What did we du lat time?
stated Poincare's Thm (case of boundary vertices, but no free edges)
Suppose: D in a convex hyp polygon equip red with a set of side-pairing taos

- no side as paired with itelf
- all elliptic cycles sainsfy the ECC
- all parabdir cycler sanity the PCC

Then: - the side-pairing tows generate a fuchsias group Γ

- D a fundamental domain for Γ
- one can give a presentahan for Γ in terms of geverdan \& relahom.
What will we do today?
Define the signature of a fuchsian group Γ Z the quinent space H / Γ.
Relate the geavelyy of H / Γ with the algebra of Γ.

21. The signature of a tuchsian group

Let Γ be a Fuchsian group. Suppose D in a Dirichlet polygon with Area $_{H+1}(D)<\infty$. Equip D with a net of side- pairing $t \times s$.
Idea: form a surface H / Γ by gluing together paired side Euclidean example

Note: the corners glue together to give \leftrightarrows ane point on the tams with total angle 2π.
How to construct H / Γ
Let ε be an elliptic cycle. All the vertices on ε glue together to give a single point on H / Γ. The total angle at this point is $\operatorname{sum}(\varepsilon)$.
Recall: $\operatorname{sum}(\varepsilon)=2 \pi \Leftrightarrow$ order of ξ is $1 \Leftrightarrow \xi$ is an $m(\varepsilon)=1 \quad$ accidental cycle
If $\operatorname{sum}(\varepsilon)<2 \pi$ (equivalently ξ han order $m \mid \varepsilon)>1$) then we have a point on H / Γ with total angle $\operatorname{sum}(\xi)=$ $2 \pi / m$, where $m=m(\varepsilon)$. We call thin a marked point of coder m.
Marked points look like "Rinks" in the surface H / Γ. Let P be a parabolic cyde. Each vertex on P glues to tortures \& the parabolic cycle given a cusp on H / Γ.
(0)2019

Typically HIS' lours rile:

Example Let D be a regular hyp-octagen with internal angle $\pi / 4$ This han one elliptic cycle ε and $m / \varepsilon)=1 .(\operatorname{sum}(\varepsilon)=2 \pi)$.

(no marked points an the elliptic cycle ε han $\operatorname{sum}(\varepsilon)=2 \pi$ -ie ξ is accidental.)
Euler chavactenstic
Let X be a 2-dimensional space. Triangulate X into finitely many polygons with V vertices, E edges, f faces ($=$ number of polygon).

$$
V=6 \quad \varepsilon=12 . \quad F=8
$$

The Euler charactenstic of X is $X(X)=V-\varepsilon+f$.

Def The genus g of x is $x(x)=2-2 g$;
Topologically, the genus on the number of "notes" in X
Den Suppose I is a fuchsian group with Dirichlet poly. D \& suppose D han no vertices on the boundary. Then we call I cocompact.
Defn Let Γ be a cocompact fuchsian grep.
Let $g=$ genus of $H I / \Gamma$.
Suppose ε_{i} there are k elliptic cycles $\varepsilon_{1},, \varepsilon_{n}$.
Suppose ε_{j} han order $m_{j} \quad\left(m_{j} \times \operatorname{sum}\left(\varepsilon_{j}\right)=2 \pi\right)$.
Suppose $\varepsilon_{1}, \varepsilon_{r}$ are non-accidental $\left(m_{j}>1\right)$
$\Sigma_{r+1,7} \varepsilon_{R}$ are accidental $\left(m_{j}=1\right)$.
The signahive of Γ is $\operatorname{sig}(\Gamma)=\left(g ; m_{1}, \ldots, m_{r}\right)$ $=($ genus of H / Γ; orders of the nan-accidental $)$.
elliptic cycles
(If there are no non-accidental elliptic cycles then we write $\operatorname{sig}(\Gamma)=(9 ;-)$.

The signature sig($\left.I^{\prime}\right)$ tells us a lot about the geanely of D_{2} and H / Γ, and the algebra of Γ.
Example:
Proposition let Γ^{\prime} be a cocompact fuchsin group with $s i g(\Gamma)=\left(g ; m_{1},, m_{r}\right)$. Let D be any fundamental domain for Γ. Then

$$
\operatorname{Area}_{1 H}(D)=2 \pi\left[(2 g-2)+\sum_{j=1}^{r}\left(1-\frac{1}{m_{J}}\right)\right]
$$

Corday Let Γ be a cocompact fuchsia grep. Let D be a fundamental danain for Γ. Then
$A_{\text {Ara }}^{H}(D) \geqslant \frac{\pi}{21}$, with equality inf $\operatorname{sig}(\Gamma)=(0 ; 2,3,7)$.

