic shifts of finite type are ergodic.
One can also show that Bernoulli and irreducible Markov measures for two-
sided shifts of finite type are ergodic.

§4.4.2 The continued fraction map

Let x ∈ [0, 1]. If x has continued fraction expansion

x =
1

x0 +
1

x1 +
1

x2 + · · ·

then for brevity we write x = [x0, x1, x2, . . .].
Let X = [0, 1] and recall that the Gauss map is defined by T (x) =

1/x mod 1 (with T defined at 0 by setting T (0) = 0). If x has continued
fraction expansion [x0, x1, x2, . . .] then T (x) has continued fraction expan-
sion [x1, x2, . . .]. We have already seen that T leaves Gauss’ measure µ
invariant, where Gauss’ measure is defined by

µ(B) =
1

log 2

∫
B

1
1 + x

dx.

9
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We shall also need some basic facts about continued fractions. Let x ∈
(0, 1) be irrational and have continued fraction expansion [x0, x1, . . .]. For
any t ∈ [0, 1], write

[x0, x1, . . . , xn−1 + t] =
Pn(x0, x1, . . . , xn−1; t)
Qn(x0, x1, . . . , xn−1; t)

where Pn(x0, x1, . . . , xn−1; t) and Qn(x0, x1, . . . , xn−1; t) are polynomials in
x0, x1, . . . , xn−1 and t. Let Pn = Pn(x0, x1, . . . , xn−1), Qn = Qn(x0, x1, . . . , xn−1)
(we suppress the dependence of Pn and Qn on x0, . . . , xn−1 for brevity). The
following lemma is easily proved using induction.

Lemma 4.9
(i) We have

Pn(x0, x1, . . . , xn−1; t) = Pn+tPn−1, Qn(x0, x1, . . . , xn−1; t) = Qn+tQn−1.

and the following recurrence relations hold:

Pn+1 = xnPn + Pn−1, Qn+1 = xnQn +Qn−1

with initial conditions P0 = 0, P1 = 1, Q0 = 1, Q1 = x0.

(ii) The following identity holds:

QnPn−1 −Qn−1Pn = (−1)n.

Let i0, i1, . . . , in−1 ∈ N. Define the cylinder I(i0, i1, . . . , in−1) to be the
set of all points x ∈ (0, 1) whose continued fraction expansion starts with
i0, . . . , in−1. This is easily seen to be an interval; indeed

I(i0, i1, . . . , in−1) = {[i0, i1, . . . , in−1 + t] | t ∈ [0, 1)}.

Let A denote the algebra of finite unions of cylinders. Then A generates the
Borel σ-algebra. (This follows as cylinders are clearly Borel sets and they
separate points. To see this, note that if x 6= y then they have different con-
tinued fraction expansions. Hence there exists n such that xn 6= yn. Hence
x, y are in different cylinders of rank n, and these cylinders are disjoint.)

For each i ∈ N define the map

φi(x) =
1

i+ x
: [0, 1)→ I(i).

Thus if x has continued fraction expansion [x0, x1, . . .] then φi(x) has contin-
ued fraction expansion [i, x0, x1, . . .]. Clearly T (φi(x)) = x for all x ∈ [0, 1).

For i0, i1, . . . , in−1 ∈ N, define

φi0,i1,...,in−1 = φi0φi1 · · ·φin−1 : [0, 1)→ I(i0, i1, . . . , in−1).

10



MAGIC010 Ergodic Theory Lecture 4

Then φi0,i1,...,in−1(x) takes the continued fraction expansion of x, shifts every
digit n places to the right, and inserts the digit i0, i1, . . . , in−1 in the first n
places. Clearly

Tn(φi0,i1,...,in−1(x)) = x

for all x ∈ [0, 1).
We first need an estimate on the length of (i.e. the Lebesgue measure

of) the cylinder I(i0, i1, . . . , in−1). Note that

φi0,i1,...,in−1(t) =
Pn(i0, . . . , in−1; t)
Qn(i0, . . . , in−1; t)

=
Pn + tPn−1

Qn + tQn−1
.

Differentiating this expression with respect to t and using Lemma 4.9(ii),
we see that

|φ′i0,i1,...,in−1
(t)| =

∣∣∣∣QnPn−1 − PnQn−1

(Qn + tQn−1)2

∣∣∣∣ =
1

(Qn + tQn−1)2
.

