
MAGIC010 Ergodic Theory Lecture 3

3. Invariant measures

§3.1 Introduction

In Lecture 1 we remarked that ergodic theory is the study of the qualitative
distributional properties of typical orbits of a dynamical system and that
these properties are expressed in terms of measure theory. Measure theory
therefore lies at the heart of ergodic theory. However, we will not need to
know the (many!) intricacies of measure theory. We will give a brief overview
of the basics of measure theory, before studying invariant measures. In the
next lecture we then go on to study ergodic measures.

§3.2 Measure spaces

We will need to recall some basic definitions and facts from measure theory.

Definition. Let X be a set. A collection B of subsets of X is called a
σ-algebra if:

(i) ∅ ∈ B,

(ii) if A ∈ B then X \A ∈ B,

(iii) if An ∈ B, n = 1, 2, 3, . . ., is a countable sequence of sets in B then
their union

⋃∞
n=1An ∈ B.

Remark Clearly, if B is a σ-algebra then X ∈ B. It is easy to see that if
B is a σ-algebra then B is also closed under taking countable intersections.

Examples.

1. The trivial σ-algebra is given by B = {∅, X}.

2. The full σ-algebra is given by B = P(X), i.e. the collection of all
subsets of X.

3. Let X be a compact metric space. The Borel σ-algebra is the small-
est σ-algebra that contains every open subset of X. As σ-algebras
are closed under taking complements, the Borel σ-algebra is also the
smallest σ-algebra that contains every closed subset of X. An element
of the Borel σ-algebra is called a Borel set.

Let X be a set and let B be a σ-algebra of subsets of X.

Definition. A function µ : B → R+ ∪ {∞} is called a measure if:
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(i) µ(∅) = 0;

(ii) if An is a countable collection of pairwise disjoint sets in B (i.e. An ∩
Am = ∅ for n 6= m) then

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

We call (X,B, µ) a measure space. If µ(X) < ∞ then we call µ a finite
measure. If µ(X) = 1 then we call µ a probability or probability measure
and refer to (X,B, µ) as a probability space.

Definition. We say that a property holds almost everywhere if the set of
points on which the property fails to hold has measure zero.

Definition. Suppose that X is a compact metric space and B is the Borel
σ-algebra. A measure on B is called a Borel measure.

Consider the set

U =
⋃
{U | U is open, µ(U) = 0};

that is, U is the largest open set with zero measure. The support of µ is the
complement suppµ = X \ U .

§3.3 The Kolmogorov extension theorem

In order to define a measure, it is necessary to define the measure of every
set in the σ-algebra under consideration. This is usually impractical, and
instead we seek a method that allows us to define a measure on a tractable
subcollection of subsets and then extend it to the required σ-algebra.

Definition. A collection A of subsets of X is called an algebra if:

(i) ∅ ∈ A,

(ii) if A ∈ A then Ac ∈ A,

(iii) if A1, A2 ∈ A then A1 ∪A2 ∈ A.

Thus an algebra is similar to a σ-algebra, except that A is closed under
finite, rather than countable, unions.

Example. Take X = [0, 1]. Then the collection A = {all finite unions of
subintervals} is an algebra.

Let B(A) denote the σ-algebra generated by A, i.e., the smallest σ-
algebra containing A. (In the above example B(A) is the Borel σ-algebra.
This follows from the fact that any open set is a countable union of open
intervals.)

2



MAGIC010 Ergodic Theory Lecture 3

Theorem 3.1 (Kolmogorov Extension Theorem)
Let A be an algebra of subsets of X. Suppose that µ : A → R+ ∪ {∞}
satisfies:

(i) µ(∅) = 0;

(ii) if An ∈ A, n ≥ 1, are pairwise disjoint and if
⋃∞
n=1An ∈ A then

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

(iii) there exists finitely or countably many sets Xn ∈ A such that X =⋃
nXn and µ(Xn) <∞;

Then there is a unique measure µ : B(A)→ R+∪{∞} which is an extension
of µ : A → R+ ∪ {∞}.

Remarks.

(i) The important hypotheses are (i) and (ii) (hypothesis (iii) says that
the space X is σ-finite, a common technical assumption). Thus the
Kolmogorov Extension Theorem says that if we have a function µ that
looks like a measure on an algebra A, then it is indeed a measure when
extended to B(A).