What did we do last time!

$$
\operatorname{sig} \Gamma=\left(g ; m_{1}, \ldots, m_{r}\right)
$$

genus ($=$ \#t holes) a orders of Nan-ACciDENTAL of H / Γ elliptic cycler.
$\Sigma_{g}:$

- one accidental cycle.

toms of genus?
all angles $\pi / 4$
Euler charactenstic $x=V-\varepsilon+f=2-2 g$
What will we do today?
- Let Γ be a cocompact Fuchsian group.

$$
\operatorname{sg}(\Gamma)=\left(c ; m_{1}, \rightarrow m_{r}\right)
$$

$D=$ any fundamental domain for Γ^{1}
Then Areantit $(D)=2 \pi\left[(2 g-2)+\sum_{j=1}^{r}\left(1-\frac{1}{m_{j}}\right)\right]$

- Sketch how to conobuct a fuchsian group with given signature.

$$
\begin{gathered}
V=1 \\
\Sigma=2 \\
F=1 \\
V-\varepsilon+F=1-2+1=0 \\
=2-2 y \quad g=1
\end{gathered}
$$

Pf that Area $_{\mu}(D)=2 \pi\left[(2 g-2)+\sum_{j=1}\left(1-\frac{1}{m_{j}}\right)\right]$.
OU fundamental domains for a given fuchsian group I have the name area, so it's sufficient to prove this for a Dirichlet polygon, Let $D=D(\rho)$ be a Dirichlet polygon with n sides (no side as paired with itself).
Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the nan-accidental elliptic cycles. Suppose the order of ξ_{j} a m_{j}, so $m_{j} \times \operatorname{sum}\left(\varepsilon_{j}\right)=2 \pi$.
Suppose there are s accidental cycles. If ε is accidental then $\operatorname{sum}(\varepsilon)=2 \pi$.
Recall: vertices in D an a given elliptic cycle glue together 10 give one point in H / Γ. This point will be a vertex in our triangulation of H / Γ.

- paired sides in D glue together to give ane edge
in H / Γ.
Oho recall: Gauss-Bonnet: Area $H_{H}(D)=(n-2) \pi-\sum$ internal anger .

$$
\begin{align*}
& =(n-2) \pi-\sum_{\substack{\text { elliphe } \\
\text { cydes }}} \operatorname{sum}(\varepsilon) \\
& =(n-2) \pi-\left(\sum_{j=1}^{r} \frac{2 \pi}{m_{j}}+2 \pi s\right) \tag{1}
\end{align*}
$$

D triangulates H / Γ with $V=r+s$ vertices, $\Sigma=n / 2$ edges, $F=1$ faces.
By Euler's formula: $\chi(H / \Gamma)=2-2 g=V-\varepsilon+f$

$$
\begin{equation*}
=r+s-\frac{n}{2}+1 \tag{2}
\end{equation*}
$$

Substitute fer from (2) into (1) to get the renult

Prop Let I' be a cocompact tuchsian group with $s i g(\Gamma)=\left(g ; m_{1},-, m_{r}\right)$. Let D be a fundamental domain for Γ. Then Area $_{H}(D) \geqslant \frac{\pi}{21}$ with equality iff $\operatorname{sig}(\Gamma)=(0 ; 2,2,7)$.

Pf (Stretch) It's sufficient to prove

$$
2 g-2+\sum_{j=1}^{r}\left(1-\frac{1}{m_{j}}\right) \geqslant \frac{1}{42}
$$

If $g>1$: Then $2 g-2>1>\frac{1}{92}$, so (x) hatch.
If $g=1$: Then $2 g-2=0$. Note $m_{g} \geqslant 2$. So $\angle H S \&(x)$

$$
\geqslant \sum_{j=1}^{r}\left(1-\frac{1}{m_{j}}\right) \geqslant 1-\frac{1}{2} \geqslant \frac{1}{6_{2}} \text {, so (x) holds. }
$$

If $g=0$: Then $2 g-2=-2$.

$$
\text { If } r \geqslant 5 \text {. } \angle H S \text { of }(x) \geqslant-2+\sum_{j=1}^{5}(\underbrace{1-\frac{1}{m_{5}}}_{1 / 2}) \geqslant-2+\frac{5}{2}=\frac{1}{2} \geqslant \frac{1}{92}
$$

