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e (Circles and straight lines in R” have equations of the form
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azz+ pz+p7+y=0, a,f,y €R.
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Straight lines in R? have the equationax+ by+c =0, a,b,c € R.

, Z2+2Z 2—72Z
Letz =Xx+1y. Thenx = , V= :

Substitute in:

pz+ pzi+vy=0.

pis real iff b = 0 iff ax + ¢ = 0 iff x is constant iff the line is vertical.
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* \WWe can move any given geodesic (and any given point on that
geodesic) to the imaginary axis (and to 1) by using a Mdébius
transformation.

* \We used this trick several times to simplify calculations, eg in
the proofs of:

2
., coshdy(z,w) =1+ L
2Im(z)Im(w)

* Pythagoras’ Theorem

e the Gauss-Bonnet Theorem

* the angle of parallelism formula.



 Angle of parallelism:

Let A be a hyperbolic right-angled triangle with one ideal
vertex, internal angles O, 7z/2, a. Suppose the side of
finite hyperbolic length has hyperbolic length a. Then
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e Anopen set ' C H is a fundamental domain for I if

. Uy(ch)=H

yel’

c V()N (F)=@, 11 # v 71,7, €T

t's NOT U v(cl F) = H.
yer\ {id)



* Finding fundamental domains:
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* Finding fundamental domains:

1. Choose a point p € H such that y(p) # p, Vy € I'\{id}.
2. Lety € I'\{id}. Construct [p, y(p)].

3. Find L,(y), the perpendicular bisector of [p, y(p)].

4. Find Hp(y), the half-plane determined by Lp(y) that contains p.

5. D(p) = ﬂ Hp(y) is a fundamental domain.
yel\{id}



Two methods for calculating perpendicular bisectors:
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Two methods for calculating perpendicular bisectors:

e The perpendicular bisector of [z, 2,] is

{z€e H | dy(z,7;) = dy(z, 2,)} and then use the
formula for cosh dy(z, w).

 Eye-ball it (and use the geometry of the hyperbolic
plane - in particular, reflections in geodesics are
isometries (albeit not MObius transformations).
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Are the following TRUE or FALSE?

. Theset {z€ H | |z| > 1} is a fundamental domain for

some Fuchsian group.

. There exists a Fuchsian group (acting on D) with

fundamental domain given by

{ eD| -2 < ()<”}
——<ar — 7.
é 3 g\Z 3

. The modular group PSI(2,7Z.) has a fundamental domain

with hyperbolic area 2.

. Fundamental domains for (hon-trivial) Fuchsian groups are

unigue.



1.

Theset {z€ H| |z| > 1} is a fundamental domain for
some Fuchsian group.



1.

Theset {z€ H| |z| > 1} is a fundamental domain for
some Fuchsian group.

FALSE!!!

This is not an open set.



2. There exists a Fuchsian group (acting on D) with
fundamental domain given by

cD|] ﬂ< ()<ﬂ
— — ar — 7.
Z : g(z ;



2. There exists a Fuchsian group (acting on D) with
fundamental domain given by

cD|] ﬂ< ()<ﬂ
—_ ar — P,
: 3 S e ST

TRUE!!

Take I' = {1d, 7, ¥, } where y, = rotate through 120 degrees
anticlockwise, y, = rotate through 120 degrees clockwise.



3. The modular group PSI(2,Z.)) has a fundamental domain with hyperbolic
area 2.



3. The modular group PSI(2,Z.)) has a fundamental domain with hyperbolic
area 2.

FALSE!!!

All fundamental domains for a given Fuchsian group have the same area.

We know that PSI(2,Z) has a hyperbolic triangle as a fundamental domain.
By the Gauss-Bonnet Theorem, the hyperbolic area of a triangle must be
<.

+1+4/3
[Indeed, the the triangle with vertices at o0, 5 Is a fundamental

domain for PSI(2,Z)). This has internal angles 0,7z/3,7/3 and so has
hyperbolic area 7 — (/3 + n/3) = n/3.]




4. Fundamental domains for (non-trivial) Fuchsian groups
are unigue.

(c) 2019 The University of Manchester



4. Fundamental domains for (non-trivial) Fuchsian groups
are unigue.

FALSE!!!
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Q1. Find (inthe form azZ + fz + fz+y =0, a, B,y € R) the equation of the straight line
through the points 1+3i, 1+8i.