(ii) We will often use the Kolmogorov Extension Theorem as follows. Take
X = [0, 1] and take A to be the algebra consisting of all finite unions
of sub-intervals of X. We then define the ‘measure’ µ of a subin-
terval in such a way as to be consistent with the hypotheses of the
Kolmogorov Extension Theorem. It then follows that µ does indeed
define a measure on the Borel σ-algebra.

(iii) Here is another way in which we shall use the Kolmogorov Extension
Theorem. Suppose we have two measures, µ and ν, and we want to
see if µ = ν. A priori we would have to check that µ(B) = ν(B) for all
B ∈ B. The Kolmogorov Extension Theorem says that it is sufficient
to check that µ(A) = ν(A) for all A in an algebra A that generates
B. For example, to show that two measures on [0, 1] are equal, it is
sufficient to show that they give the same measure to each subinterval.

The following result can be deduced from the proof of the Kolmogorov Ex-
tension Theorem. It allows us to approximate a set in B(A) by sets in
A. Recall that the symmetric difference between two sets A,B is the set
A4B = (A \B) ∪ (B \A).

Corollary 3.2
Let A be an algebra and µ : A → R+ be a function satisfying the hypotheses
of the Kolmogorov Extension Theorem. Then for all B ∈ B(A) and all ε > 0
there exists A ∈ A such that µ(A4B) < ε.
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§3.4 Examples of measures

§3.4.1 Lebesgue measure

Take X = [0, 1] and let A denote the algebra of all finite unions of intervals.
For an interval [a, b] define µ([a, b]) = b− a and extend this to A. This sat-
isfies the hypotheses of the Kolmogorov Extension Theorem, and so defines
a Borel probability measure. This is Lebesgue measure on [0, 1].

In a similar way we can define Lebesgue measure on R/Z.
Take X = Rk/Zk to be the k-dimensional torus. A k-dimensional cube is

a set of the form [a1, b1]×· · ·× [ak, bk]. Let A denote the algebra of all finite
unions of k-dimensional cubes. For a k-dimensional cube [a1, b1]×· · ·×[ak, bk]
define

µ([a1, b1]× · · · × [ak, bk]) =
k∏
j=1

(bj − aj)

and extend this to A. This satisfies the hypotheses of the Kolmogorov
Extension Theorem and defines k-dimensional Lebesgue measure on the k-
dimensional torus.

§3.4.2 Stieltjes measures

Let X = [0, 1] and let ρ : [0, 1] → R+ be a non-decreasing function. Let
A again denote the algebra of finite unions of intervals. For an interval
[a, b] define µρ([a, b]) = ρ(b)− ρ(a) and extend this to A. The Kolmogorov
Extension Theorem then extends µρ to a Borel measure.

Lebesgue measure can be viewed as a special, if somewhat trivial, exam-
ple of this construction: take ρ(x) = x. A more interesting example that
will prove useful when studying continued fractions is given by taking

ρ(x) =
1

log 2

∫ x

0

1
1 + x

dx.

The resulting measure µρ is called Gauss’ measure.
A wide range of measures can be constructed using this method.

Definition. Suppose that µ1, µ2 are two measures on (X,B). We say
that µ1 is absolutely continuous with respect to µ2 (and write µ1 � µ2) if
µ2(B) = 0 implies µ1(B) = 0. We say that µ1 µ2 are equivalent if µ1 � µ2

and µ2 � µ1. (Thus two measures are equivalent if they have the same sets
of measure zero.)

We say that two probability measures µ1, µ2 on (X,B) are mutually
singular if there exist two disjoint sets B1, B2 ∈ B such that B1 ∪ B2 = X
and µ1(B2) = 0, µ2(B1) = 0. (Thus the support of µ1 is contained in B1,
and the support of µ2 is contained in B2.)
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Figure 3.1: The graph of the Devil’s staircase

If ρ is differentiable at Lebesgue-a.e. point then we call ρ′(x) the density
of µρ. If ρ′(x) is continuous then µρ is absolutely continuous with respect to
Lebesgue measure. Moreover, if in addition ρ′(x) > 0 (so that ρ is strictly
increasing), then µρ and Lebesgue measure are equivalent. Thus Gauss’
measure and Lebesgue measure are equivalent.

However, it can happen that ρ is differentiable on a large set but µρ and
Lebesgue measure are mutually singular. Let E1 denote the unit interval
with the middle-third removed; thus E1 = [0, 1/3]∪ [1/3, 2/3], two intervals
of length 1/3. Construct En inductively by removing the middle third of
each of the 2n−1 intervals of En−1, leaving 2n intervals each of length 1/3n.
Let E = ∩∞n=1En denote the standard middle-third Cantor set. It is well-
known that E is an uncountable, perfect, nowhere dense subset of [0, 1].

We define a function ρ : [0, 1] → R as follows. Let [a, b] be one of the
intervals deleted in the construction of En from En−1. Then a = k/3n, b =
(k + 1)/3n for some integer k. Write k =

∑n
j=1 rj3

j in base 3, where rj ∈
{0, 1, 2}. Define sj = 0 if rj = 0 and sj = 1 if rj = 1, 2. We then define ρ on
the interval [a, b] by taking ρ(x) =

∑n
j=1 sj2

−j . This defines a function that
is uniformly continuous on the complement of E, and so extends uniquely
to a continuous function ρ defined on [0, 1]. The function ρ is an example
of a class of function known as Devil’s staircases and has some remarkable
properties: it is a continuous function, increasing from ρ(0) = 0 to ρ(1) =
1, is differentiable Lebesgue-a.e. but has zero derivative Lebesgue-a.e. See
Figure 3.1.

The measure µρ is supported on the Cantor set E, which is easily seen to
have Lebesgue measure zero. Hence µρ and Lebesgue measure are mutually
singular.
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§3.4.3 Bernoulli and Markov measures

Let Σk = {(xj)∞j=−∞ | xj ∈ {1, . . . , k}} denote the full two-sided k-shift. A
cylinder set is a set of sequences where we fix which symbol can occur in a
finite number of places. More specifically, fix i0, . . . , in ∈ {1, . . . , k}. The
cylinder [i0, . . . , in]m is the set of all sequences (xj)∞j=−∞ with the restriction
that symbol ij must occur in the (j +m)th place of (xj). That is,

[i0, . . . , in]m = {(xj)∞j=−∞ ∈ Σk | xj+m = ij , j = 0, 1, . . . , n}.

We can also define cylinders for one-sided shifts and for shifts of finite
type.

Cylinders for shift spaces play the same role as intervals do for the unit
interval. One can easily check that cylinders are open subsets of Σk (indeed,
they are also closed subsets; this reflects the fact that Σk is totally discon-
nected). The collection A of finite unions of cylinders forms an algebra, and
the σ-algebra generated by A is the Borel σ-algebra.

Therefore, by the Kolmogorov Extension Theorem, to define a Borel
measure on Σk it is sufficient to define a measure on cylinders.

Let P = (Pi,j) be a k × k stochastic matrix. That is, Pi,j ≥ 0 and
each row of P sums to 1. Suppose we can find a left probability eigenvector
p = (p1, . . . , pk) for P . That is, pj ≥ 0,

∑
pj = 1, and pP = p. Then we can

define a probability measure µP on cylinders by setting

µP [i0, . . . , in]m = pi0Pi0,i1Pi1,i2 · · ·Pin−1,in . (3.1)

This then extends to a Borel probability measure on Σk.
The motivation behind (3.1) is that we view pi as the probability of

starting with symbol i and Pi,j as the probability of the symbol j occurring
next, given that the preceding symbol was i. Hence the probability of a
given symbol occurring depends only on a finite number of (indeed, one)
preceding symbols; this is a characteristic of a Markov process. We call the
measure µP a Markov measure.

If Pi,j = pi where p = (p1, . . . , pk) is a probability vector then P is a
stochastic matrix. In this case, the above construction gives a Borel proba-
bility measure µp given on cylinders by

µp[i0, . . . , in]m = pi0pi1 · · · pin .

This is called the Bernoulli (p1, . . . , pk)-measure.
Let A be a k × k 0 − 1 matrix with associated shift of finite type ΣA

(either one-sided or two-sided). Suppose that P is a stochastic matrix that
is compatible with A, that is Pi,j > 0 if and only if Ai,j = 1. Then the
above construction of a Markov measure gives a method for constructing
Borel probability measures on ΣA.
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Of course, for a given stochastic matrix P , a left probability eigenvector
may or may not exist. If A is irreducible, then the Perron-Frobenius theorem
guarantees that such an eigenvector does exist. We shall revisit this in a
more general form in a later lecture.

§3.4.4 Dirac measures

Let (X,B) be any measure space. For x ∈ X we define the measure

δx(B) =
{

1 if x ∈ B
0 otherwise.