It follows from Lemma 4.9(i) that Qn +Qn−1 ≤ 2Qn. Hence

1
4

1
Q2
n

≤ 1
(Qn +Qn−1)2

≤ |φ′i0,i1,...,in−1
(t)| ≤ 1

Q2
n

. (4.4)

Hence

λ(I(i0, i1, . . . , in−1)) =
∫
χI(i0,i1,...,in−1)(t) dt =

∫
I(i0,i1,...,in−1)

dt =
∫ 1

0
|φ′i0,i1,...,in−1

(t)| dt

(4.5)
where we have used the change of variables formula. Combining (4.5) with
(4.4) we see that

1
4

1
Q2
n

≤ λ(I(i0, i1, . . . , in−1)) ≤ 1
Q2
n

. (4.6)

We can now prove that the Gauss map is ergodic with respect to Gauss’
measure µ. Suppose that T−1B = B where B ∈ B. Let I(i0, i1, . . . , in−1)
be a cylinder. Then

λ(B ∩ I(i0, i1, . . . , in−1))

=
∫
I(i0,i1,...,in−1)

χB(x) dx

=
∫ 1

0
χB(φi0,i1,...,in−1(x))|φ′i0,i1,...,in−1

(x)| dx by the change of variables formula.

=
∫ 1

0
χT−nB(φi0,i1,...,in−1(x))|φ′i0,i1,...,in−1

(x)| dx as T−nB = B

=
∫ 1

0
χB(Tn(φi0,i1,...,in−1(x)))|φ′i0,i1,...,in−1

(x)| dx as χT−nB = χB ◦ Tn

=
∫ 1

0
χB(x)|φ′i0,i1,...,in−1

(x)| dx as Tnφi0,i1,...,in−1(x) = x.

11
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By (4.4) and (4.6) it follows that

λ(B ∩ I(i0, i1, . . . , in−1)) ≥ 1
4Q2

n

λ(B) ≥ 1
4
λ(B)λ(I(i0, i1, . . . , in−1))

so that

λ(B)λ(I(i0, i1, . . . , in−1)) ≤ 4λ(B ∩ I(i0, i1, . . . , in−1)).

By Lemma 4.7 it follows that λ(B) = 0 or 1. Hence, as Lebesgue measure
and Gauss’ measure have the same sets of measure zero, it follows that either
µ(B) = 0 or µ(B) = 1. Hence T is ergodic with respect to Gauss’ measure.

§4.5 Mixing

There are many other properties that a given measure-preserving transfor-
mation T may enjoy that imply ergodicity. We briefly describe some of the
more important properties below.

Let T be a measure-presering transformation of a probability space
(X,B, µ). We will see in the next lecture that if T is ergodic with respect
to µ, then the following result holds:

Theorem 4.10 (Birkhoff’s Ergodic Theorem)
Let T be an ergodic measure-preserving transformation of the probability
space (X,B, µ). Let f ∈ L1(X,B, µ). Then

lim
n→∞

1
n

n−1∑
j=0

f(T jx) =
∫
f dµ (4.7)

for µ-a.e. x ∈ X.

The following lemma follows easily from Theorem 4.10.

Lemma 4.11
Let T be a measure-preserving transformation of the probability space (X,B, µ).
Then T is ergodic if and only if for all A,B ∈ B we have

lim
n→∞

1
n

n−1∑
j=0

µ(T−jA ∩B) = µ(A)µ(B). (4.8)

Proof. Take f = χA in (4.7). Multiply (4.7) by χB, and recall that χA ◦
T j ·χB = χT−jA∩B. By the Lebesgue Dominated Convergence Theorem, we
can integrate the resulting expression to obtain (4.8).

Conversely, suppose that T−1B = B, B ∈ B. Taking A = B in (4.8) we
have that µ(B)2 = µ(B). Hence µ(B) = 0 or 1. 2

12
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Recall from abstract probability theory that two events A,B are inde-
pendent if µ(A ∩ B) = µ(A)µ(B). Also recall that a sequence cn is said to
Cesàro converge to a if

lim
n→∞

1
n

n−1∑
j=0

cn = a.

