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Please complete the unit surveys for this 
course (and your other course units).
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• Circles and straight lines in  have equations of the form 
 




• Vertical straight lines and circles with real centres have 
equations of the form 
 
          

R2

αzz̄ + βz + β̄z̄ + γ = 0, α, γ ∈ R, β ∈ C .

αzz̄ + βz + βz̄ + γ = 0, α, β, γ ∈ R .
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Straight lines in  have the equation 


Let   Then 


Substitute in:


                    


                   


                                


 is real iff  iff  iff  is constant iff the line is vertical.

R2 ax + by + c = 0, a, b, c ∈ R .

z + x + iy . x =
z + z̄

2
, y =

z − z̄
2i

.

a ( z + z̄
2 ) + b ( z − z̄

2i ) + c = 0.

( a − ib
2 ) z + ( a + ib

2 ) z̄ + c = 0.

βz + β̄z̄ + γ = 0.

β b = 0 ax + c = 0 x
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• We can move any given geodesic (and any given point on that 
geodesic) to the imaginary axis (and to ) by using a Möbius 
transformation.


• We used this trick several times to simplify calculations, eg in 
the proofs of:   


•   


• Pythagoras’ Theorem


• the Gauss-Bonnet Theorem


• the angle of parallelism formula. 

i

cosh dH(z, w) = 1 +
|z − w |2

2Im(z)Im(w)
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• Angle of parallelism: 
 
Let  be a hyperbolic right-angled triangle with one ideal 
vertex, internal angles .  Suppose the side of 
finite hyperbolic length has hyperbolic length   Then 
 

               

Δ
0, π/2, α

a .

cosh a =
1

sin α
.
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• Classifying Möbius transformations:


• Either: calculate the fixed points


• Or: work out the trace 


• (or use the hint in the question)


• REMEMBER TO NORMALISE WHEN CALCULATING 

τ(γ)

τ(γ)
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PLEASE COMPLETE THE UNIT SURVEYS!!!
(c) 2019 The University of Manchester



• Let  be a Fuchsian group.


• An open set  is a fundamental domain for  if


• 


• 


• It’s NOT 

Γ

F ⊂ H Γ

⋃
γ∈Γ

γ(cl F) = H

γ1(F) ∩ γ2(F) = ∅, γ1 ≠ γ2, γ1, γ2 ∈ Γ

⋃
γ∈Γ∖{id}

γ(cl F) = H
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• Finding fundamental domains:


1. Choose a point  such that .


2. Let .  Construct .


3. Find , the perpendicular bisector of .


4. Find , the half-plane determined by  that contains .


5.  is a fundamental domain.

p ∈ H γ(p) ≠ p, ∀γ ∈ Γ∖{id}

γ ∈ Γ∖{id} [p, γ(p)]

Lp(γ) [p, γ(p)]

Hp(γ) Lp(γ) p

D(p) = ⋂
γ∈Γ∖{id}

Hp(γ)
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Two methods for calculating perpendicular bisectors:


• The perpendicular bisector of  is 
 and then use the 

formula for .


• Eye-ball it (and use the geometry of the hyperbolic 
plane - in particular, reflections in geodesics are 
isometries (albeit not Möbius transformations).

[z1, z2]
{z ∈ H ∣ dH(z, z1) = dH(z, z2)}

cosh dH(z, w)
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1. The set  is a fundamental domain for 
some Fuchsian group.


2. There exists a Fuchsian group (acting on ) with 
fundamental domain given by 

        .


3. The modular group  has a fundamental domain 
with hyperbolic area .


4. Fundamental domains for (non-trivial) Fuchsian groups are 
unique.

{z ∈ H ∣ |z | ≥ 1}

D

{z ∈ D ∣ −
π
3

< arg(z) <
π
3 }

PSl(2,Z)
2π

Are the following TRUE or FALSE?  
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1. The set  is a fundamental domain for 
some Fuchsian group. 
 
 
FALSE!!! 
 
This is not an open set.

{z ∈ H ∣ |z | ≥ 1}
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2.  There exists a Fuchsian group (acting on ) with 
fundamental domain given by 

        .


TRUE!!! 

Take  where  = rotate through 120 degrees 
anticlockwise,  = rotate through 120 degrees clockwise.

D

{z ∈ D ∣ −
π
3

< arg(z) <
π
3 }

Γ = {id, γ1, γ2} γ1
γ2
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3.  The modular group  has a fundamental domain with hyperbolic 
area .


FALSE!!! 

All fundamental domains for a given Fuchsian group have the same area.


We know that  has a hyperbolic triangle as a fundamental domain.  
By the Gauss-Bonnet Theorem, the hyperbolic area of a triangle must be 

.


[Indeed, the the triangle with vertices at  is a fundamental 

domain for .  This has internal angles  and so has 
hyperbolic area .] 

PSl(2,Z)
2π

PSl(2,Z)

≤ π

∞,
±1 + 3

2
PSl(2,Z) 0,π/3,π/3

π − (π/3 + π/3) = π/3
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4.  Fundamental domains for (non-trivial) Fuchsian groups 
are unique.