If $r=4$: The minimum of $\angle H S$ of (x) occurs when $\operatorname{sig}(\Gamma)=(0 ; 2,2,2,3)$ \& the $\angle H S$ is still $\geqslant Y_{42}$.
If $r=3$ Let $\operatorname{sg}(\Gamma)=(0 ; R, l, m)$. Then $(*)$ hods

$$
\Leftrightarrow \quad 1-\left(\frac{1}{k}+\frac{1}{l}+\frac{1}{m}\right) \geqslant \frac{1}{42} .
$$

\& equally hods iff $(h, l, m)=(2,3,7)$. (this is a really dull calculation!)

Note: if Γ is cocompact \& $\operatorname{sig}(\Gamma)=\left(9 ; m_{17 r}, m_{r}\right)$
then $2 g-2+\sum_{j=1}^{r}\left(1-\frac{1}{m_{j}}\right)>0$.
Conversely we have
Thu If $\left(g ; m_{1},-, m_{r}\right)$ is st. $2 g-2+\sum_{j=1}^{r}\left(1-\frac{1}{m_{j}}\right)>0$
then \exists a cocompact fuchsian group Γ with

$$
\operatorname{sig}\left(r^{\prime}\right)=\left(g ; m_{1}, \ldots, m_{r}\right)
$$

Example $\forall g \geqslant 2$, there exist a cocompact fuchsian group Γ s.t. $\operatorname{sig}(\Gamma)=(9 ;-)$. Here H / Γ is a toms of genus 9

Stretch of the main ideas in the prot:
Want to generate holes/handles

- need $4 g$ sides in D to get genu g in H / Γ.
- Want to get marked points of order m_{j}.

- gives together to give a marked point of order m_{j}
- need $2 r$ sides to get r marked points.

Example Consult a fuchrian group Γ with

$$
\operatorname{sig}(\Gamma)=(2 ; 4,5)
$$

Drawing a regular hyperbolic 10-gon.
v_{1}, v_{2} each lie on non-ace- elliptic cyck of ciders 4,5 reppechicly The other vertices ligan just ane elliptic cycle. By choosing radius of the dotted circle carefully, this elliptic cycle a accidental.
Apply Puincarés The to get a fuchsian group Γ with $\operatorname{sig}(\Gamma)=(2 ; 4,5)$.

Where could we go next!
"Most surfaces are tori"
Mobius Classification Theorem (1803)
Let S be a compact onentable surface without boundary. Then Sis either

- a sphere
- a torus of genus 1
- a torus of genus $g \geqslant 2$.

Diquet's formula
The curvature $k(x)$ at a point x on a suffers is given by $k(x)=\lim _{r \rightarrow 0} \frac{12}{\pi}\left[\frac{\pi r^{2}-\text { Area } B(x, r)}{r^{4}}\right]$
(a sphere has curvature >0, the Euclidean plane $=0$, hyp. plane -1).
"For surfaces, we only reed to think about spheres, the Euclidean plane 8 the hyperbolic dane."
Poincaré-Koebe Unifformisation The $(1892,4907)$
Let S be a compact onentable surface without boundary. Suppose S han condant ounature. Then \exists a covering surface m \& a discrete gray of isometries Γ st. $S \cong m / \Gamma$ and:
(1) If S has five cuncoture then $m=$ sphere
(2) If S han O cunature then $m=\mathbb{R}^{2}$
(3) if S has -ire cincture then $m=\mathbb{H}$.

Hligher-dimensional hyperbolic geamelyy

$$
\begin{aligned}
H^{n} & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\} \quad\left(H^{2}=H 1\right) \\
\partial H^{n} & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \in \mathbb{R}^{n}\right\} \cup\{\infty\}
\end{aligned}
$$

Applications to:

- dynamical systems \& chaos theory
- fractal geometry

B5.
(i) Recall that the set of Möbius transformations of \mathbb{D} is defined to be

$$
\operatorname{Möb}(\mathbb{D})=\left\{\gamma: \mathbb{D} \rightarrow \mathbb{D}\left|\gamma(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}}, \alpha, \beta \in \mathbb{C},|\alpha|^{2}-|\beta|^{2}>0\right\} .\right.
$$

