2 hours

THE UNIVERSITY OF MANCHESTER

HYPERBOLIC GEOMETRY

?? May/June 2019
??:?? - ?????

Answer THREE of the FOUR questions.
If all four questions are attempted then credit will be given for the three best answers.

Electronic calculators may be used, provided that they cannot store text.

Notation: Throughout, \mathbb{H} denotes the upper half-plane, $\partial \mathbb{H}$ denotes the boundary of \mathbb{H}, \mathbb{D} denotes the Poincaré disc, and $\partial \mathbb{D}$ denotes the boundary of \mathbb{D}.
1.
(i) What does it mean to say that γ is a Möbius transformation of \mathbb{H} ?
(ii) Let $\gamma \in \operatorname{Möb}(\mathbb{H})$. How is $\tau(\gamma)$ defined? Briefly state (without proof) how to use $\tau(\gamma)$ to determine if γ is hyperbolic, parabolic or elliptic.

Let

$$
\gamma_{1}(z)=\frac{7 z-8}{2 z-1}, \quad \gamma_{2}(z)=\frac{2 z-1}{-7 z+8} .
$$

Determine whether each of γ_{1} and γ_{2} is hyperbolic, parabolic or elliptic.
(iii) Suppose that $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$. Prove that the composition $\gamma_{1} \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$.
(iv) It was proved in the course that, in \mathbb{C}, vertical straight lines and circles with real centres have equations of the form

$$
\alpha z \bar{z}+\beta z+\beta \bar{z}+\gamma=0
$$

where $\alpha, \beta, \gamma \in \mathbb{R}$.
Suppose that A is either a vertical straight line or a circle with a real centre and that $\gamma \in$ $\operatorname{Möb}(\mathbb{H})$. Show that $\gamma(A)$ is also either a straight line or a circle in \mathbb{C}.
(v) One can also prove the following fact (you do not need to prove this yourself): Let A be a straight line (not necessarily vertical) or a circle (not necessarily with a real centre). Let $\gamma \in \operatorname{Möb}(\mathbb{H})$. Then $\gamma(A)$ is also either a straight line (not necessarily vertical) or a circle (not necessarily with a real centre).
Let A be a circle as illustrated in Figure 1.

Figure 1: See Question 1(v).
Let $\gamma \in \operatorname{Möb}(\mathbb{H})$ be a Möbius transformation of \mathbb{H}. Using the above fact, describe (in words) the possibilities for $\gamma(A)$, justifying your answer.
2. Throughout this question you may use, without proof, the formula

$$
\cosh d_{\mathbb{H}}(z, w)=1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)}
$$

You may also assume that in a hyperbolic right-angled triangle with angles $\alpha, \beta, \pi / 2$ and sides of hyperbolic length a, b, c (as illustrated below) we have

$$
\begin{aligned}
& \sin \alpha=\frac{\sinh a}{\sinh c}, \\
& \cos \alpha=\frac{\tanh b}{\tanh c} .
\end{aligned}
$$

You may also use the trig and hyperbolic trig identities: $\cosh ^{2} x-\sinh ^{2} x=1, \sinh 2 x=2 \sinh x \cosh x$, $\sin (x+y)=\sin x \cos y+\cos x \sin y, \sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$.
(i) Let Δ be an arbitrary hyperbolic right-angled triangle with sides of hyperbolic lengths a, b, c. Suppose that the side of hyperbolic length c is opposite the right-angle. Prove the Hyperbolic Pythagoras' Theorem:

$$
\cosh c=\cosh a \cosh b .
$$

(If you reduce Δ to a special case by applying a Möbius transformation then you should briefly explain why you can do this.)
(ii) Let Δ be an arbitrary acute hyperbolic triangle with internal angles α, β, γ and opposite sides of hyperbolic length a, b, c (see Figure 2). Prove the hyperbolic sine rule:

$$
\frac{\sin \alpha}{\sinh a}=\frac{\sin \beta}{\sinh b}=\frac{\sin \gamma}{\sinh c} .
$$

Hint: drop a perpendicular from a vertex to the opposite side to create two right-angled triangles.
[12 marks]
(iii) Let Δ be a hyperbolic triangle with internal angles α, β and γ. State, without proof, the Gauss-Bonnet theorem for a hyperbolic triangle.
(iv) Consider a tiling of the hyperbolic plane by regular hyperbolic triangles with k triangles meeting at each vertex. Use the Gauss-Bonnet Theorem to show that $k \geq 7$.
(v) Draw a tiling of the Poincaré disc by regular hyperbolic triangles when $k=\infty$.