Q2(i). Write down a Mobius transformation that maps the geodesic given by Re(z) = 3 to the
imaginary axis. Find a Mobius transformation that maps the geodesic given by Re(z) = 3 to the
imaginary axis and maps the point 3 + 2i to the point i.

Q2(ii). Write down a Mdbius transformation of H that maps the geodesic with end-points at -2, 2
to the imaginary axis.

Q3. What does the following picture, drawn in the Poincaré disc D, look like when drawn in the
upper half-plane H?

. 2ab
Q4. Suppose two geodesics intersect as illustrated below. Show that sin§ = — T [Hint:
a-+
suppose the semi-circle has centre x and radius r. Use the (Euclidean) Pythagoras’ theorem to
relate r, x, a, b.]
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Q5. [Adapted from B7, 2017/18.]

(i) Lety(z) =(az+b)/(cz+d),a,b,c,d €R, ad — bc > 0 be a Mébius transformation of
H. Recall that y is parabolic if it has one fixed point in dH and no fixed points in H.

Assume that ¢ # 0. By considering the equation y(z,) = z, show that y has a unique fixed
point on the boundary (and so is parabolic) If and only if (d — a)? + 4bc = 0.

(ii) Letk > 0, £ > 1. Define

kz (1 =%z —2¢7

n@O=o"rrr O o ra s

Consider the quadrilateral with vertices at 0, — 1, 1, iZ as illustrated below. Then Y1, Vo pair
the sides of this quadrilateral as illustrated (you do not need to check this).

il

Show that there is one elliptic cycle & and two parabolic cycles P, P,.

Determine conditions on k, £, 0 that ensure that the elliptic cycle & satisfies the Elliptic Cycle
Condition.

Determine conditions on k, £, 0 that ensures that the parabolic cycles &, P, satisfy the
Parabolic Cycle Condition.

(iii) In the cases where the ECC and the PCC hold, Poincaré’s Theorem tells us that y;, 7,
generate a Fuchsian group I'. Write down a presentation of I" in terms of generators and

relations.

(iv) Describe the quotient surface H/I" (i.e. how many marked points does it have, how many
cusps does it have, what is its genus?). Sketch a picture of H/T".
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Q1 1+ 34, 1 + 8 lie on a vertical straight line, so we can take a« = 0. We want to find
8,7 € R such that Sz + 5z + v = 0 holds for z = 1 + 34,1 4 8. Substituting in, we
get the simultaneous equations

B1+3)+B(1—3i)+v=0, B(1+8i)+B(1—8i)+~=0,

ie. 286+~ =0. Take § = 1,7 = —2 as a solution. Hence 1 + 3i¢,1 + 8¢ lie on the
vertical straight line with equation z + z — 2 = 0.

[Note: we will not get unique solutions for 3,7. This is because any (non-zero)
multiple of the equation 5z + fZ + v = 0 describes the same vertical straight line.]

Q2 (i) The translation v;(2) = z — 3 moves the straight line Re(z) = 3 to Re(z) = 0,
the imaginary axis.
Note that 71 (3 4+ 2i) = 2i. Let v2(z) = z/2. Then 2 maps the imaginary axis
to itself and ~2(2i) = i. Hence v271(2) = (2 — 3)/2 maps the geodesic given by
Re(z) = 3 to the imaginary axis and the point 3 4 2i to .

(ii) Take v(z) = (z—2)/(2+2). This is a Mébius transformation (you should check
that 'ad — bc > 07). We have v(2) = 0,v(—2) = oco. Hence v maps the geodesic
with endpoints at 2, —2 to the geodesic with endpoints at 0,o00; the geodesic
with endpoints at 0, co is the imaginary axis.

Q3

Q4 [This is Exercise 5.7 in the notes.]

Suppose that the semi-circular geodesic has radius r and centre z as illustrated.
Construct the (Euclidean) right-angled triangle 0, x, ib.
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As the radius of the semi-circle is r we have |x — ib| = r and |z — a|] = r; hence the
base of the right-angled triangle has length r — a. By Pythagoras’ Theorem we have
(r — a)? + b = r%, which expands out and simplifies to r = (a® + b%)/2a. From the
figure above we have that sinf = b/r = 2ab/(a® + b?).

