
Solutions for MATH32052 Hyperbolic Geometry Coursework Solutions, May/June 2019

General feedback. There were a lot of high marks on the exam and (so as to be fair on students who hadn’t taken this course)
the exam board decided to scale the marks down slightly (73 was scaled to 70, but other marks were left alone). I was very pleased
with how you performed on the course and I hope that you enjoyed it.

Question Q1(i)

Learning Outcome

Classify Möbius transformations
in terms of their actions on the
hyperbolic plane: (i), (ii) low level;
(iii), (iv) medium level; (v) high level.

(i) is bookwork. The defini-
tions in (ii) are bookwork, the ex-
amples are similar to exercises. (iii)
is from the exercise sheets. (iv) was
sketched in the lectures with details
left as an exercise. (v) is unseen.

Solution

(i) A Möbius transformation is a transformation of the form γ(z) = (az + b)/(cz + d),
a, b, c, d ∈ R, ad− bc > 0. [2 marks]

Feedback: You need to remember to include the conditions that a, b, c, d
are real and ad− bc > 0; most people did, but a small number did not.

(ii) Let γ(z) = (az + b)/(cz + d). By dividing numerator and denominator by
√
ad− bc

there is no loss in generality in assuming that ad− bc = 1. When ad− bc = 1 we define
τ(γ) = (a+ d)2. [2 marks]

γ is hyperbolic precisely when τ(γ) > 4.

γ is parabolic precisely when τ(γ) = 4.

γ is elliptic precisely when τ(γ) ∈ [0, 4). [3 marks]

Feedback: Common mistakes included saying that γ is elliptic if τ(γ) ∈
(0, 4). The case τ(γ) = 0 can occur: eg γ(z) = −1/z. Several people proved
the above classification; the question doesn’t ask for it, so there’s no point.

γ1 is not normalised. In normalised form we have

γ1(z) =
7
3z −

8
3

2
3z −

1
3

.

Hence τ(γ1) = (7/3− 1/3)2 = 4 so that γ1 is parabolic.

γ2 is not normalised. In normalised form we have

γ2(z) =
2
3z −

1
3

−7
3 z + 8

3

.

Hence τ(γ1) = (2/3 + 8/3)2 = 100
9 > 4 so that γ1 is hyperbolic.

Feedback: All of these are straightforward calculations. Around 90% of
people remembered to normalise Möbius transformations first, which I’m
viewing as one of my greatest accomplishments this year :-)

[4 marks]

(iii) Let γ1 = (a1z+ b1)/(c1z+ d1) and γ2 = (a2z+ b2)/(c2z+ d2). Then their composition
is

γ2γ1(z) =
a2

(
a1z+b1
c1z+d1

)
+ b2

c2

(
a1z+b1
c1z+d1

)
+ d2

=
(a2a1 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d2d1)
,

which is a Möbius transformation of H as

(a2a1 + b2c1)(c2b1 + d2d1)− (a2b1 + b2d1)(c2a1 + d2c1)

= (a1d1 − b1c1)(a2d2 − b2c2) > 0.

[Full credit will also be given if an explanation using the connection between composi-
tion of Möbius transformations and multiplication of matrices is given.] [6
marks]
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Feedback: A straightforward calculation. A common omission was to forget
to check that the ‘new’ ad− bc satisfied ad− bc > 0. A few people mis-read
the question and assumed that γ1, γ2 in this part of the question were the
same as the explicit γ1, γ2 in part (ii); the question makes it clear that γ1, γ2

are arbitrary Möbius transformations. Some of you did this question by
exploiting the connection between composition of Möbius transformations
and multiplication of matrices; this was fine. provided that you stated that
this is what you were doing.

(iv) Suppose that z satisfies αzz̄ + βz + βz̄ + γ = 0. Let w = γ(z) where γ(z) = (az +
b)/(cz + d). Then z = (dw − b)/(−cw + a). Hence w satisfies

α
dw − b
−cw + a

dw̄ − b
−cw̄ + a

+ β
dw − b
−cw + a

+ β
dw̄ − b
−cw̄ + a

+ γ = 0

i.e.

α(dw−b)(dw̄−b)+β(dw−b)(−cw̄+a)+β(dw̄−b)(−cw+a)+γ(−cw+a)(−cw̄+a) = 0

Hence
α′ww̄ + β′w + β′w̄ + γ′ = 0

with

α′ = αd2 − 2βdc+ γc2

β′ = −αbd+ βad+ βbc− γac
γ′ = αb2 − 2βab+ γa2

which has the same form as above. [8 marks]

Feedback: This is a proof that we did in the lectures (see Proposition 3.5.2
in the lecture notes).

