What did we do last time?
Used zr) to classify mobrius tx:
$\tau(\gamma)>4 \Leftrightarrow \gamma$ is hyperbolic
$\tau(\gamma)=4 \Longleftrightarrow \gamma$ is parabdic
$\tau(\gamma) \in[0,9) \Leftrightarrow \gamma$ is elliptic.
Prop Let $\gamma \in \operatorname{mob}(H 1), \gamma \neq i d$. The following ave equivalent:
(1) $\gamma \approx$ parabolic
(2) $z(\gamma)=$ \&
(3) γ is conjugate to a translation
(4) γ is conjugate to either $z \mapsto z+1$ or $z \mapsto z-1$.

Coursework test
Frs $1^{\text {st }}$ Nov (next week) - check your personalised timetables.
(Univ. approved) calculates are permitted.
Up to \& including Sect. 11 in the notes $\left.\begin{array}{c}(=\text { today's } \\ \text { lecture }\end{array}\right)$

PI $(3) \Leftrightarrow(4)$ follows from the exercises.
$(1) \Leftrightarrow(2)$ dene.
(3) \Rightarrow (1) Suppose γ is conjugate to a trawlation. we keno translahons are paralodic.
Hence γ is parabdic (nee lat lechwe).
(I) \Rightarrow (3) Suppose γ is parabolic with unique fixed point at $\xi \in \partial H$. Choose $g \in \operatorname{Mob}(H)$ st $g(\xi)=\infty$. Consider $g \gamma g^{-1}$. Then γ is conjugate to $g \partial g^{-1}$ an

$$
\gamma=g^{-1}\left(g \gamma g^{-1}\right) g
$$

Note $\operatorname{grg}^{-1}\left(z_{0}\right)=z_{0} \Leftrightarrow \gamma\left(g^{-1}\left(z_{0}\right)\right)=g^{-1}\left(z_{0}\right) \Leftrightarrow g^{-1}\left(z_{0}\right)=\xi$

$$
\Leftrightarrow z_{0}=g(\xi)=\infty
$$

So $g \gamma g^{-1}$ han a unique fixed po at ∞.
Claim grg^{-1} is a translation.
Write $\operatorname{grg}^{-1}(z)=\frac{a z+b}{c z+d}$. As ∞n a fixed $p t$, we have $c=0$.
So $g \gamma 9^{-1}(z)=\frac{a z+b}{d}$. This han a fixed p^{t} at $\frac{b}{d-a}$ - On ∞ as the colly fixed po for gro we have $a=d$. Hence $g \gamma g^{-1}(z)=z+b / d, a$ translation.

Hyperbdic Möbins Exs
Let r be hyperbolic, is γ han 2 fixed pos an ∂H none in H.
Example $\quad \gamma(z)=k z \quad k \neq 1, k>0$ - a dilation.
This has fixed pots at $0, \infty$.
Exerase Let $\gamma_{1}(z)=k_{1} z, \gamma_{2}(z)=r_{2} z$. Then γ_{1}, γ_{2} are conjugate $\Leftrightarrow k_{1}=k_{2}$ or $k_{1}=1 / k_{2}$.
Proposition Let $\gamma \in \operatorname{Mob}(H)$. The fallowing are equivalent,
(1) γ is hypatalic,
(iI) $\tau(\gamma)>4$, (iii) γ is corrugate to a dilation.

P昂 $(D) \Leftrightarrow$ (II) done.
(III) \Rightarrow (I) Dilahons are hyperbolic. If r is conjugate to a hyperbolic tx then γ is hyperbolic.
($11 \Rightarrow$ (III) Suppose γ is hyperbolic with fixed pts at $\xi_{1}, s_{2} \in \partial H$. Choose $g \in \operatorname{mab}(H)$ st.
$g\left(\xi_{1}\right), g\left(\mathcal{F}_{2}\right)=0, \infty$. Consider $g \gamma g^{-1}$. Then $g \gamma g^{-1}$ is conjugate to r (an $\gamma=g^{-1}\left(g \gamma g^{-1}\right) g$).
Note: $g \gamma g^{-1}\left(z_{0}\right)=z_{0} \Leftrightarrow \gamma\left(g^{-1}\left(z_{0}\right)\right)=g^{-1}\left(z_{0}\right)$

$$
\begin{aligned}
& \Leftrightarrow g^{-1}\left(z_{0}\right)=f_{1}, \xi_{2} \Leftrightarrow z_{0}=g\left(\xi_{1}\right), g\left(f_{2}\right) \\
& \Leftrightarrow z_{0}=0, \infty
\end{aligned}
$$