Thus T is ergodic if and only if the Cesàro averages of the sequence µ(T−nA∩
B) converge to µ(A)µ(B). That is, given two sets A,B ∈ B, the sets T−nA,
B become independent as n→∞ in some appropriate sense. We can change
the sense in which T−nA, B become independent to obtain the following
definitions.

Definition. Let T be a measure-preserving transformation of the proba-
bility space (X,B, µ).

(i) We say that T is weak-mixing if, for all A,B ∈ B, we have

lim
n→∞

1
n

n−1∑
j=0

|µ(T−jA ∩B)− µ(A)µ(B)| = 0. (4.9)

(ii) We say that T is strong-mixing if, for all A,B ∈ B, we have

lim
n→∞

µ(T−nA) ∩B) = µ(A)µ(B). (4.10)

Remark It is easy to see that strong-mixing implies weak-mixing, and
that weak-mixing implies ergodicity.

Proposition 4.12
(i) Let T be an exact transformation of the probability space (X,B, µ).

Then T is strong-mixing.

(ii) Let T be a K-automorphism of the probability space (X,B, µ). Then
T is strong-mixing.

§4.6 Spectral theory

Let (X,B, µ) be a probability space. Recall that the space L2(X,B, µ) of
complex-valued square-integrable functions is a Hilbert space with respect
to the inner-product

〈f, g〉 =
∫
fḡ dµ.

Let T be a measurable transformation of a probability space (X,B, µ). Then
T induces a linear operator U on L2(X,Bmu) by defining Uf = f ◦T . One
can often relate ergodic-theoretic properties of T with spectral properties of
U .

13
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Proposition 4.13
The transformation T is measure-preserving if and only if the operator U is
an isometry: i.e. 〈Uf,Ug〉 = 〈f, g〉 for all f, g ∈ L2(X,B, µ). Moreover, if T
is invertible and measure-preserving then U is unitary.

Proof. If T is measure-presering then clearly

〈Uf,Ug〉 =
∫

(f ◦ T )( ¯g ◦ T ) dµ =
∫
fḡ ◦ T dµ =

∫
fḡ dµ = 〈f, g〉.

Hence U is an isometry. if T is invertible that U−1f = f ◦ T−1, so that U
is unitary.

Conversely, if U is an isometry then, noting that U1 = 1 where 1 denotes
the function that is constantly equal to 1, we have that∫

f ◦ T dµ = 〈Uf,U1〉 = 〈f, 1〉 =
∫
f dµ.

Hence T is measure-preserving. 2

Recall that the eigenvalues of a unitary operator acting on a Hilbert
space all have modulus 1. Recall that an eigenvalue is said to be simple if the
corresponding eigenspace is 1-dimensional. The following is a restatement
of Proposition 4.3.

Proposition 4.14
Let T : X → X be a measure-preserving transformation of the probability
space (X,B, µ). Then T is ergodic with respect to µ if and only if 1 is a
simple eigenvalue for U .

Proof. Notice that 1 is always an eigenvalue for U as U fixes the constant
functions. Recalling Proposition 4.3 we know that T is ergodic if and only
if the only L2 functions f for which f ◦ T = f are the constants, the result
follows immediately. 2

We have the following characterisation of weak-mixing.

Proposition 4.15
Let T be an ergodic measure-preserving transformation of the probability
space (X,B, µ). The following are equivalent:

(i) T is weak-mixing;

(ii) whenever f ∈ L2(X,B, µ) satisfies f ◦ T = αf µ-a.e. where α ∈ C,
|α| = 1, we have that f is constant µ-a.e.

Proof. See any standard text on ergodic theory. 2

14
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§4.7 Bernoulli transformations

Definition. We say that two measure-preserving transformations (X,B, µ, T )
and (Y, C,m, S) are (measure theoretically) isomorphic if there exist M ∈ B
and N ∈ C such that

(i) TM ⊂M , SN ⊂ N ,

(ii) µ(M) = 1, m(N) = 1,

and there exists a bijection φ : M → N such that

(i) φ, φ−1 are measurable and measure-preserving (i.e. µ(φ−1A) = m(A)
for all A ∈ C),

(ii) φ ◦ T = S ◦ φ.