Let $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{D})$ and write

$$
\gamma_{1}(z)=\frac{\alpha_{1} z+\beta_{1}}{\overline{\beta_{1}} z+\overline{\alpha_{1}}}, \quad \gamma_{2}(z)=\frac{\alpha_{2} z+\beta_{2}}{\overline{\beta_{2}} z+\overline{\alpha_{2}}} .
$$

Show that the composition $\gamma_{1} \gamma_{2}$ is a Möbius transformation of \mathbb{D}.
Show that γ_{1}^{-1} is a Möbius transformation of \mathbb{D}.
[10 marks]
(ii) Recall that if $\sigma:[a, b] \rightarrow \mathbb{D}$ is a parametrisation of a path in \mathbb{D} then the hyperbolic length of σ is defined to be

$$
\text { length }_{\mathrm{D}}(\sigma)=\int_{\mathrm{a}}^{\mathrm{b}} \frac{2}{1-|\sigma(\mathrm{t})|^{2}}\left|\sigma^{\prime}(\mathrm{t})\right| \mathrm{dt}
$$

How can the hyperbolic lengths of paths then be used to define a metric $d_{\mathbb{D}}$ on \mathbb{D} ? (You do not need to prove that d_{D} is a metric.)
(iii) Let $a \in(0,1)$ and consider the path σ along the imaginary axis that joins 0 and ia. Wri ; down a parametrisation of σ. Hence show that

$$
\operatorname{length}_{\mathbb{D}}(\sigma)=\log \left(\frac{1+a}{1-a}\right)
$$

(iv) Hence show that $d_{\mathbb{B}}(0, i a)=\log \left(\frac{1+a}{1-a}\right)$.
(v) Find the hyperbolic mid-point of the arc of geodesic in \mathbb{D} between 0 and $4 i / 5$.

A4.
(i) Consider the regular hyperbolic decagon in Figure 1 below with each internal angle equal to $\pi / 9$ and with the sides paired as illustrated (you may assume that such a hyperbolic decagon exists).
Show that there are two elliptic cycles and determine their orders. By using Poincarés Theorem, show that the side pairing transformations generate a co-compact Fuchsian group Γ. (You do not need to give a presentation of Γ in terms of generators and relations.)
[10 marks]
(ii) Write down the signature sig(Γ) of Γ. Sketch a picture of the quotient space \mathbb{H} / Γ.

Figure 1: See G_{G} estion A4. Each internal angle is $\pi / 9$ and the sides are paired as indicated.

B5 (i) We have

$$
\begin{aligned}
\gamma_{1}\left(\gamma_{2}(z)\right) & =\frac{\alpha_{1}\left(\frac{\alpha_{2} z+\beta_{2}}{\beta_{2} z+\bar{\alpha}_{2}}\right)+\beta_{1}}{\bar{\beta}_{1}\left(\frac{\alpha_{2} z+\beta_{2}}{\bar{\beta}_{2} z+\bar{\alpha}_{2}}\right)+\bar{\alpha}_{1}} \\
& =\frac{\alpha_{1}\left(\alpha_{2} z+\beta_{2}\right)+\beta_{1}\left(\bar{\beta}_{2} z+\bar{\alpha}_{2}\right)}{\bar{\beta}_{1}\left(\alpha_{2} z+\beta_{2}\right)+\bar{\alpha}_{1}\left(\bar{\beta}_{2} z+\bar{\alpha}_{2}\right)} \\
& =\frac{\left(\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2}\right) z+\left(\alpha_{1} \beta_{2}+\beta_{1} \bar{\alpha}_{2}\right)}{\left(\bar{\beta}_{1} \alpha_{2}+\bar{\alpha}_{1} \bar{\beta}_{2}\right) z+\left(\bar{\beta}_{1} \beta_{2}+\bar{\alpha}_{1} \bar{\alpha}_{2}\right)} \\
& =\frac{\alpha_{3} z+\beta_{3}}{\bar{\beta}_{3} z+\bar{\alpha}_{3}} .
\end{aligned}
$$

This is a Möbius transformation of \mathbb{D} as

$$
\begin{aligned}
\left|\alpha_{3}\right|^{2}-\left|\beta_{3}\right|^{2} & =\left(\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2}\right)\left(\bar{\beta}_{1} \beta_{2}+\bar{\alpha}_{1} \bar{\alpha}_{2}\right)-\left(\alpha_{1} \beta_{2}+\beta_{1} \bar{\alpha}_{2}\right)\left(\bar{\beta}_{1} \alpha_{2}+\bar{\alpha}_{1} \bar{\beta}_{2}\right) \\
& =\left(\left|\alpha_{1}\right|^{2}-\left|\beta_{1}\right|^{2}\right)\left(\left|\alpha_{2}\right|^{2}-\left|\beta_{2}\right|^{2}\right)>0 .
\end{aligned}
$$