Claim $g r^{-1}$ is a dilation.
Let $\operatorname{grg}^{-1}(z)=\frac{a z+b}{c z+d}$.
an ∞ is fixed, we have $c=0$.
as 0 \& Reed, we have $b / d=0$, ie $b=0$.
Hence $g_{1} \gamma g^{-1}(z)=\left(\frac{a}{d}\right) z-a$ dilation

Eliplic Mobiw txs
We wark in \mathbb{D}. Recall that Mobius txs of \mathbb{D} have the form

$$
\gamma(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}} \quad \alpha, \beta \in \mathbb{C},|\alpha|^{2}-|\beta|^{2}>0 .
$$

As in Mob(IIH) we can assume wlog that γ is normalised, ie $|\alpha|^{2}-|\beta|^{2}=1$.
When γ is nomalied, we define $\tau(\gamma)=(\alpha+\bar{\alpha})^{2}$
Rmks γ is hyp $\left.\left.\begin{array}{rl}\text { pasab } \\ \text { ellip }\end{array}\right\} \Leftrightarrow \begin{array}{rl}\tau(\gamma) & >\alpha \\ & =\alpha \\ & \in[0,4)\end{array}\right\}$.
Example Take $\alpha=e^{i \theta / 2}, \beta=0$. Then

$$
\gamma(z)=\frac{e^{i \theta / 2} z+0}{0 z+e^{-i \theta / 2}}=e^{i \theta} z=\begin{aligned}
& \text { rotahan abcut } 0 \in \mathbb{D} \\
& \text { thrughn angle } \theta
\end{aligned}
$$

This han a unique fixed pt at $0 \in \mathbb{D}$, so r is elliploc
Proposionan Let $\gamma \in \operatorname{mob}(\mathbb{D}), \gamma \neq i d$. The following are equinatent
(1) γ is elliphic, (2) $\tau(\gamma) \in[0,9)$
(3) γ is conyugate to a rotahan.
PR $(D \Leftrightarrow(2)$ as previcus lecture.
(3) \Rightarrow () Rotahans are elliphic. If γ is consugate to an elliptic ty then γ is itself elliptor.
(1) \Rightarrow (3) Suppose γ han a umique fixed pt at $g \in \mathbb{D}$. Choose $g \in \operatorname{mob}(\mathbb{D})$ s.t. $g(s)=0$. Consider $g r g^{-1}$.
Then $g r g^{-1} n$ conyugate to r (an $r=g^{-1}\left(g \gamma g^{-1}\right) g$)
also $\left.\left.g \gamma g^{-1}\left(z_{0}\right)=z_{0} \Leftrightarrow \gamma\left(g^{-1} / z_{0}\right)\right)=g^{-1} \mid z_{0}\right)$

$$
\left.\Leftrightarrow g^{-1} \mid z_{0}\right)=j \Leftrightarrow z_{u}=g(J)=0 .
$$

Claim $\operatorname{grg}^{-1} i n$ a sotahen.
Let $\operatorname{grg}^{-1}(z)=\frac{\alpha z+\beta}{\beta z+\bar{\alpha}}$. An $\operatorname{grg}^{-1}(0)=0$, we have $\frac{\beta}{\bar{\alpha}}=0$, ie $\beta=0$. Let $\alpha=r e^{i \theta}$. Then $\operatorname{grg}(z)=\frac{r e^{i \theta} z}{r e^{-i \theta}}=e^{2 i \theta} z$, a retahan

Rein The möbius tors of H given by

$$
\gamma(z)=\frac{(\cos \theta / 2) z+\sin \theta / 2}{(-\sin \theta / 2) z+\cos \theta / 2}
$$

han a unique fired pt at $i \in H \mid \&$ is often called a rotation of H about i.

What did we do last time
Classified parabolic Mubbins tors (they lake line tranialaions) hyperbolic Miobius tors (they look lithe dilations) ellipse Möbius tres (they look line rotations)).
What will we do today?
Introduce Fuchsia groups - discrete subgroups of M ida (H))
Coursewath test
Fri st Nov (next week)
(uni. approved) calculation are permitted.
Unto \& including Sect 11 in the nodes (yeterdans lecture).
12. Fuchsian graups

Defn a fuchsian group a a dicrete subgroup of $\operatorname{Möb}(H)$ or $\operatorname{Mäb}(\mathbb{D})$.
Discreteress Recall (X, d) is a melnc space if:
(1) $d(x, y) \geqslant 0, d(x, y)=0 \Leftrightarrow x=y$.
(2) $d(x, y)=d(y, x)$
(3) $d(x, y) \leqslant d(x, z)+d(z, y)$.