FALSE!!! 
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Q1.  Find (in the form ) the equation of the straight line 
through the points 1+3i, 1+8i.


Q2(i).  Write down a Möbius transformation that maps the geodesic given by  to the 
imaginary axis.  Find a Möbius transformation that maps the geodesic given by  to the 
imaginary axis and maps the point  to the point i.


Q2(ii).  Write down a Möbius transformation of  that maps the geodesic with end-points at -2, 2 
to the imaginary axis. 


Q3.   What does the following picture, drawn in the Poincaré disc , look like when drawn in the 
upper half-plane ?


Q4.  Suppose two geodesics intersect as illustrated below.  Show that   [Hint: 

suppose the semi-circle has centre  and radius .  Use the (Euclidean) Pythagoras’ theorem to 
relate . ]





αz z̄ + βz + β z̄ + γ = 0, α, β, γ ∈ R

Re(z) = 3
Re(z) = 3

3 + 2i

H

D
H

sin θ =
2ab

a2 + b2
.

x r
r, x, a, b
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Q5. [Adapted from B7, 2017/18.] 

(i) Let  be a Möbius transformation of 
.  Recall that  is parabolic if it has one fixed point in  and no fixed points in . 

 
Assume that .  By considering the equation  show that  has a unique fixed 
point on the boundary (and so is parabolic) If and only if   
  


(ii) Let   Define  
 

                         

 
Consider the quadrilateral with vertices at  as illustrated below.  Then  pair 
the sides of this quadrilateral as illustrated (you do not need to check this). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Show that there is one elliptic cycle  and two parabolic cycles . 
 
Determine conditions on  that ensure that the elliptic cycle  satisfies the Elliptic Cycle 
Condition. 
 
Determine conditions on  that ensures that the parabolic cycles  satisfy the 
Parabolic Cycle Condition. 

(iii) In the cases where the ECC and the PCC hold, Poincaré’s Theorem tells us that  
generate a Fuchsian group   Write down a presentation of  in terms of generators and 
relations. 

(iv) Describe the quotient surface  (i.e. how many marked points does it have, how many 
cusps does it have, what is its genus?).  Sketch a picture of . 

γ (z) = (az + b)/(cz + d ), a, b, c, d ∈ R, ad − bc > 0
H γ ∂H H

c ≠ 0 γ (z0) = z0 γ
(d − a)2 + 4bc = 0.

k > 0, ℓ > 1.

γ1(z) =
kz

(k + 1)z + 1
, γ2(z) =

(1 − ℓ2)z − 2ℓ2

2z + (1 − ℓ2)

0, − 1, 1, iℓ γ1, γ2

ℰ 𝒫1, 𝒫2

k , ℓ, θ ℰ

k , ℓ, θ 𝒫1, 𝒫2

γ1, γ2
Γ . Γ

H /Γ
H /Γ
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Q1 1 + 3i, 1 + 8i lie on a vertical straight line, so we can take α = 0. We want to find
β, γ ∈ R such that βz + βz̄ + γ = 0 holds for z = 1 + 3i, 1 + 8i. Substituting in, we
get the simultaneous equations

β(1 + 3i) + β(1− 3i) + γ = 0, β(1 + 8i) + β(1− 8i) + γ = 0,

i.e. 2β + γ = 0. Take β = 1, γ = −2 as a solution. Hence 1 + 3i, 1 + 8i lie on the
vertical straight line with equation z + z̄ − 2 = 0.

[Note: we will not get unique solutions for β, γ. This is because any (non-zero)
multiple of the equation βz + βz̄ + γ = 0 describes the same vertical straight line.]

Q2 (i) The translation γ1(z) = z − 3 moves the straight line Re(z) = 3 to Re(z) = 0,
the imaginary axis.

Note that γ1(3 + 2i) = 2i. Let γ2(z) = z/2. Then γ2 maps the imaginary axis
to itself and γ2(2i) = i. Hence γ2γ1(z) = (z − 3)/2 maps the geodesic given by
Re(z) = 3 to the imaginary axis and the point 3 + 2i to i.

(ii) Take γ(z) = (z− 2)/(z+ 2). This is a Möbius transformation (you should check
that ’ad− bc > 0’). We have γ(2) = 0, γ(−2) =∞. Hence γ maps the geodesic
with endpoints at 2,−2 to the geodesic with endpoints at 0,∞; the geodesic
with endpoints at 0,∞ is the imaginary axis.

Q3

Q4 [This is Exercise 5.7 in the notes.]

Suppose that the semi-circular geodesic has radius r and centre x as illustrated.
Construct the (Euclidean) right-angled triangle 0, x, ib.

1
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As the radius of the semi-circle is r we have |x − ib| = r and |x − a| = r; hence the
base of the right-angled triangle has length r − a. By Pythagoras’ Theorem we have
(r − a)2 + b2 = r2, which expands out and simplifies to r = (a2 + b2)/2a. From the
figure above we have that sin θ = b/r = 2ab/(a2 + b2).