(v) By the fact, γ maps circles to straight lines or to circles. Moreover γ maps ∂H to ∂H.
Note that A intersects ∂H at exactly one point. Hence γ(A) must be either a straight
line or a circle that intersects ∂H at exactly one point. In the first case, γ(A) must be
a horizontal straight line (which intersects ∂H at ∞ only; any other straight line will
meet ∂H at two points). In the second case, γ(A) must be a circle that touches the
real axis at a single point. [5 marks]

Feedback: This is something that you haven’t seen before. Of the (relatively
few) answers given to this, a common mistake was to write that an arbitrary
straight line meets ∂H in just one point (a point on the real axis), and not
realise that it also meets ∂H at ∞.

Question Q2

Learning Outcome

Prove results (Gauss-Bonnet The-
orem, angle formulæ for trian-
gles, etc as listed in the syllabus)
in hyperbolic trigonometry and
use them to calculate angles, side
lengths, hyperbolic areas, etc,
of hyperbolic triangles and poly-
gons. (i), (ii) medium level. (iii)
low level. (iv) high level.

(i) is bookwork. (ii) is from the
exercise sheets. (iii) is bookwork.
The first part of (iv) is a particular
case of a result discussed in lectures;
the second part is unseen.

Solution

(i) By applying a Möbius transformation of H, we may assume that the vertex with internal
angle π/2 is at i and that the side of length b lies along the imaginary axis; here we
are using the fact that Möbius transformations are conformal. It follows that the side
of length a lies along the geodesic given by the semi-circle centred at the origin with
radius 1. Therefore, the other vertices of ∆ can be taken to be at ki for some k > 0
and at s+ it, where s+ it lies on the circle centred at the origin and of radius 1.
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Using the formula for cosh dH(z, w) we have

cosh a = 1 +
|s+ i(t− 1)|2

2t
= 1 +

s2 + (t− 1)2

2t
=

1

t
, (1)

cosh b = 1 +
(k − 1)2

2k
=

1 + k2

2k
, (2)

cosh c = 1 +
|s+ i(t− k)|2

2tk
= 1 +

s2 + (t− k)2

2tk
=

1 + k2

2tk
, (3)

(using the fact that s2 + t2 = 1). Hence cosh c = cosh a cosh b. [8 marks]

Feedback: This is a proof from the course, see Theorem 5.7.1 in the lecture
notes. The question asks you to explain why any reduction to the special
case is possible (i.e. why applying a Möbius transformation doesn’t change
the internal angles or lengths); a common mistake was to not answer this.
Some of you got lost in the algebra, often by not using the fact that s2+t2 = 1.

(ii) Construct a geodesic from vertex B to the geodesic segment [A,C] in such a way that
these geodesics meet at right-angles. This splits ∆ into two right-angled triangles,
BDA and BDC. Let the length of the geodesic segment [B,D] be d, and suppose that
BDA has internal angles β1, π/2, α and side lengths d, b1, c. Label BDC similarly.

We know that

sinβ1 =
sinh b1
sinh c

, cosβ1 =
tanh d

tanh c
, sinβ2 =

sinh b2
sinh a

, cosβ2 =
tanh d

tanh a
.

By the hyperbolic version of Pythagoras’ Theorem we know that

cosh c = cosh b1 cosh d, cosh a = cosh b2 cosh d.

Hence

sinβ = sin(β1 + β2)

= sinβ1 cosβ2 + sinβ2 cosβ1

=
sinh b1
sinh c

sinh d

cosh d

cosh a

sinh a
+

sinh b2
sinh a

sinh d

cosh d

cosh c

sinh c

=
sinh b1 sinh d

sinh c sinh a
cosh b2 +

sinh b2 sinh d

sinh a sinh c
cosh b1

=
sinh d

sinh a sinh c
(sinh b1 cosh b2 + sinh b2 cosh b1)

=
sinh d

sinh a sinh c
sinh(b1 + b2)

=
sinh b sinh d

sinh a sinh c
.

Hence sinα = sinh d/ sinh c and sin γ = sinh d/ sin a. Substituting these into the above
equality proves the result. [12 marks]

Feedback: This is Exercise 8.4.1 in the lecture notes.