Examples (1) $X=\mathbb{R} \quad d|x, y|=|x-y|$
(2) $X=\mathbb{R}^{n} \quad d\left(\left(x_{1},-, x_{n}\right),\left(y_{1}, \neg y_{n}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}$
(3) $X=H \quad d=d_{H 1}, \quad X=\mathbb{D} \quad d=d_{\mathbb{D}}$.

Let (x, d) be a mehic space, let $y c x$. A point $y \in y$ is isolated if: $\exists \delta>0$ s.t if $y^{\prime} \in Y, y^{\prime} \neq y$, then $d\left(y, y^{\prime}\right) \geqslant \delta$.
โEquivalenlly: Let $\left.B_{\delta}(y)=\{z \in X|d| z, y)<\delta\right\}$, then $y \in Y$ is isclated if $\exists \delta>0$ st $B_{\delta}(y) \cap Y=\{y\}$.

Defin y is ducrete if every point in y is isolated.
Examples (1) $x=\mathbb{R}, y=Z_{1}$

Given $y=1$, take $\delta=1 / 2$. Then there are no other points of y wirhin dutance $1 / 2$ of:
(2) $x=\mathbb{R}, \quad y=\{1 / n, n \in \mathbb{N}\}$ is discrete.

Take $y=1 / n$

If δ is small eraigh (ide: it will depend an n)
then no cher point of y is in here
(3) $x=\mathbb{R} \quad y=\{1 / n, n \in \mathbb{N}\} \cup\{0\}$ is not ducrete an 0 is not isclated (Given any $\delta>0$ we can always find $1 / n$ st. $1 / n$ is within distance δ of 0 .).
(9) $X=\mathbb{R}, y=\mathbb{Q}$. not discrete (no point is isolated).
(5) $x=$ any set, y a a finite subset. Then y is discrete.
a medic on Mob(H) .
Q: What does it mean for two Möbius $t x y$ to be "near" each other
Example: $\gamma_{1}(z)=\frac{2 z+1}{z+1}, \gamma_{z}(z)=\frac{2 z+1 \cdot 1}{z+1}$

- there should be "close".

$$
\gamma_{1}(z)=\frac{2 z+1}{z+1} \quad \gamma_{2}(z)=\frac{4 z+2 \cdot 2}{2 z+2}
$$

-these should be "close".

$$
\gamma_{1}(z)=\frac{2 z+1}{z+1} \quad \gamma_{2}(z)=\frac{-2 z-1 \cdot 1}{-z-1}
$$

- there shall be "close".

Define $\|(a, b, c, d)\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ ．
Let $\quad \begin{aligned} & \gamma_{i}(z)=\frac{a_{i} z+b_{i}}{c_{i} z+d_{i}} \quad a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{R} \quad a_{i} d_{i}-b_{i} c_{i}=1 \\ & i=1,2\end{aligned}$
Define

$$
d_{\text {müb(HH) }}\left(\gamma_{1}, \gamma_{2}\right)=\min \left\{\begin{array}{l}
\left\|\left(a_{1}, b_{1}, c_{1}, d_{1}\right)-\left(a_{2}, b_{2}, c_{2}, d_{2}\right)\right\| \\
\left\|\left(a_{1}, b_{1}, c_{1}, d_{1}\right)-\left(-a_{2},-b_{2},-c_{2},-d_{2}\right)\right\|
\end{array}\right.
$$

Recall a fuchsian graup io a ducrete subgroup of mibb（min） or $\operatorname{möb}(\mathbb{D})$ ．
Examples（1）Integer transtations

$$
\Gamma=\left\{\gamma_{n}(z)=z+n, n \in \not ⿻ 彐 丨 \quad \infty \quad\right. \text { a fuchsian group. }
$$

