
MAGIC010 Ergodic Theory Lecture 2

2. Uniform distribution mod 1

§2.1 Introduction

Recall that ergodicity is concerned with how a typical orbit of a dynamical
system is distributed throughout the phase space. In this lecture we study an
apparently simpler problem, namely how the fractional parts of sequences of
reals are distributed in the unit interval. We also discuss some applications
of a number-theoretic nature.

§2.2 Uniform distribution and Weyl’s criterion in one dimension

Let xn be a sequence of real numbers. We may decompose xn as the sum of
its integer part [xn] = sup{m ∈ Z | m ≤ xn} (i.e. the largest integer which
is less than or equal to xn) and its fractional part {xn} = xn− [xn]. Clearly,
0 ≤ {xn} < 1. The study of xn mod 1 is the study of the sequence {xn} in
[0, 1).

Definition. We say that the sequence xn is uniformly distributed mod 1
if for every a, b with 0 ≤ a < b < 1, we have that

1
n

card{j | 0 ≤ j ≤ n− 1, {xj} ∈ [a, b]} → b− a, as n→∞.

(The condition is saying that the frequency with which the sequence {xn}
lies in [a, b] converges to b− a, the length of the interval.)

Remark We can replace [a, b] by [a, b), (a, b] or (a, b) without changing
the definition.

The following result gives a necessary and sufficient condition for xn to
be uniformly distributed mod 1.

Theorem 2.1 (Weyl’s Criterion)
The following are equivalent:

(i) the sequence xn is uniformly distributed mod 1;

(ii) for any continuous function f : [0, 1]→ R with f(0) = f(1) we have

1
n

n−1∑
j=0

f({xj})→
∫ 1

0
f(x) dx; (2.1)
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(iii) for each ` ∈ Z \ {0}, we have

1
n

n−1∑
j=0

e2πi`xj → 0

as n→∞.

Remarks.

1. As a (pedantic) grammatical point, criterion is singular and criteria is
plural. Weyl’s criterion is that conditions (i) and (iii) are equivalent.
Condition (ii) is stated explicitly as it bears a close resemblance to an
ergodic theorem.

2. Condition (ii) can be replaced by (ii’): that the convergence in (2.1)
holds for all Riemann integrable functions f : [0, 1] → R with f(0) =
f(1). In the following proof we assume some familiarity with properties
of the Riemann integral.

3. Condition (ii) suggests the following extension of the definition of uni-
form distribution mod 1. Let µ be a Borel probability measure on
[0, 1]. Then the sequence xn ∈ R is µ-uniformly distributed mod 1 if
for any continuous function f : [0, 1]→ R with f(0) = f(1) we have

1
n

n−1∑
j=0

f({xj})→
∫
f dµ.

4. The assumption that f(0) = f(1) in (ii) and (ii’) can also be removed.

Proof. For notational simplicity, and since e2πixj = e2πi{xj}, we assume
without loss of generality that xj = {xj}.

We prove (i) implies (ii). Suppose that xj is uniformly distributed mod
1. If χ[a,b] is the characteristic function of the interval [a, b], then we may
rewrite the definition of uniform distribution as

1
n

n−1∑
j=0

χ[a,b](xj)→
∫ 1

0
χ[a,b](x) dx, as n→∞.

From this we deduce that

1
n

n−1∑
j=0

g(xj)→
∫ 1

0
g(x) dx, as n→∞,

whenever g is a step function, i.e., a finite linear combination of characteristic
functions of intervals.
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Now let f be a continuous function on [0, 1]. Then, given ε > 0, we can
find a step function g with ‖f − g‖∞ ≤ ε. We have the estimate∣∣∣∣∣∣ 1n

n−1∑
j=0

f(xj)−
∫ 1

0
f(x) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n−1∑
j=0

(f(xj)− g(xj))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
n−1∑
j=0

g(xj)−
∫ 1

0
g(x) dx

∣∣∣∣∣∣
+
∣∣∣∣∫ 1

0
g(x) dx−

∫ 1

0
f(x) dx

∣∣∣∣
≤ 2ε+

∣∣∣∣∣ 1n
n−1∑
i=0

g(xj)−
∫ 1

0
g(x) dx

∣∣∣∣∣ .
Since the last term converges to zero as n→∞, we obtain

lim sup
n→∞

∣∣∣∣∣∣ 1n
n−1∑
j=0

f(xj)−
∫ 1

0
f(x) dx

∣∣∣∣∣∣ ≤ 2ε.