Figure 2: An acute hyperbolic triangle; see Question 2(ii).

3.

(a) (i) Let Γ be a Fuchsian group acting on \mathbb{H}. What does it mean to say that an open set $F \subset \mathbb{H}$ is a fundamental domain for Γ ?
(ii) Briefly explain how to construct a Dirichlet region for a Fuchsian group Γ. (Your answer should include a definition of the terms $[p, \gamma(p)], L_{p}(\gamma), H_{p}(\gamma), D(p)$ that were defined in the lectures.)
(iii) It was proved in the lectures that the perpendicular bisector of the arc of geodesic $\left[z_{1}, z_{2}\right]$ between two points $z_{1}, z_{2} \in \mathbb{H}$ is given by

$$
\begin{equation*}
\left\{z \in \mathbb{H} \mid d_{\mathbb{H}}\left(z, z_{1}\right)=d_{\mathbb{H}}\left(z, z_{2}\right)\right\} . \tag{1}
\end{equation*}
$$

Write $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. Show that (1) can be written in the form

$$
\begin{equation*}
\left\{z \in \mathbb{H}\left|y_{2}\right| z-\left.z_{1}\right|^{2}=y_{1}\left|z-z_{2}\right|^{2}\right\} . \tag{2}
\end{equation*}
$$

(You may use the fact that

$$
\left.\cosh d_{\mathbb{H}}(z, w)=1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)} .\right)
$$

(b) (i) Let $\gamma(z)=z+b$ where $b \in \mathbb{R}$. Let $p=i$. Use the formula (2) to calculate the perpendicular bisector of $[p, \gamma(p)]$.
(ii) Let $\Gamma=\left\{\gamma_{n} \mid \gamma_{n}(z)=z+4 n, n \in \mathbb{Z}\right\}$. Use the procedure you outlined in (a)(ii) and the result of (b)(i) above to show that $D(i)=\{z \in \mathbb{H} \mid-2<\operatorname{Re}(z)<2\}$.
(iii) Draw the resulting tessellation in \mathbb{H}. What does this tessellation look like in \mathbb{D} ?
(iv) Write down what you think $D(p)$ will look like for an arbitrary choice of $p \in \mathbb{H}$.

Find a fundamental domain for Γ which is not of the form $D(p)$ for some $p \in \mathbb{H}$.
4.
(i) Let $\mathcal{E}=v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}$ be an elliptic cycle. Let the internal angle at v_{j} be $\angle v_{j}$.

Define $\operatorname{sum}(\mathcal{E})$.
What does it mean to say that \mathcal{E} satisfies the elliptic cycle condition?
What does it mean to say that \mathcal{E} is an accidental cycle?
(ii) Consider the hyperbolic hexagon illustrated in Figure 3 with the side-pairings indicated. Here $s, t, u \geq 2$ are real numbers and $\theta_{1}+\theta_{2}+\theta_{3} \leq \pi$. (You may assume that such a hyperbolic hexagon exists.)

Figure 3: A hyperbolic hexagon; see Question 4(ii).

Show that there are 4 elliptic cycles. In each case, calculate the elliptic cycle transformations and the angle sum.
(iii) Determine conditions on $\theta_{1}, \theta_{2}, \theta_{3}, s, t, u$ so that the side-pairing transformations generate a Fuchsian group Γ. Give a presentation for Γ in terms of generators and relations.
(iv) How is the signature of a cocompact Fuchsian group defined?

Assume that $\theta_{1}, \theta_{2}, \theta_{3}, s, t, u$ are such that the side-pairing transformations in Figure 3 generate a Fuchsian group Γ. Use Euler's formula to calculate the genus g of \mathbb{H} / Γ. Hence write down the possibilities for the signature of Γ. Briefly describe \mathbb{H} / Γ in each case.