(iii) Let ∆ be a hyperbolic triangle with internal angles α, β and γ. Then AreaH = π− (α+
β + γ). [2 marks]

Feedback: I think almost everybody got this right: it’s a standard (and
very important!) result in the course.
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(iv) Suppose the hyperbolic triangle ∆ has internal angle α. As k polygons meet at each
vertex, we must have that kα = 2π, i.e. α = 2π/k. By the Gauss-Bonnet Theorem

0 ≤ AreaH(P ) = π − 3× 2π

k
.

Hence 1− 6/k > 0, i.e. k > 6. Hence k ≥ 7. [4 marks]

Feedback: Some of you wrote down (without proof) the condition that a
tiling exists if and only if 1/n+1/k < 1/2. The question doesn’t say that you
can assume any result from the course, so if you use this fact then you would
need to prove it (which is essentially going through the above calculation for
an arbitrary n).

[4 marks]

Feedback: This was not well answered in general. The trick is to first think:
what does an ideal triangle in the Poincaré disk look like? Once you’ve done
that, you can then think what it would look like to have infinitely many of
them meeting at each vertex.

Question Q3

Learning Outcome

Calculate a fundamental domain
and a set of side-pairing trans-
formations for a given Fuchsian
group. (a)(i)–(iii) at low level. (b)(i),
(ii), (iv) at medium level.

Compare different models (the
upper half-plane model and the
Poincaré disc model) of hyper-
bolic geometry. (b)(iii) at medium
level.

(a)(i), (a)(ii) are bookwork.
(a)(iii) is from the exercise sheets.
(b)(i) is unseen. (b)(ii), (b)(iii),
(b)(iv) are similar to exercise
sheets.

Solution

(a) (i) F ⊂ H is a fundamental domain for Γ if (i)
⋃
γ∈Γ γ(F ) = H, (ii) γ1(F )∩γ2(F ) = ∅

if γ1, γ2 ∈ Γ, γ1 6= γ2.

[2 marks]

Feedback: This is a standard definition from the course. Remember
that in (i) you need to take the union (not intersection!) over all γ ∈ Γ,
and not over γ ∈ Γ \ {id}.

(ii) Choose a point p ∈ H such that γ(p) 6= p for all γ ∈ Γ \ {id}.
For each γ ∈ Γ \ {id}, construct the arc of geodesic [p, γ(p)] from p to γ(p).

Let Lp(γ) denote the perpendicular bisector of [p, γ(p)]. Then Lp(γ) divides H into
two half-planes. One of these half-planes contains p; call this half-plane Hp(γ).

Then D(p) :=
⋂
γ∈Γ\{id}Hp(γ) is a Dirichlet region for Γ. [6 marks]

Feedback: This is a standard piece of bookwork from the course. Com-
mon mistakes were mostly in the final step: it’s the intersection (not
union!) over all non-trivial group elements in Γ.

(iii) Write z1 = x1 + iy1, z2 = x2 + iy2. Then z = x + iy is on the perpendicular
bisector of [z1, z2] if and only if dH(z, z1) = dH(z, z2) if and only if cosh dH(z, z1) =
cosh dH(z, z2) if and only if

1 +
|z − z1|2

2 Im z Im z1
= 1 +

|z − z2|2

2 Im z Im z2
,

i.e.
|z − z1|2

2yy1
=
|z − z2|2

2yy2
.
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Simplifying this gives the claimed expression. [4 marks]

Feedback: This is Exercise 14.2(i).

(b) (i) Let z = x+ iy be on the perpendicular bisector of [i, i+ b]. Then

|(x+ iy)− i|2 = |(x+ iy)− (i+ b)|2

i.e.

x2 + (y − 1)2 = (x− b)2 + (y − 1)2

x2 = x2 − 2xb+ b2

2xb = b2

x = b/2,

so the perpendicular bisector is the vertical straight line with real part b/2. [4
marks]

Feedback: This is a straightforward calculation using (a)(iii) above,
proving rigorously something that we said was ‘clear from the geometry’
(i.e. stare at the picture and it looks right) in the course.

(ii) Let γn(z) = z+ 4n. Let p = i. By (ii) we have that Lp(γn) is the vertical straight
line with real part 2n. Hence

Hp(γn) =

{
{z ∈ H | Re(z) < 2n} if n ≥ 0
{z ∈ H | Re(z) > 2n} if n ≤ 0.

Hence
D(p) =

⋂
n 6=0

Hp(γn) = {z ∈ H | −2 < Re(z) < 2}.

[6 marks]

Feedback: We did the (very similar) case of integer translations in the
lectures.