Since ε > 0 is arbitrary, this gives us that

1
n

n−1∑
j=0

f(xj)→
∫ 1

0
f(x) dx,

as n→∞.
Condition (ii) trivially implies (iii) by setting f(x) = e2πi`x, for each

` ∈ Z, ` 6= 0.
We prove (iii) implies (i). Suppose that (iii) holds. Then

1
n

n−1∑
j=0

g(xj)→
∫ 1

0
g(x) dx, as n→∞,

whenever g(x) =
∑m

k=1 αke
2πi`kx is a trigonometric polynomial, i.e. a finite

linear combination of exponential functions.
Let f be any continuous function on [0, 1] with f(0) = f(1). Given ε > 0

we can find a trigonometric polynomial g such that ‖f −g‖∞ ≤ ε. As in the
first part of the proof, we can conclude that

1
n

n−1∑
j=0

f(xj)→
∫ 1

0
f(x) dx, as n→∞.

Now consider the interval [a, b] ⊂ [0, 1). Given ε > 0, we can find
continuous functions f1, f2 (with f1(0) = f1(1), f2(0) = f2(1)) such that

f1 ≤ χ[a,b] ≤ f2
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and ∫ 1

0
f2(x)− f1(x) dx ≤ ε.

We then have that

lim inf
n→∞

1
n

n−1∑
j=0

χ[a,b](xj) ≥ lim inf
n→∞

1
n

n−1∑
j=0

f1(xj) =
∫ 1

0
f1(x) dx

≥
∫ 1

0
f2(x) dx− ε ≥

∫ 1

0
χ[a,b](x) dx− ε

and

lim sup
n→∞

1
n

n−1∑
j=0

χ[a,b](xj) ≤ lim sup
n→∞

1
n

n−1∑
j=0

f2(xj) =
∫ 1

0
f2(x) dx

≤
∫ 1

0
f1(x) dx+ ε ≤

∫ 1

0
χ[a,b](x) dx+ ε.

Since ε > 0 is arbitrary, we have shown that

lim
n→∞

1
n

n−1∑
j=0

χ[a,b](xj) =
∫ 1

0
χ[a,b](x) dx = b− a,

so that xi is uniformly distributed mod 1. 2

§2.2.1 Example: the sequence xn = αn

The behaviour of the sequence xn = αn depends on whether α is rational
or irrational. If α ∈ Q, it is easy to see that {αn} can take on only finitely
many values in [0, 1): if α = p/q (p ∈ Z, q ∈ N, hcf(p, q) = 1) then {αn}
takes the q distinct values

0,
{
p

q

}
,

{
2p
q

}
, . . . ,

{
(q − 1)p

q

}
.

In particular, {αn} is not uniformly distributed mod 1.
If α ∈ R \ Q then the situation is completely different. We shall apply

Weyl’s Criterion. For ` ∈ Z \ {0}, e2πi`α 6= 1, so we have

1
n

n−1∑
j=0

e2πi`αj =
1
n

e2πi`αn − 1
e2πi`α − 1

.

Hence ∣∣∣∣∣∣ 1n
n−1∑
j=0

e2πi`αj

∣∣∣∣∣∣ ≤ 1
n

2
|e2πi`α − 1|

→ 0, as n→∞.

Hence αn is uniformly distributed mod 1.
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Remark More generally, we could consider the sequence xn = αn + β.
It is easy to see by modifying the above arguments that xn is uniformly
distributed mod 1 if and only if α is irrational. Thus we have a result
about the uniform distribution of the values of a linear polynomial in one
dimension. We will generalise this result below.