Q5 (i) Let γ(z) = (az + b)/(cz + d). We have

γ(z0) = z0 ⇔
az0 + b

cz0 + d
= z0 ⇔ az0 + b = cz20 + dz0 ⇔ cz20 + (d− a)z0 − b = 0.

This is a quadratic (as c 6= 0). The discriminant is (d−a)2+4bc and this quadratic
has a unique real solution (and so γ is parabolic) precisely when (d−a)2+4bc = 0.

[Note: the reason for including this question is because using it will make your
life easier later on...]

(ii) (
i`
s4

)
γ2→

(
i`
s3

)
∗→
(
i`
s4

)
Hence we have an elliptic cycle E : i`, with corresponding elliptic cycle transfor-
mation γ2 and angle sum sum(E) = 2θ.

The elliptic cycle condition will hold if there exists an integer m ≥ 1 such that
msum(E) = 2π, i.e. if 2mθ = 2π, i.e. if θ = π/m for some integer m ≥ 1. If
m = 1 then θ = π; the angle in the picture would then be 2π which is impossible.
Hence m ≥ 2. (

0
s1

)
γ1→

(
0
s2

)
∗→
(

0
s1

)
Hence we have a parabolic cycle P1 : 0 with corresponding parabolic cycle trans-
formation γ1.

The parabolic cycle condition will hold for P1 if γ1 is either parabolic or the
identity.

We can use part (i) of the question to test if γ1 is parabolic. Here a = k, b =
0, c = k + 1, d = 1. We want to have

(d− a)2 + 4bc = (1− k)2 = 0

and this holds if and only if k = 1. Hence the PCC holds if and only if k = 1.

[Alternatively, we could have looked for fixed points of γ1. We have

γ1(z0) = z0 ⇔
kz0

(k + 1)z0 + 1
= z0 ⇔ (k + 1)z20 + (1− k)z0 = 0⇔ z0 = 0,

1− k
1 + k

and this has a unique fixed point on ∂H iff k = 1.]

[Note that γ1 as defined in the question is not in normalised form so, had you
chosen to calculate τ(γ1) then you would have had to have normalised it first;
the algebra here gets a bit messy.](

−1
s4

)
γ1→

(
1
s3

)
∗→
(

1
s2

)
γ−1
2→

(
−1
s1

)
∗→
(
−1
s4

)
2
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Hence we have a parabolic cycle P2 : −1→ 1 with corresponding parabolic cycle
transformation γ−1

2 γ1.

The parabolic cycle condition will hold for P2 if γ−1
2 γ1 is either parabolic or the

identity.

We can use part (i) of the question to test if γ−1
2 γ1 is parabolic. [Alternatively,

we could calculate explicitly the fixed points of γ−1
2 γ1, or calculate τ(γ−1

2 γ1).]
Note that we need the PCC to hold for P1, so there is no loss in generality in
assuming that k = 1. By using the connection between matrices and Möbius
transformations, γ−1

2 γ1 has matrix[
1− `2 2`2

−2 1− `2
] [

1 0
2 1

]
=

[
1 + 3`2 2`2

−2`2 1− `2
]
.

This is not normalised, and the easiest way to check if this is parabolic is to use
part (i) of this question. Hence for γ−1

2 γ1 to be parabolic, and so for the PCC
to hold for P2, we want

(d− a)2 + 4bc = [(1− `2)− (1− 3`2)]2 + 4(2`2)(−2`2) = 16`4 − 16`4 ≡ 0.

Hence the PCC always holds, irrespective of the value of `.

(iii) There are two generators a, b (corresponding to γ1, γ2, respectively). There is one
relation corresponding to the elliptic cycle E . Suppose θ is such that θ = π/m
for m ≥ 2 then we have presentation Γ = 〈a, b | am = e〉.

(iv) Recall that we must have that m ≥ 2. Hence the elliptic cycle E is non-accidental
and there is one marked point of order m.

There are two parabolic cycles, hence H/Γ has two cusps.

To calculate the genus, one can either think geometrically or think in terms of
Euler’s formula. Geometrically, the quadrilateral and its side-pairings are similar
to taking a (Euclidean) square and (thinking of s1, s2, s3, s4 as the bottom, right,
top and left edges respectively) gluing the bottom edge to the right edge and the
left edge to the top edge. This makes something that, topologically, looks like a
sphere and—as it has no holes in it—has genus g = 0.

Alternatively one can use Euler’s formula as follows. The quadrilateral forms a
triangulation of H/Γ with V = 3 vertices (one elliptic and two parabolic cycles),
E = 2 edges (4 paired sides) and F = 1 face. Hence 2 − 2g = V − E + F =
3− 2 + 1 = 2, so g = 0.

Hence H/Γ has two fixed points, 1 marked point of order m, and genus 0. It
looks like the surface of a ‘sausage’, albeit with both ends stretched out to form
cusps, together with one kink in it, corresponding to the marked point.
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