[You would also have got full marks if you'd exploited the fact that composition of Möbius transformations corresponds to multiplying matrices together, provided that you'd stated this correspondence.]
For the inverse, if $w=\gamma_{1}(z)$ then

$$
w=\frac{\alpha_{1} z+\beta_{1}}{\bar{\beta}_{1} z+\bar{\alpha}_{1}} \Leftrightarrow w\left(\bar{\beta}_{1} z+\bar{\alpha}_{1}\right)=\alpha_{1} z+\beta_{1} \Leftrightarrow\left(\bar{\beta}_{1} w-\alpha_{1}\right) z=-\bar{\alpha}_{1} w+\beta_{1} \Leftrightarrow z=\frac{-\bar{\alpha}_{1} w+\beta_{1}}{\bar{\beta}_{1} w-\alpha_{1}} .
$$

Hence

$$
\gamma_{1}^{-1}(z)=\frac{-\bar{\alpha}_{1} z+\beta_{1}}{\bar{\beta}_{1} z-\alpha_{1}}
$$

which is a Möbius transformation of \mathbb{D} as

$$
-\bar{\alpha}_{1} \times\left(-\alpha_{1}\right)-\beta_{1} \bar{\beta}_{1}=\left|\alpha_{1}\right|^{2}-\left|\beta_{1}\right|^{2}>0 .
$$

[Again, you could also have used matrices to do this.]
(ii) Let $z, w \in \mathbb{D}$. We define

$$
d_{\mathbb{D}}(z, w)=\inf \left\{\text { length }_{\mathbb{D}}(\sigma) \mid \sigma \text { is a piecewise differentiable path from } z \text { to } w\right\} .
$$

(iii) A parametrisation of the arc of imaginary axis from 0 to $i a$ is given by $\sigma(t)=i t$, $0 \leq t \leq a$.
[There are other formulae that work (eg $\sigma(t)=i a t, 0 \leq t \leq 1$), but this is the simplest and will make life easier in the calculation below.]
We have $\sigma^{\prime}(t)=i$ and $|\sigma(t)|=t$. Hence

$$
\begin{aligned}
\operatorname{length}_{\mathbb{D}}(\sigma) & =\int_{0}^{a} \frac{2}{1-t^{2}} \times 1 d t \\
& =\int_{0}^{a} \frac{1}{1-t}+\frac{1}{1+t} d t \\
& =\left.(-\log (1-t)+\log (1+t))\right|_{0} ^{a} \\
& =\log (1+a)-\log (1-a) \\
& =\log \frac{1+a}{1-a} .
\end{aligned}
$$

[Here we did the integral using partial fractions. If you hadn't realised/remembered that partial fractions was the best way to integrate $1 /\left(1-t^{2}\right)$ then you could have gotten a hint from the question. You're given that the answer involves a log. You would get a term $\log (1+t)$ by integrating $1 /(1+t)$, and similarly for the $(1-t)$ term. This suggests that you need to look for $1 /(1-t)$ and $1 /(1+t)$ in the integrand.]
(iv) [This is very similar to Exercise 6.1 (iii) in the notes.]

Let $\sigma(t)$ be any path from 0 to $i a, 0 \leq t \leq 1$. Write $\sigma(t)=x(t)+i y(t)$. Then $y(0)=0, y(1)=a$. Also note that $\sigma^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$ and $|\sigma(t)|^{2}=x(t)^{2}+y(t)^{2}$. Hence

$$
\begin{aligned}
\operatorname{length}_{\mathbb{D}}(\sigma) & =\int_{0}^{1} \frac{2}{1-\left(x(t)^{2}+y(t)^{2}\right)} \times\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{1 / 2} d t \\
& \geq \int_{0}^{1} \frac{2 y^{\prime}(t)}{1-y(t)^{2}} d t
\end{aligned}
$$

where we have used the facts that $\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{1 / 2} \geq y^{\prime}(t)$ (as $\left.x^{\prime}(t)^{2} \geq 0\right)$ and $1-\left(x(t)^{2}+y(t)^{2}\right) \leq 1-y(t)^{2}\left(\right.$ as $\left.x^{\prime}(t)^{2} \geq 0\right)$. Using partial fractions again we have

$$
\begin{aligned}
\operatorname{length}_{\mathbb{D}}(\sigma) & =\geq \int_{0}^{1} \frac{y^{\prime}(t)}{1-y(t)}+\frac{y^{\prime}(t)}{1+y(t)} d t \\
& =\left.(-\log (1-y(t))+\log (1+y(t)))\right|_{0} ^{1} \\
& =\log \frac{1+y(0)}{1-y(0)} \\
& =\log \frac{1+a}{1-a}
\end{aligned}
$$