§2.3 Uniform distribution mod 1 in higher dimensions

We shall now look at the uniform distribution of sequences in Rk. We will
say that a sequence xn = (x1

n, . . . , x
k
n) ∈ Rk is uniformly distributed mod

1 if, given any k-dimensional cube, the frequency with which the fractional
parts of xn lie in the cube is equal to its k-dimensional volume of the cube.

Definition. A sequence xn = (x1
n, . . . , x

k
n) ∈ Rk is said to be uniformly

distributed mod 1 if, for each choice of k intervals [a1, b1], . . . , [ak, bk] ⊂ [0, 1),
we have that

1
n

n−1∑
j=0

k∏
i=1

χ[ai,bi]({x
i
j})→

k∏
i=1

(bi − ai), as n→∞.

We have the following criterion for uniform distribution.

Theorem 2.2 (Multi-dimensional Weyl’s Criterion)
Let xn = (x(1)

n , . . . , x
(k)
n ) ∈ Rk. The following are equivalent:

(i) the sequence xn ∈ Rk is uniformly distributed mod 1;

(ii) for any continuous function f : Rk/Zk → R we have

1
n

n−1∑
j=0

f({x(1)
j }, . . . , {x

(k)
j })→

∫
· · ·
∫
f(x1, . . . , xk) dx1 . . . dxk;

(iii) for all ` = (`1, . . . , `k) ∈ Zk \ {0} we have

1
n

n−1∑
j=0

e2πi(`1x
(1)
j +···+`kx

(k)
j ) → 0

as n→∞.

Remark Here and throughout 0 ∈ Zk denotes the zero vector (0, . . . , 0).

Proof. The proof is essentially the same as in the case k = 1. 2
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§2.3.1 Example: the sequence xn = (α1n, . . . , αkn)

We shall apply Theorem 2.2 to the sequence xn = (α1n, . . . , αkn), for real
numbers α1, . . . , αk.

Definition. Real numbers v1, . . . , vs ∈ R are said to be rationally inde-
pendent if the only rationals r1, . . . , rs ∈ Q such that

r1v1 + · · ·+ rsvs = 0

are r1 = · · · = rs = 0.

Proposition 2.3
Let α1, . . . , αk ∈ R. Then the following are equivalent:

(i) the sequence xn = (α1n, . . . , αkn) ∈ Rk is uniformly distributed mod
1;

(ii) α1, . . . , αk and 1 are rationally independent.

Proof. The proof is similar to the discussion in §2.2.1 and we leave it as
an exercise. 2

§2.4 Weyl’s theorem on polynomials

We have seen that nα+ β is uniformly distributed mod 1 if α is irrational.
Weyl’s theorem generalises this to polynomials of higher degree. Write

p(n) = αkn
k + αk−1n

k−1 + · · ·+ α1n+ α0.

Theorem 2.4 (Weyl)
If any one of α1, . . . , αk is irrational then p(n) is uniformly distributed mod
1.

To prove this theorem we shall need the following technical result.

Lemma 2.5 (van der Corput’s Inequality)
Let z0, . . . , zn−1 ∈ C and let 1 < m < n. Then

m2

∣∣∣∣∣∣
n−1∑
j=0

zj

∣∣∣∣∣∣
2

≤ m(n+m)
n−1∑
j=0

|zj |2

+ 2(n+m) Re
m−1∑
j=1

(m− j)
n−1−j∑
i=0

zi+j z̄i.

6



MAGIC010 Ergodic Theory Lecture 2

Proof. The proof is essentially an exercise in multiplying out a product
and some careful book-keeping of the cross-terms.

Consider the following sums:

s0 = z0
s1 = z0 + z1
...

...
...

. . .
sm−1 = z0 + z1 + · · · + zm−1

sm = z1 + · · · + zm−1 + zm
...

. . . . . .
sn−1 = zn−m + · · · + zn−1

sn = zn−m+1 + · · · + zn−1
...