We say that a measure-preserving transformation is Bernoulli if it iso-
morphic to a Bernoulli (p1, . . . , pk)-shift, for some (p1, . . . , pk). If T is non-
invertible then the shift is understood to be one-sided, and if T is invertible
then the shift if understood to be two-sided.

Example. The construction of symbolic dynamics for the doubling map
in Lecture 1 shows that the doubling map is isomorphic to the Bernoulli
(1/2, 1/2)-shift.

For non-invertible transformations we have the following hierachy:

Bernoulli ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.

For invertible transformations this hierachy has the form:

Bernoulli ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.

There are examples to show that none of the implications can be reversed.

§4.8 References

All of the material in this lecture is standard in ergodic theory, and can be
found in, for example,

I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Springer,
Berlin, 1982.

W. Parry, Topics in Ergodic Theory, C.U.P., Cambridge, 1981.

K. Petersen, Ergodic Theory, C.U.P., Cambridge, 1983.

P. Walters, An introduction to ergodic theory, Springer, Berlin, 1982.

It is straightforward to find examples of transformations that are ergodic
but not weak-mixing. Examples of transformations that are weak-mixing
but not strong-mixing have been constructed by Kakutani, Chacon, Katok
& Stepin, and others. See the references in Walters’ book above.

15



MAGIC010 Ergodic Theory Lecture 4

§4.9 Exercises

Exercise 4.1
Let T be a measure-preserving transformation of a probability space (X,B, µ).
Prove that each of the following two conditions is equivalent to the ergodicity
of T .

(i) For every B ∈ B with µ(B) > 0 we have

µ

 ∞⋃
j=1

T−jB

 = 1.

(ii) For every A,B ∈ B with µ(A), µ(B) > 0 there exists n > 0 with
µ(T−nA ∩B) > 0.

In particular, (ii) says that ergodicity is equivalent to the following notion
of recurrence: given any two sets of positive measure, the orbit of almost
every point in the first set will hit the second set (and the time at which
this happens depends only on the sets).

Exercise 4.2
It is straightforward to construct hyperbolic toral automorphisms (i.e. no
eigenvalues of modulus 1—the cat map is such an example), which must
necessarily be ergodic with respect to Lebesgue measure. It is harder to
show that there are ergodic toral automorphisms with some eigenvalues of
modulus 1.

(i) Show that to have ergodic toral automorphism of Rk/Zk with an eigen-
value of modulus 1, we must have k ≥ 4.

(ii) Show that the linear toral automorphism of the 4-dimensional torus
induced by the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 8 −6 8

 .

is ergodic.

Exercise 4.3
Let T (x, y) = (x + α mod 1, x + y) be defined on R2/Z2. Describe when
Lebesgue measure µ is invariant, ergodic, or weak-mixing. What are the
eigenvalues of the induced operator U : L2(R2/Z2,B, µ)→ L2(R2/Z2,B, µ)?

Exercise 4.4
Prove, using induction, Lemma 4.9.

16
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Exercise 4.5
Use the method in §4.4 to show that Lebesgue measure is an ergodic measure
for the doubling map.

Exercise 4.6
The Perron-Frobenius theorem states the following:

Suppose that P is a k × k aperiodic matrix stochastic matrix.
(Aperiodic means: there exists n ≥ 1 such that Pn(i, j) > 0 for
all i, j. Stochastic means that 0 ≤ P (i, j) ≤ 1 for all i, j and each
row of P sums to 1.) Then 1 is a simple eigenvalue for P and all
other eigenvalues of P have modulus less than 1. There exists
a unique left-eigenvector p = (p(1), . . . , p(k)) such that pP = p.
Moreover, for all i, j, Pn(i, j)→ p(j) as n→∞.

Let Σ+
A be a one-sided aperiodic shift of finite type with transition matrix

A. Suppose that P is a stochastic matrix that is compatible with A (so that
A(i, j) = 1 ⇔ P (i, j) > 0). Recall that the Markov measure µP is defined
on ccylinders by

µP ([i0, i1, . . . , in]) = p(i0)P (i0, i1) · · ·P (in−1, in).

Suppose that I, J are cylinders. Prove that µP (I∩σ−nJ)→ µP (I)µP (J)
as n→∞.

Hence use the method in §4.4 to prove that µP is ergodic.
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