Combining this with the results in (iii) and the definition given in (ii), we see that $d_{\mathbb{D}}(0, i a)=\log (1+a) /(1-a)$.
(v) The hyperbolic mid-point must lie on the imaginary axis, as this is the geodesic from 0 to $4 i / 5$. Suppose it occurs at ai. Then $d_{\mathbb{D}}(0, a i)=\frac{1}{2} d_{\mathbb{D}}(0,4 i / 5)$. By (iv) we have

$$
\log \frac{1+a}{1-a}=\frac{1}{2} \log \frac{1+4 / 5}{1-4 / 5}=\frac{1}{2} \log \frac{9 / 5}{1 / 5}=\frac{1}{2} \log 9=\log 9^{1 / 2}=\log 3
$$

Hence

$$
\frac{1+a}{1-a}=3
$$

i.e. $1+a=3(1-a)$, equivalently $a=1 / 2$. Hence the hyperbolic mid-point occurs at $i / 2$.
[Note that the numbers were chosen to work out nicely. This is deliberate: I'm assessing you on whether you've learned some hyperbolic geometry, not if you can do arithmetic!]

A4 (i) Label the diagram as shown below.

We have the elliptic cycle

$$
\left.\begin{array}{rl}
\binom{v_{0}}{s_{1}} & \xrightarrow{\gamma_{7}}\binom{v_{3}}{s_{3}} \\
\xrightarrow{\gamma_{2}}\binom{v_{2}}{s_{2}} & \xrightarrow{*}\binom{v_{3}}{s_{4}} \\
v_{2} \\
s_{3}
\end{array}\right) .
$$

which gives elliptic cycle

$$
\mathcal{E}_{1}: v_{0} \rightarrow v_{4} \rightarrow v_{3} \rightarrow v_{2} \rightarrow v_{4} \rightarrow v_{7} \rightarrow v_{6} \rightarrow v_{5} \rightarrow v_{8}
$$

which has angle sum $\operatorname{sum}\left(\mathcal{E}_{1}\right)=9 \times \frac{\pi}{9}=\pi$. Hence the elliptic cycle has order $m_{1}=2$ (so that $m \times \operatorname{sum}(\mathcal{E})=2 \pi$).
[When this was an exam question, lots of people took $m=1$.]
We also have the elliptic cycle

$$
\left(\begin{array}{ll}
v_{9} & s_{9}
\end{array}\right) \xrightarrow{\gamma_{5}}\left(\begin{array}{ll}
v_{9} & s_{1} 0
\end{array}\right) \xrightarrow{*}\left(\begin{array}{ll}
v_{9} & s_{9}
\end{array}\right) .
$$

Thus we have elliptic cycle

$$
\mathcal{E}_{2}: v_{9}
$$

which has angle $\operatorname{sum} \operatorname{sum}\left(\mathcal{E}_{2}\right)=\pi / 9$. This has order $m_{2}=18$.
Hence the Elliptic Cycle Condition holds for both elliptic cycles. Hence Poincaré's Theorem says that $\gamma_{1}, \ldots, \gamma_{5}$ generate a Fuchsian group Γ.
(ii) There are two marked points: one given by gluing together the vertices on \mathcal{E}_{1} to give a marked point of order 2 , and the other given by gluing together the vertices on \mathcal{E}_{2} to give a marked point of order 18.
There are two copies of side-pairing transformations of the following form:

(The other two sides glue together to give one of the marked points.) This suggests that the genus of 2 .
[If you don't look this 'stare-at-it' method, then you could think about Euler's formula. The surface \mathbb{H} / Γ will have a triangulation with $V=2$ vertices (the number of elliptic cycles), $E=10 / 2=5$ edges and $F=1$ face. Hence $2-2 g=$ $\chi=V-E+F=2-5+1=-2$, so $g=2$.
Hence $\operatorname{sig}(\Gamma)=(2 ; 2,18)$.
\mathbb{H} / Γ looks like the following:

