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B5 (i) We have

γ1(γ2(z)) =
α1

(
α2z+β2
β̄2z+ᾱ2

)
+ β1

β̄1

(
α2z+β2
β̄2z+ᾱ2

)
+ ᾱ1

=
α1(α2z + β2) + β1(β̄2z + ᾱ2)

β̄1(α2z + β2) + ᾱ1(β̄2z + ᾱ2)

=
(α1α2 + β1β̄2)z + (α1β2 + β1ᾱ2)

(β̄1α2 + ᾱ1β̄2)z + (β̄1β2 + ᾱ1ᾱ2)

=
α3z + β3

β̄3z + ᾱ3
.

This is a Möbius transformation of D as

|α3|2 − |β3|2 = (α1α2 + β1β̄2)(β̄1β2 + ᾱ1ᾱ2)− (α1β2 + β1ᾱ2)(β̄1α2 + ᾱ1β̄2)

= (|α1|2 − |β1|2)(|α2|2 − |β2|2) > 0.

[You would also have got full marks if you’d exploited the fact that composition of
Möbius transformations corresponds to multiplying matrices together, provided
that you’d stated this correspondence.]

For the inverse, if w = γ1(z) then

w =
α1z + β1

β̄1z + ᾱ1
⇔ w(β̄1z+ᾱ1) = α1z+β1 ⇔ (β̄1w−α1)z = −ᾱ1w+β1 ⇔ z =

−ᾱ1w + β1

β̄1w − α1
.

Hence

γ−1
1 (z) =

−ᾱ1z + β1

β̄1z − α1

which is a Möbius transformation of D as

−ᾱ1 × (−α1)− β1β̄1 = |α1|2 − |β1|2 > 0.

[Again, you could also have used matrices to do this.]

(ii) Let z, w ∈ D. We define

dD(z, w) = inf{lengthD(σ) | σ is a piecewise differentiable path from z to w}.

(iii) A parametrisation of the arc of imaginary axis from 0 to ia is given by σ(t) = it,
0 ≤ t ≤ a.

[There are other formulae that work (eg σ(t) = iat, 0 ≤ t ≤ 1), but this is the
simplest and will make life easier in the calculation below.]

We have σ′(t) = i and |σ(t)| = t. Hence

lengthD(σ) =

∫ a

0

2

1− t2
× 1 dt

=

∫ a

0

1

1− t
+

1

1 + t
dt

= (− log(1− t) + log(1 + t))|a0
= log(1 + a)− log(1− a)

= log
1 + a

1− a
.
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[Here we did the integral using partial fractions. If you hadn’t realised/remembered
that partial fractions was the best way to integrate 1/(1 − t2) then you could
have gotten a hint from the question. You’re given that the answer involves a
log. You would get a term log(1 + t) by integrating 1/(1 + t), and similarly for
the (1− t) term. This suggests that you need to look for 1/(1− t) and 1/(1 + t)
in the integrand.]

(iv) [This is very similar to Exercise 6.1(iii) in the notes.]

Let σ(t) be any path from 0 to ia, 0 ≤ t ≤ 1. Write σ(t) = x(t) + iy(t). Then
y(0) = 0, y(1) = a. Also note that σ′(t) = x′(t)+iy′(t) and |σ(t)|2 = x(t)2+y(t)2.
Hence

lengthD(σ) =

∫ 1

0

2

1− (x(t)2 + y(t)2)
× (x′(t)2 + y′(t)2)1/2 dt

≥
∫ 1

0

2y′(t)

1− y(t)2
dt

where we have used the facts that (x′(t)2 + y′(t)2)1/2 ≥ y′(t) (as x′(t)2 ≥ 0) and
1 − (x(t)2 + y(t)2) ≤ 1 − y(t)2 (as x′(t)2 ≥ 0). Using partial fractions again we
have

lengthD(σ) = ≥
∫ 1

0

y′(t)

1− y(t)
+

y′(t)

1 + y(t)
dt

= (− log(1− y(t)) + log(1 + y(t)))|10

= log
1 + y(0)

1− y(0)

= log
1 + a

1− a
.

Combining this with the results in (iii) and the definition given in (ii), we see
that dD(0, ia) = log(1 + a)/(1− a).

(v) The hyperbolic mid-point must lie on the imaginary axis, as this is the geodesic
from 0 to 4i/5. Suppose it occurs at ai. Then dD(0, ai) = 1

2dD(0, 4i/5). By (iv)
we have

log
1 + a

1− a
=

1

2
log

1 + 4/5

1− 4/5
=

1

2
log

9/5

1/5
=

1

2
log 9 = log 91/2 = log 3.

Hence
1 + a

1− a
= 3

i.e. 1 + a = 3(1 − a), equivalently a = 1/2. Hence the hyperbolic mid-point
occurs at i/2.

[Note that the numbers were chosen to work out nicely. This is deliberate: I’m
assessing you on whether you’ve learned some hyperbolic geometry, not if you
can do arithmetic!]

A4 (i) Label the diagram as shown below.
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We have the elliptic cycle(
v0

s1

)
γ1→

(
v3

s3

)
∗→
(
v3

s4

)
γ2→

(
v2

s2

)
∗→
(
v2

s3

)
γ−1
1→

(
v1

s1

)
∗→
(
v1

s2

)
γ−1
2→

(
v4

s4

)
∗→
(
v4

s5

)
γ3→

(
v7

s7

)
∗→
(
v7

s8

)
γ4→

(
v6

s6

)
∗→
(
v6

s7

)
γ−1
3→

(
v5

s5

)
∗→
(
v5

s6

)
γ−1
4→

(
v8

s8

)
∗→
(
v8

s9

)
γ5→

(
v0

s10

)
∗→
(
v0

s1

)
which gives elliptic cycle

E1 : v0 → v4 → v3 → v2 → v4 → v7 → v6 → v5 → v8

which has angle sum sum(E1) = 9 × π
9 = π. Hence the elliptic cycle has order

m1 = 2 (so that m× sum(E) = 2π).

[When this was an exam question, lots of people took m = 1.]

We also have the elliptic cycle(
v9 s9

) γ5→
(
v9 s10

) ∗→ (
v9 s9

)
.

Thus we have elliptic cycle
E2 : v9

which has angle sum sum(E2) = π/9. This has order m2 = 18.

Hence the Elliptic Cycle Condition holds for both elliptic cycles. Hence Poincaré’s
Theorem says that γ1, . . . , γ5 generate a Fuchsian group Γ.
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(ii) There are two marked points: one given by gluing together the vertices on E1

to give a marked point of order 2, and the other given by gluing together the
vertices on E2 to give a marked point of order 18.

There are two copies of side-pairing transformations of the following form:

(The other two sides glue together to give one of the marked points.) This
suggests that the genus of 2.

[If you don’t look this ‘stare-at-it’ method, then you could think about Euler’s
formula. The surface H/Γ will have a triangulation with V = 2 vertices (the
number of elliptic cycles), E = 10/2 = 5 edges and F = 1 face. Hence 2− 2g =
χ = V − E + F = 2− 5 + 1 = −2, so g = 2.

Hence sig(Γ) = (2; 2, 18).

H/Γ looks like the following:
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