. . .
...

sn+m−1 = zn−1

Then each zi occurs in exactly m of the sums sj . Hence

s0 + · · ·+ sn+m−1 = m(z0 + · · ·+ zn−1)

so that

m2

∣∣∣∣∣∣
n−1∑
j=0

zj

∣∣∣∣∣∣ = |s0 + · · ·+ sn+m−1|2

≤ (|s0|+ · · ·+ |sn+m−1|)2

≤ (n+m)(|s0|2 + · · ·+ |sn+m−1|2),

where the final inequality follows from the (n + m)-dimensional Cauchy-
Schwarz inequality.

Recall that |sj |2 = sj s̄j . Expanding out this product and recalling that
2 Re(z) = z + z̄ we have that

|sj |2 =
∑
k

|zk|2 + 2 Re
∑
k,l

zkz̄l

where the first sum is over all indices k of the zi occurring in the definition
of sj , and the second sum is over the indices l < k of the zi occurring in the
definition of sj .

Noting that the the number of time the term zkz̄l occurs in |s0|2 + · · ·+
|sn+m−1|2 is equal to m− (l − k), we can write

|s0|2 + · · ·+ |sn+m−1|2 ≤ m
n−1∑
j=0

|zj |2 + 2 Re
m−1∑
j=1

(m− j)
n−1−j∑
i=0

zi+j z̄i

and the result follows. 2
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Let xn ∈ R. For each m ≥ 1 define the sequence x(m)
n = xn+m−xn of mth

differences. The following lemma allows us to infer the uniform distribution
of the sequence xn if we know the uniform distribution of the each of the
mth differences of xn.

Lemma 2.6
Let xn ∈ R be a sequence. Suppose that for each m ≥ 1 the sequence x

(m)
n

of mth differences is uniformly distributed mod 1. Then xn is uniformly
distributed mod 1.

Proof. We shall apply Weyl’s Criterion. We need to show that if ` ∈ Z\{0}
then

1
n

n−1∑
j=0

e2πi`xj → 0, as n→∞.

Let zj = e2πi`xj for j = 0, . . . , n− 1. Note that |zj | = 1. Let 1 < m < n.
By van der Corput’s inequality,

m2

n2

∣∣∣∣∣∣
n−1∑
j=0

e2πi`xj

∣∣∣∣∣∣
2

≤ m

n2
(n+m)n

+
2(n+m)

n
Re

m−1∑
j=1

(m− j)
n

n−1−j∑
i=0

e2πi`(xi+j−xi)

=
m

n
(m+ n) +

2(n+m)
n

Re
m−1∑
j=1

(m− j)An,j

where

An,j =
1
n

n−1−j∑
i=0

e2πi`(xi+j−xi) =
1
n

n−1−j∑
i=0

e2πi`x
(j)
i .

As the sequence x(j)
i of jth differences is uniformly distributed mod 1, by

Weyl’s criterion we have that An,j → 0 for each j = 1, . . . ,m− 1. Hence for
each m ≥ 1

lim sup
n→∞

m2

n2

∣∣∣∣∣∣
n−1∑
j=0

e2πi`xj

∣∣∣∣∣∣
2

≤ lim sup
n→∞

m
(n+m)

n
= m.

Hence, for each m > 1 we have

lim sup
n→∞

1
n

∣∣∣∣∣∣
n−1∑
j=0

e2πi`xj

∣∣∣∣∣∣ ≤ 1√
m
.

As m > 1 is arbitrary, the result follows. 2
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Proof of Weyl’s Theorem. We will only prove Weyl’s theorem in the
special case where the leading coefficient αk of

p(n) = αkn
k + · · ·+ α1n+ α0

is irrational. (The general case, where αi is irrational for some 1 ≤ i ≤ k
can be deduced very easily from this special case, and we leave this as an
exercise.)

We shall use induction on the degree of p. Let ∆(k) denote the statement
‘for every polynomial p of degree ≤ k, with irrational leading coefficient, the
sequence p(n) is uniformly distributed mod 1’. We know that ∆(1) is true.