We call δx the Dirac δ-measure supported at x. Notice that the support of
δx is the singleton {x}. For this reason, δx is often called a point-mass at x.

§3.5 The Lebesgue integral

Let (X,B, µ) be a measure space. We give a brief introduction to the def-
inition of the Lebesgue integral on (X,B, µ). In the special case where
X = [0, 1] and µ is Lebesgue measure, this extends the definition of the
Riemann integral.

Definition. A function f : X → R is measurable if f−1(D) ∈ B for every
Borel subset D of R, or, equivalently, if f−1(c,∞) ∈ B for all c ∈ R.

A function f : X → C is measurable if both the real and imaginary
parts, Ref and Imf , are measurable.

We define integration via simple functions.

Definition. A function f : X → R is simple if it can be written as a linear
combination of characteristic functions of sets in B, i.e.:

f =
r∑
i=1

aiχAi ,

for some ai ∈ R, Ai ∈ B, where the Ai are pairwise disjoint.

For a simple function f : X → R we define∫
f dµ =

r∑
i=1

aiµ(Ai)

(which can be shown to be independent of the representation of f as a simple
function). Thus for simple functions, the integral can be thought of as being
defined to be the area underneath the graph.
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If f : X → R, f ≥ 0, is measurable then one can show that there exists
an increasing sequence of simple functions fn such that fn ↑ f pointwise1 as
n→∞ and we define ∫

f dµ = lim
n→∞

∫
fn dµ.

This can be shown to be independent of the choice of sequence fn.
For an arbitrary measurable function f : X → R, we write f = f+−f−,

where f+ = max{f, 0} ≥ 0 and f− = max{−f, 0} ≥ 0 and define∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Finally, for a measurable function f : X → C, we define∫
f dµ =

∫
Ref dµ+ i

∫
Imf dµ.

We say that f is integrable if∫
|f | dµ < +∞.

A real- or complex-valued function f defined on X is said to be integrable
if
∫
|f | dµ <∞. The space of integrable functions is defined to be

L1(X,B, µ) = {f : X → R | f is measurable,
∫
|f | dµ <∞}.

More generally, for p ≥ 1 we define the Lp-spaces to be

Lp(X,B, µ) = {f : X → R | f is measurable,
∫
|f |p dµ <∞}.

§3.6 Invariant measures

Let (X,B, µ) be a probability space. A transformation T : X → X is said
to be measurable if T−1B ∈ B for all B ∈ B.

Definition. We say that T is a measure-preserving transformation (m.p.t.)
or, equivalently, µ is said to be a T -invariant measure, if µ(T−1B) = µ(B)
for all B ∈ B.

Lemma 3.3
The following are equivalent:

(i) T is a measure-preserving transformation;

(ii) for each f ∈ L1(X,B, µ), we have∫
f dµ =

∫
f ◦ T dµ.

1fn ↑ f pointwise means: for every x, fn(x) is an increasing sequence and fn(x)→ f(x)
as n→∞.
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Remark In Lemma 3.3(ii) we can replace the requirement that f ∈ L1(X,B, µ)
by f ∈ L2(X,B, µ).

Proof. For B ∈ B, it is clear that χB ∈ L1(X,B, µ). Note that χB ◦ T =
χT−1B. Hence

µ(B) =
∫
χB dµ =

∫
χB ◦ T dµ

=
∫
χT−1B dµ = µ(T−1B).

This proves one implication.
Conversely, suppose that T is a measure-preserving transformation. For

any characteristic function χB, B ∈ B,∫
χB dµ = µ(B) = µ(T−1B) =

∫
χT−1B dµ =

∫
χB ◦ T dµ

and so the equality holds for any simple function (a finite linear combination
of characteristic functions). Given any f ∈ L1(X,B, µ) with f ≥ 0, we can
find an increasing sequence of simple functions fn with fn → f pointwise,
as n→∞. For each n we have∫

fn dµ =
∫
fn ◦ T dµ

and, applying the Monotone Convergence Theorem to both sides, we obtain∫
f dµ =

∫
f ◦ T dµ.

To extend the result to general real-valued f , consider the positive and
negative parts. This completes the proof. 2

§3.7 Examples

We shall discuss two different methods for determining whether a dynamical
system T : X → X preserves a given measure µ.

One method uses the Kolmogorov Extension Theorem. It is easy to see
that if T is measurable then we can define a new measure T∗µ by (T∗µ)(B) =
µ(T−1B). This is a probability measure on (X,B). Thus to show that µ
is T -invariant, we have to show that µ = T∗µ, i.e. µ(B) = µ(T−1B) for all
B ∈ B. By the Kolmogorov Extension Theorem, it is sufficient to check that
µ(A) = µ(T−1A) for all A ∈ A, where A is an algebra that generates B.

We shall also discuss algebraic examples of dynamical systems and dis-
cuss when Haar measure is an invariant measure.

If the dynamical system has a periodic orbit then it is easy to find an
invariant measure.
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§3.7.1 Measures supported on a periodic orbits

Let T : X → X be a measurable dynamical system defined on a measure
space (X,B). Suppose that x = Tnx is a periodic point with period n. Then
the probability measure

µ =
1
n

n−1∑
j=0

δT jx

is T -invariant. This is clear from Lemma 3.3, noting that for f ∈ L1(X,B, µ)∫
f ◦ T dµ =

1
n

(f(Tx) + · · ·+ f(Tn−1x) + f(Tnx))

=
1
n

(f(x) + f(Tx) + · · ·+ f(Tn−1x))

=
∫
f dµ,

using the fact that Tnx = x.

§3.7.2 Using the Kolmogorov Extension Theorem

We give three examples of using the Kolmogorov Extension Theorem to
prove that a given measure is invariant for a given dynamical system

Proposition 3.4
Let T : R/Z→ R/Z be the doubling map T (x) = 2x mod 1. Then Lebesgue
measure µ is T -invariant.

Proof. Let A denote the algebra of finite unions of intervals. For an in-
terval [a, b] we have that

T−1[a, b] = {x | T (x) ∈ [a, b]} =
[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
.

See Figure 3.2.

a

b

a
2

b
2

a+1
2

b+1
2

Figure 3.2: The pre-image of an interval under the doubling map
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Hence

T∗µ[a, b] = µT−1[a, b]

= µ

[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
=

b

2
− a

2
+

(b+ 1)
2

− (a+ 1)
2

= b− a = µ[a, b].

Hence T∗µ = µ on the algebra A. As A generates the Borel σ-algebra, by
uniqueness in the Kolmogorov Extension Theorem we see that T∗µ = µ; i.e.
Lebesgue measure is T -invariant. 2

Proposition 3.5
The continued fraction map T : [0, 1] → [0, 1] given by T (x) = 1/x mod 1
preserves Gauss’ measure µ where

µ(B) =
1

log 2

∫
B

1
1 + x

dx.

Proof. As in the proof of Proposition 3.4, it is sufficient to check that
µ([a, b]) = µ(T−1[a, b]) for any interval [a, b]. First note that

T−1[a, b] =
∞⋃
n=1

[
1

b+ n
,

1
a+ n

]
.

Thus

µ(T−1[a, b])

=
1

log 2

∞∑
n=1

∫ 1
a+n

1
b+n

1
1 + x

dx

=
1

log 2

∞∑
n=1

[
log
(

1 +
1

a+ n

)
− log

(
1 +

1
b+ n

)]

=
1

log 2

∞∑
n=1

[log(a+ n+ 1)− log(a+ n)− log(b+ n+ 1) + log(b+ n)]

= lim
N→∞

1
log 2

N∑
n=1

[log(a+ n+ 1)− log(a+ n)− log(b+ n+ 1) + log(b+ n)]

=
1

log 2
lim
N→∞

[log(a+N + 1)− log(a+ 1)− log(b+N + 1) + log(b+ 1)]

=
1

log 2

(
log(b+ 1)− log(a+ 1) + lim

N→∞
log
(
a+N + 1
b+N + 1

))
=

1
log 2

(log(b+ 1)− log(a+ 1))
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=
1

log 2

∫ b

a

1
1 + x

dx = µ[a, b],

as required. 2

Proposition 3.6
Let P be a stochastic matrix, let p = (p1, . . . , pk) be a probability vector
such that pP = p, and let µP be the corresponding Markov measure on the
full k-shift Σk. Let σ : Σk → Σk denote the shift map (σx)k = xk+1. Then
σ preserves µP .

Proof. By the Kolmogorov Extension Theorem, it is sufficient to prove
that µP (C) = µP (σ−1C) for all cylinders C. Let C = [i0, . . . , in]m = {x ∈
Σk | xj+m = ij for j = 0, 1, . . . , n}. Then σ−1C = [i0, . . . , in]m−1. Clearly,

µP (C) = pi0Pi0,i1 · · ·Pin−1,in = µP (σ−1C).

2

§3.7.3 Haar measure

Let G be a compact topological group equipped with the Borel σ-algebra B.
For example, G could be the k-dimensional torus Rk/Zk, or a matrix group
such as SO(n). When G is compact, it is well-known that there exists a
unique probability measure µ that is invariant under left and right group
multiplication, i.e. µ(gA) = µ(Ag) = µ(A) where gA = {gx | g ∈ G}, Ag =
{xg | g ∈ G}. This measure is called Haar measure.

For the k-dimensional torus, Haar measure is k-dimensional Lebesgue
measure. To see this, let µ denote k-dimensional Lebesgue measure. For
each a ∈ Rk/Zk, let Ta(x) = x+ a. Let f ∈ L1(Rk/Zk,B, µ). Then, by the
change of variable formula for Lebesgue integration,∫

f ◦ Ta dµ =
∫
f(x+ a) dµ =

∫
f dµ.

Hence µ is Ta-invariant for each a ∈ Rk/Zk.
The following result is immediate from the definition of Haar measure.

Proposition 3.7
Let G be a compact group with Haar measure µ and let a ∈ G. Define
T : G→ G by T (x) = gx. Then µ is a T -invariant measure.

Remark Thus Lebesgue measure is an invariant measure for a rotation
on a circle or k-dimensional torus.

The uniqueness of Haar measure implies the following result.
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Proposition 3.8
Let G be a compact group with Haar measure µ and let α be an autoomor-
phism of G. Define T : G → G by T (x) = α(x). Then µ is a T -invariant
measure.

Proof. Define T∗µ(B) = µ(T−1B). It is sufficient to prove that T∗µ and
µ define the same measure. Let Lg denote left-multiplication in G by g.
Note that α−1(Lg(x)) = Lα−1gα

−1(x). As Haar measure is characterised by
being the unique measure that is invariant under all group rotations, it is
sufficient to check that T∗µ is invariant under group rotations. This follows
as

T∗µ(g(B)) = µ(α−1Lg(B)) = µ(Lα−1gα
−1(B)) = µ(α−1B) = T∗µ(B).

Hence T∗µ is invariant under any group rotation, and so must be equal to
Haar measure. 2

Remark It follows that Lebesgue measure is an invariant measure for
linear toral automorphisms, such as the Cat map.

§3.8 References

Most of the material in this lecture is standard in ergodic theory and can
be found in many texts, including

P. Walters, An introduction to ergodic theory, Springer, Berlin, 1982.

W. Parry, Topics in Ergodic Theory, C.U.P., Cambridge, 1981.

Good texts on abstract measure theory include

P. Halmos, Measure Theory, Graduate Texts in Mathematics vol. 18, Springer-
Verlag, New York, Berlin, 1984.

H.L. Royden, Real Analysis, Macmillan, New York, 1988.

The Perron-Frobenius theorem can be found in

Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1974.

§3.9 Exercises

Exercise 3.1
Let G be a compact abelian group with Haar measure µ. Let α be an
automorphism of G and fix a ∈ G. Define the affine map T : G → G by
T (x) = α(x) + a. Prove that µ is T -invariant.
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Exercise 3.2
Let β > 1 and consider the transformation T : [0, 1] → [0, 1] given by
T (x) = βx mod 1. We have already seen that if β is an integer than T
preserves Lebesgue measure. Suppose that β > 1 is not an integer.

(i) Show that the measure

µ(B) =
∫
B
h(x) dx

is T -invariant if and only if

h(x) =
1
β

∑
y:Ty=x

h(y). (3.2)

(ii) Show that the function

h(x) =
∞∑

n=0,x<Tn1

1
βn

satisfies (3.2). (Here the sum is interpreted as follows: the term 1/βn

is included in the sum precisely when x < Tn1.)

(iii) Show that if there exists n,m, n 6= m, such that Tn1 = Tm1 then
h is a step function with finitely many jumps. Show that this is the
case for the case when β is the golden mean (β2 = β + 1) and find
an explicit expression for a T -invariant measure that is equivalent to
Lebesgue measure.

(Such transformations play an important role in the expansion of real num-
bers using non-integer bases.)
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