（2）Dilainan by powers of 2
$\Gamma=\left\{\gamma_{n}(z)=2^{n} z, n \in Z_{1}\right\} \quad \infty$ a fuchsian grapp．
（3）Ony funte subgraup of Mobius txs ∇ a fuctrian group． $\Gamma=\left\{\right.$ id，rotahon thrugh $\left.90^{\circ}, 180^{\circ}, 270^{\circ}\right\}$ cMch（ D ） a a fuchsian group．
Fix $\quad q \in \mathbb{N}, \Gamma=\left\{\gamma_{k}(z)=e^{\frac{2 \pi i k}{\varepsilon}} z, k=0,1,-q-1\right\}$
$\subset \operatorname{Mob}(D) \quad a$ a fuchisan group．
（4）If $\Gamma \theta$ a fuchsian greup \＆$\Gamma^{\prime} \subset \Gamma$ a a subgicup then $\Gamma^{\prime} \sigma$ a fuchsián group．
（5）

$$
\begin{aligned}
\Gamma & =P S l(2, \not ⿻)=\text { modular group } \\
& =\left\{\gamma(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{Z} \quad a d-b c=1\right\}
\end{aligned}
$$

（c）The Univesity of Manconemer 20 fuchsian group．

Orbits Let Γ be a subgroup of Mob (H).

$$
\Gamma(z)=\{\gamma(z) \mid \gamma \in \Gamma\} .
$$

Example $\Gamma=$ integer translahons $=\left\{\gamma_{n}(z)=z+n, n \in Z\right\}$.

$$
\ldots x \times \stackrel{i-1}{x} \times \frac{i}{x} \times{ }_{x}^{i+2} \times \ldots
$$

H

$$
\Gamma(i)=\{i+n, n \in \mathbb{Z}\} .
$$

Prop Let Γ be a subgroup of $\operatorname{mö} b(H)$ or $\operatorname{möb}(\mathbb{D})$.
The following are equivalent:
(1) Γ is a fuchsian group
(2) $\forall z \in H$ (or $\mathbb{D})$ the obit $\Gamma / z) \subset H\left(\begin{array}{l}(a) \\)\end{array}\right.$ is discrete.
Example Let $\Gamma=\left\{\gamma_{n}(z)=2^{n} z_{1}, n \in \neq \eta\right\}$.

- $2 z$

$$
\Gamma(z)=\left\{2^{n} z, z \in \tilde{z},\right.
$$

is discrete

$$
\forall z \in \mathbb{H} .
$$

Hence Γ is a fuchsian group.

SECTION B

Answer TWO of the three questions

B5. Consider the following statements. In each case, state whether the statement is true or false and justify your answer by giving either a proof or a counterexample. You will not be awarded any marks for guessing true or false without attempting to justify your answer.
(i) Let $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$ be two Möbius transformations of \mathbb{H}. Then $\gamma_{1} \gamma_{2}$ is a Möbius transformatimon.
(ii) Let $\tau(\gamma)$ denote the trace of the Möbius transformation γ of \mathbb{H}. Then, for every $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$, we have $\tau\left(\gamma_{1} \gamma_{2}\right)=\tau\left(\gamma_{1}\right) \tau\left(\gamma_{2}\right)$.
[2 marks]
(iii) Conjugacy between Möbius transformations of H is an equivalence relation.

$$
\text { [} 6 \text { marks] }
$$

(iv) Let $\gamma_{1}(z)=z+1, \gamma_{2}(z)=z-1$. Then γ_{1} and γ_{2} are conjugate Möbius transformations of \mathbb{H}.
(v) There exist parabolic Möbius transformations $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$ such that $\gamma_{1} \gamma_{2}$ is liyperbolic.
[4 marks]
(vi) Let L denote the geodesic in \mathbb{H} with endpoints at -2 and 2. There exists a Mübius transformation $\gamma \in \operatorname{Möb}(\mathbb{H})$ that maps L to itself but interchanges the endpoints.
[6 marks]
(vii) There exists a Möbius transformation $\gamma \in \operatorname{Möb}(\mathbb{H})$ that maps the hyperbolic triangle Δ_{1} with vertices at $\infty, i, 1$ to the hyperbolic triangle Δ_{2} with vertices at $\infty, i,(-1+i \sqrt{3}) / 2$.