Suppose that ∆(k− 1) is true. Let p(n) = αkn
k + · · ·+α1n+α0 be any

polynomial of degree k with αk irrational. For each m ∈ N, we have that

p(n+m)− p(n)
= αk(n+m)k + αk−1(n+m)k−1 + · · ·+ α1(n+m) + α0

− αknk − αk−1n
k−1 − · · · − α1n− α0

= αkn
k + αkkn

k−1m+ · · ·+ αk−1n
k−1 + αk−1(k − 1)nk−2h

+ · · ·+ α1n+ α1m+ α0 − αknk − αk−1n
k−1 − · · · − α1n− α0.

After cancellation, we can see that, for each m, p(n+m)− p(n) is a polyno-
mial of degree k− 1, with irrational leading coefficient αkkm. Therefore, by
the inductive hypothesis, p(n+m)−p(n) is uniformly distributed mod 1. We
may now apply Lemma 2.6 to conclude that p(n) is uniformly distributed
mod 1 and so ∆(k) holds. This completes the induction. 2

§2.5 The sequence xn = αnx

Having considered polynomial functions, we now consider exponential func-
tions. We would like to take α > 1 and to study the uniform distribution
mod 1 of the sequence αn. This is a hard, and in general, still unsolved
problem. We will consider the sequence αnx where x is some fixed param-
eter. We will show that for ‘typical’ points x ∈ R, the sequence αnx is
uniformly distributed mod 1. ‘Typical’ in this context means for Lebesgue
almost every point x ∈ R.

Theorem 2.7
Let α > 1. Then for Lebesgue-almost every x ∈ R, the sequence xn = αnx
is uniformly distributed mod 1.

Remarks.

1. The proof uses the observation that if
∫
f2(x) dx = 0 then f = 0

almost everywhere. If we think of x in this integral as a parameter,
then this allows us to conclude that f = 0 for almost every value of
the parameter x.

9
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2. We will give an alternative proof of this theorem in the case α ∈ Z
later.

The following lemma says, essentially, that in order to verify Weyl’s
criterion, it is sufficient to consider the limit in Theorem 2.1(iii) as n→∞
through any one of a particular class of subsequence.

Lemma 2.8
Suppose that nk ∈ N is an increasing sequence such that nk+1/nk → 1 as
nk →∞. Suppose that

lim
nj→∞

1
nk

nk−1∑
j=0

e2πi`xj = 0.

Then

lim
n→∞

1
n

n−1∑
j=0

e2πi`xj = 0.

Proof. Given n ∈ N, choose k = k(n) such that nk ≤ n < nk+1. As
nk+1/nk → 1 as nk →∞, it follows that n/nk → 1 as n→∞. Hence

lim sup
n→∞

1
n

∣∣∣∣∣∣
n−1∑
j=0

e2πi`xj

∣∣∣∣∣∣ ≤ lim sup
n→∞

nk
n

 1
nk

∣∣∣∣∣∣
nk−1∑
j=0

e2πi`xj

∣∣∣∣∣∣+
1
nk

n−1∑
j=nk

∣∣∣e2πi`xj

∣∣∣


≤ lim sup
n→∞

nk
n

 1
nk

∣∣∣∣∣∣
nk−1∑
j=0

e2πi`xj

∣∣∣∣∣∣+
n− nk
nk


= 0

as (n− nk)/nk ≤ (nk+1/nk)− 1→ 0. 2

Proof of Theorem 2.7. Let [a, b] ⊂ R be an arbitrary interval, with a <
b. Let ` ∈ Z \ {0}. Let

An(x) =
1
n

n−1∑
j=0

e2πi`α
jx.

We want to show that An(x) → 0 for a.e. x ∈ [a, b]. We will do this by
showing that for a.e. x ∈ [a, b] we have that Ank

→ 0 along a subsequence
with the properties given in Lemma 2.8; indeed, we will choose nk = k2.

To show Ank
(x) → 0 for a.e. x ∈ [a, b], it is sufficient to prove that∑

k |Ank
(x)|2 <∞ for a.e. x ∈ [a, b], as the summands in a convergent series

tend to zero. Let

In =
∫ b

a
|An(x)|2 dx.

10
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As |An(x)|2 ≥ 0, by Tonelli’s theorem we can interchange the order of inte-
gration and summation to obtain∫ b

a

∑
k

|Ank
(x)|2 dx =

∑
k

∫ b

a
|Ank

(x)2 dx =
∑
k

Ink
.