Q5 (i) Let v(z) = (az+b)/(cz + d). We have

azg+b

Czo+d:zo@azo+b:cz§+dzo<:>cz(2)+(d—a)z0—b:0.

Y(20) = 20 &

This is a quadratic (as ¢ # 0). The discriminant is (d—a)?+4bc and this quadratic
has a unique real solution (and so 7 is parabolic) precisely when (d—a)2+4bc = 0.

[Note: the reason for including this question is because using it will make your

life easier later on...]
il oY il KN il
S4q S3 S4

Hence we have an elliptic cycle £ : i, with corresponding elliptic cycle transfor-
mation 7y, and angle sum sum(&) = 26.

The elliptic cycle condition will hold if there exists an integer m > 1 such that
msum (&) = 2m, ie. if 2mf = 27, i.e. if 6 = 7/m for some integer m > 1. If
m = 1 then 6 = 7; the angle in the picture would then be 27 which is impossible.

Hence m > 2.
<0>73<0>*<0>
S1 52 51

Hence we have a parabolic cycle P; : 0 with corresponding parabolic cycle trans-
formation ~1.

The parabolic cycle condition will hold for P; if 7; is either parabolic or the
identity.

We can use part (i) of the question to test if 7, is parabolic. Here a = k,b =
0,c=k+1,d=1. We want to have

(d—a)® +4bc=(1—-k)>=0

and this holds if and only if £ = 1. Hence the PCC holds if and only if k£ = 1.
[Alternatively, we could have looked for fixed points of ;. We have

1—-k

:,20(:)(k—l—l)zg—l—(l—k)z():O(:)zo:O,m

TR A e D 1 1

and this has a unique fixed point on OH iff £ = 1.

[Note that ; as defined in the question is not in normalised form so, had you
chosen to calculate 7(y1) then you would have had to have normalised it first;
the algebra here gets a bit messy.]

()2 (a) ()= () ()
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Hence we have a parabolic cycle Py : —1 — 1 with corresponding parabolic cycle
transformation -y, L.

The parabolic cycle condition will hold for Py if 5 L4, is either parabolic or the
identity.

We can use part (i) of the question to test if v 'y, is parabolic. [Alternatively,
we could calculate explicitly the fixed points of 75 1, or calculate 7(y5 '71).]
Note that we need the PCC to hold for Py, so there is no loss in generality in
assuming that £ = 1. By using the connection between matrices and Md&bius
transformations, 7y, 1~ has matrix

1—2 20 1 0] _ [1432 27
-2 172 2 1| | =22 1-—¢2

This is not normalised, and the easiest way to check if this is parabolic is to use
part (i) of this question. Hence for 75 11 to be parabolic, and so for the PCC
to hold for P,, we want

(d—a)* 4 4be = [(1 — £%) — (1 — 36%)]? + 4(20%)(—20?) = 16¢* — 16¢* = 0.

Hence the PCC always holds, irrespective of the value of £.

(iii) There are two generators a, b (corresponding to 71, 2, respectively). There is one
relation corresponding to the elliptic cycle £. Suppose 6 is such that § = 7/m
for m > 2 then we have presentation I' = (a,b | a™ = e).

(iv) Recall that we must have that m > 2. Hence the elliptic cycle £ is non-accidental
and there is one marked point of order m.
There are two parabolic cycles, hence H/T" has two cusps.
To calculate the genus, one can either think geometrically or think in terms of
Euler’s formula. Geometrically, the quadrilateral and its side-pairings are similar
to taking a (Euclidean) square and (thinking of s1, s2, s3, s4 as the bottom, right,
top and left edges respectively) gluing the bottom edge to the right edge and the
left edge to the top edge. This makes something that, topologically, looks like a
sphere and—as it has no holes in it—has genus g = 0.
Alternatively one can use Euler’s formula as follows. The quadrilateral forms a
triangulation of H/I" with V' = 3 vertices (one elliptic and two parabolic cycles),
E = 2 edges (4 paired sides) and F' = 1 face. Hence 2 —2g =V — E+ F =
3—24+1=2,50¢g=0.
Hence H/T has two fixed points, 1 marked point of order m, and genus 0. It
looks like the surface of a ‘sausage’, albeit with both ends stretched out to form
cusps, together with one kink in it, corresponding to the marked point.
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