(iii)

[4 marks]

Feedback: A very common mistake was to draw the strips to have hor-
izontal width 2 (not 4).

(iv) D(p) for an arbitrary choice of p ∈ H will be a vertical strip of width 4.

An example of a fundamental domain for Γ that is not of the form D(p) for some
p ∈ H is illustrated below.

[Any similar repeating shape that isn’t a vertical strip is acceptable.] [4 marks]

Feedback: We did a very similar example to this in the lectures in the
case of integer translations.

Question Q4
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Learning Outcome

Use Poincaré’s Theorem to con-
struct examples of Fuchsian groups
and calculate presentations in
terms of generators and rela-
tions. (i) at low level. (ii) at medium
level. (iii) at high level.

Relate the signature of a Fuch-
sian group to the algebraic and
geometric properties of the Fuch-
sian group and to the geome-
try of the corresponding hyper-
bolic surface.. (iv) definition at
low level, remainder at high level.

(i) is bookwork; (ii), (iii) are sim-
ilar to exercise sheets. The defini-
tions in (iv) are bookwork, the re-
mainder is unseen.

Solution

(i) The angle sum is sum(E) :=
∑n
j=1 ∠vj .

E satisfies the elliptic cycle condition if there exists an integer n ≥ 1 such that sum(E) =
2π/n.

E is an accidental cycle if sum(E) = 2π. [4 marks]

Feedback: These are standard definitions from the course.

(ii) Label the diagram as below.

The elliptic cycles are:

(1) (
A
s1

)
γ1→
(

A
s2

)
∗→
(

A
s1

)
elliptic cycle: E1 = A.

elliptic cycle transformation: γ1.

angle sum: sum(E1) = 2π/n1.

(2) (
C
s3

)
γ2→
(
C
s4

)
∗→
(
C
s3

)
elliptic cycle: E2 = C.

elliptic cycle transformation: γ2.

angle sum: sum(E2) = 2π/n2.

(3) (
E
s5

)
γ3→
(
E
s6

)
∗→
(
E
s5

)
elliptic cycle: E3 = E.

elliptic cycle transformation: γ3.

angle sum: sum(E3) = 2π/n3.

(4) (
B
s3

)
γ2→

(
D
s4

)
∗→
(
D
s5

)
γ3→

(
F
s6

)
∗→
(

F
s1

)
γ1→

(
B
s2

)
∗→
(
B
s3

)

elliptic cycle: E4 = B → D → F .

elliptic cycle transformation: γ1γ3γ2.

angle sum: sum(E4) = θ1 + θ2 + θ3.
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[12 marks]

Feedback: Once you’ve got the hang of (vertex,side)-chasing, this is very
straightforward.

(iii) The elliptic cycle condition holds for E1, E2, E3 when s, t, u are integers, say s = n1, t =
n2, u = n3. Note that the question implies that n1, n2, n3 ≥ 2.

If θ1 + θ2 + θ3 = 2π/n for some n ≥ 1 then the elliptic cycle condition holds for E4 with
order n.

Hence γ1, γ2, γ3 generate a Fuchsian group Γ and

Γ = 〈a, b, c | an1 = bn2 = cn3 = (acb)n = e〉.

[6 marks]

Feedback: The point of this is that one needs s, t, u to be integers (the
question just says that they are real numbers ≥ 2) for the ECC to hold;
several people ignored this point. We also need n (as defined above) to be
an integer.

(iv) Let Γ be a cocompact Fuchsian group. Let E1, . . . , Er be the non-accidental elliptic
cycles and let Er+1, . . . , Es be the accidental cycles. Let g be the genus of H/Γ. Then
sig(Γ) = (g;m1, . . . ,mr). (We write (−;m1, . . . ,mr) if g = 0.)

Feedback: The signature is a definition from the course; quite a few people
didn’t write down the definition and went straight into calculating the genus,
etc.

In the example above, the hexagon forms a triangulation of H/Γ with V = 4 vertices
(=number of elliptic cycles), E = 3 sides, and F = 1 faces. Hence by Euler’s formula

2− 2g = χ(H/Γ) = V − E + F = 4− 3 + 1 = 2.

Hence g = 0.

Feedback: Alternatively, think about what happens when you the paired
sides together. You get something that looks like a drawstring bag, and so
has genus g = 0.

Hence
sig(Γ) = (−;n1, n2, n3, n).

H/Γ is a topological sphere with 4 marked points. [8 marks]
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