Hence, by the remark preceding the proof, if we can show that
∑

k Ink
<∞

then it follows that
∑

k |Ank
(x)|2 <∞ for a.e. x ∈ [a, b].

Now

In =
∫ b

a

∣∣∣∣∣∣ 1n
n−1∑
j=0

e2πi`α
jx

∣∣∣∣∣∣
2

dx

=
1
n2

n−1∑
k,l=0

∫ b

a
e2πi`(α

k−αl)x dx. (2.2)

We can estimate the summand in (2.2). First note that for k = l the integral
is equal to b− a. For k > l note that∣∣∣∣∫ b

a
e2πi`(α

k−αl)x dx

∣∣∣∣ =
1

2π(αk − αl)

∣∣∣e2πi`(αk−αl)b − e2πi`(αk−αl)a
∣∣∣

≤ 1
π(αk − αl)

.

Similarly, for k < l we have (recalling that α > 1)∣∣∣∣∫ b

a
e2πi`(α

k−αl)x dx

∣∣∣∣ ≤ 1
π(αk − αl)

.

If k > l then

αk − αl = (αk−1 + · · ·+ αl)(α− 1) ≥ (k − l)(α− 1).

Hence

|In| ≤
(b− a)
n2

n+
2
n2

n−1∑
k=1

k−1∑
l=0

1
π(αk − αl)

≤ b− a
n

+
2(α− 1)
πn2

n−1∑
k=1

k−1∑
l=0

1
k − l

.

Now
k−1∑
l=0

1
k − l

=
k∑
l=1

1
l
≤ C log k ≤ C log n

11
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for some constant C > 0. Hence

|In| ≤
b− a
n

+
2
πn2

Cn log n ≤ C log n
n

.

By taking nk = k2 we see that |Ink
| ≤ 2C log k/k2. Hence

∞∑
k=1

|Ink
| ≤ 2C

∞∑
k=1

log k
k2

<∞

and the proof is complete. 2

Remark Suppose we now fix x = 1 and consider the sequence xn = αn.
Then one can show that xn is uniformly distributed mod 1 for almost all
α > 1. However, not a single example of such an α is known! (Indeed, it is
not even known whether (3/2)n mod 1 is dense in [0, 1].)

§2.6 References

The standard text on uniform distribution mod 1 is

L. Kuipers and H. Niederreiter, Uniform distribution of sequences, J. Wiley,
New York, 1974.

The book

W. Parry, Topics in Ergodic Theory, C.U.P., Cambridge, 1981

relates uniform distribution mod 1 to ergodic theory. More connections
between ergodic theory and uniform distribution can be found in

I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Springer,
Berlin, 1982.

§2.7 Exercises

Exercise 2.1
Show that if xn is uniformly distributed mod 1 then {xn} is dense in [0, 1).

Exercise 2.2
Can we replace ‘continuous’ by ‘Lebesgue-integrable’ in Condition (ii) of
Theorem 2.1?

Exercise 2.3
Calculate the frequency with which 2n has r (r = 1, . . . , 9) as the leading
digit of its base 10 representation. (This is a particular case of Benford’s
law. See http://en.wikipedia.org/wiki/Benford%27s_law.)
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(Hint: first show that 2n has leading digit r if and only if

r 10` ≤ 2n < (r + 1)10`

for some ` ∈ Z+.)

Exercise 2.4
Prove Proposition 2.3.

Exercise 2.5
Deduce the general case of Weyl’s theorem (where at least one non-constant
coefficient is irrational) from the special case proved above (where the lead-
ing coefficient is irrational).

Exercise 2.6
Let p(n) = αkn

k + αk−1n
k−1 + · · · + α1n + α0, q(n) = βkn

k + βk−1n
k−1 +

· · ·+ β1n+ β0. Show that (p(n), q(n)) ∈ R2 is uniformly distributed mod 1
if, for some 1 ≤ i ≤ k, αi, βi and 1 are rationally independent.
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