B5 (i) This is true. The composition of two Möbius transformations is a Möbius transformation. See Exercise 3.4. (And remember that you need to check that $\gamma_{1} \gamma_{2}$ is a Möbius transformation by checking that ' $a d-b c=1$ '.)
Some people queried whether $\gamma_{1} \gamma_{2}$ meant the composition $\gamma_{1} \circ \gamma_{2}$ or the product $\gamma_{1}(z) \gamma_{2}(z)$. As I said many times in the course, we only ever compose Möbius transformations together (and you should recoil in horror at the thought of multiplying them). However if, in your answer, you wrote or made clear that you were interpreting $\gamma_{1} \gamma_{2}$ as the product and gave a reasoned answer as to why it wasn't always a Möbius transformation, then I gave you full credit.
(ii) This is false. Some of you constructed highly elaborate counter-examples. The simplest is to take $\gamma_{1}(z)=\gamma_{2}(z)=z$, the identity transformation. Then $\tau\left(\gamma_{1}\right)=$ $\tau\left(\gamma_{2}\right)=\tau\left(\gamma_{1} \gamma_{2}\right)=4 \neq \tau\left(\gamma_{1}\right) \tau\left(\gamma_{2}\right)$.
A very large number of you took arbitrary transformations $\gamma_{1}(z)=\left(a_{1} z+\right.$ $\left.b_{1}\right) /\left(c_{1} z+d_{1}\right), \gamma_{2}(z)=\left(a_{2} z+b_{2}\right) /\left(c_{2} z+d_{2}\right)$ (in normalised form, I hope), worked out the composition $\gamma_{1} \gamma_{2}$, calculated the traces of $\gamma_{1}, \gamma_{2}, \gamma_{1} \gamma_{2}$ and then boldly stated that it was clear that these were different in general. This isn't a proof! If you are asked to find a counterexample then you actually need to find one (and finding just one will do); you aren't asked for a method which, in principle and with a bit of work, will produce a large number of counterexamples.
(iii) This is true. I think everybody who attempted this got this right.
(iv) This is false. Stating that a parabolic Möbius transformation is conjugate either to $z \mapsto z+1$ or to $z \mapsto z-1$ isn't sufficient: this doesn't say that $z \mapsto z+1, z \mapsto$ $z-1$ aren't conjugate.
You can't say that the conjugacy must be of the form $\gamma(z)=k z$ and then deduce a contradiction - you have to show that $g \gamma_{1} \neq \gamma_{2} g$ for any $g \in \operatorname{Möb}(\mathbb{H})$.
See the solution to Exercise 10.3 for how to do this.
(v) This is true. Take $\gamma_{1}(z)=z+1$. This has matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. There's no point taking γ_{2} to also be a translation, as the composition of two translations is also a translation and so parabolic. Instead, think what's the next simplest example of a parabolic transformation. It has to have trace 4 , so the Möbius transformation with matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ might be worth looking at. Take $\gamma_{2}(z)=z /(z+1)$. Then $\gamma_{1} \gamma_{2}(z)=(2 z+1) /(z+1)$, which is normalised and has trace 9 , and so is hyperbolic.
You can't say that γ_{1} is parabolic and so conjugate to a translation, γ_{2} is parabolic and so conjugate to a translation, hence we can assume both γ_{1} and γ_{2} are translations, hence their composition is a translation and so parabolic. It is correct to say that a parabolic transformation γ_{1} is conjugate to a translation; however, this conjugacy depends on the parabolic transformation (it's a change of coordinates that maps the fixed point of γ_{1} to ∞). There's no reason why the same conjugacy is going to work simultaneously for both γ_{1}, γ_{2} if they have different fixed points (indeed, this is what makes the example above work).
(vi) This is true. There are two slog-it-out methods and a quick method to see this. One slog-it-out method is to suppose that $\gamma(z)=(a z+b) /(c z+d)$ maps -2 to 2 and 2 to -2 , use this to deduce two relationships between a, b, c, d, and then find
(by trial and error) suitable values of a, b, c, d which satisfy these relationships and the fact that $a d-b c=1$.
Another slog-it-out method is to take find a Möbius transformation γ that maps the geodesic between -2 and 2 to the imaginary axis, compose this with the map $z \mapsto-1 / z$ to interchange the endpoints 0 and ∞, and then map the imaginary axis back to the geodesic from -2 to 2 . Many of those who tried this got confused as to whether one of your maps was mapping to or from the geodesic between -2 and 2 and the imaginary axis.
The quick method is just to note that $\gamma(z)=-4 / z$ is a Möbius transformation with the required properties.
(vii) This is false. Either you can note that the two triangles have different areas (by the Gauss-Bonnet Theorem) and so-as Möbius transformations preserve areathere cannot be a Möbius transformation that maps Δ_{1} to Δ_{2}. Alternatively, just note that if such a Möbius transformation existed then it would have to map vertices to vertices, but Δ_{1} has two vertices on the boundary whereas Δ_{2} has one vertex on the boundary. As Möbius transformations map the boundary to itself, this is impossible.

