
Solutions for MATH32051 Hyperbolic Geometry Solutions and Feedback, January 2020

The learning outcomes for the course unit are:

• ILO1: calculate the hyperbolic distance between and the geodesic through points in the hyperbolic plane,

• ILO2: compare different models (the upper half-plane model and the Poincaré disc model) of hyperbolic
geometry,

• ILO3: prove results (Gauss-Bonnet Theorem, angle formul for triangles, etc as listed in the syllabus) in
hyperbolic trigonometry and use them to calculate angles, side lengths, hyperbolic areas, etc, of hyperbolic
triangles and polygons,

• ILO4: classify Möbius transformations in terms of their actions on the hyperbolic plane,

• ILO5: calculate a fundamental domain and a set of side-pairing transformations for a given Fuchsian group,

• ILO6: define a finitely presented group in terms of generators and relations,

• ILO7: use Poincaré’s Theorem to construct examples of Fuchsian groups and calculate presentations in terms
of generators and relations,

• ILO8: relate the signature of a Fuchsian group to the algebraic and geometric properties of the Fuchsian group
and to the geometry of the corresponding hyperbolic surface.

Question Q1(i)

Learning Outcome Solutions

ILO1: assessed at low level. Book-

Let z = x+ iy so that x = (z + z̄)/2, y = (z − z̄)/2i. Then

ax+ by + c = 0 ⇔ a

(
z + z̄

2

)
+ b

(
z − z̄

2i

)
+ c = 0

⇔
(
a− ib

2

)
z +

(
a+ ib

2

)
z̄ + c = 0

work from the lectures. which has the form βz + β̄z̄ + γ = 0, β ∈ C, γ ∈ R.
Vertical straight lines have equations of the form ax+ c = 0, i.e. b = 0.

From the above, we then have that β is real and the equation has the form
βz + βz̄ + γ = 0.

[4 marks]

Feedback. This was very well answered in general. Some peo-
ple did it ‘backwards’ compared to the above (i.e. start with
βz + β̄z̄ + γ = 0 and rearrange this to get an equation of the
form ax+ by + c = 0; this is absolutely fine).

Question Q1(ii)

Learning Outcome Solutions

ILO1: assessed at low level. Book-

We have

|z − z0|2 = r2 ⇔ (z − z0)(z̄ − z0) = r2 ⇔ zz̄ − z̄0z − z0z̄ + z2
0 − r2 = 0

work from the lectures. which is of the form (*) (noting that z̄0 = z0 as z0 is real). We have β = −z̄0

and γ = |z0|2 − r2.
When z0 is real we have the equation

zz̄ − z0z − z0z̄ + |z2
0 | − r2 = 0

[6 marks]

Feedback. Note that the question explicitly asks you to give
a formula for β, γ in terms of z0 and r. Omitting this was a
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common source of losing 2 (easy) marks.

Question Q1(iii)

Learning Outcome Solutions
ILO1: assessed at medium level. We know that −5 + 12i and 12 + 5i both satisfy an equation of the form

Similar to exercise sheets

(*). Hence we have

(−5 + 12i)(−5− 12i) + β(−5 + 12i) + β(−5− 12i) + γ = 0

(12 + 5i)(12− 5i) + β(12 + 5i) + β(12− 5i) + γ = 0,
equivalently

169− 10β + γ = 0

169 + 24β + γ = 0.
Subtracting one equation from the other gives β = 0. Hence γ = −169.
Hence −5+12i and 5+12i lie on the semi-circle with equation zz̄−169 = 0,
i.e. |z| = 13.

The semi-circle has centre 0 and radius 13.
The geodesic has endpoints at −13 and 13. The Möbius transformation

γ(z) =
z − 13

z + 13
maps −13, 13 to 0,∞ respectively and so maps this semi-circle to the imag-
inary axis.

The point 39
5 + 52

5 i lies on the geodesic with end-points −13, 13. Hence
γ(39

5 + 52
5 i) lies on the imaginary axis, say γ(39

5 + 52
5 i) = ki for some k > 0.

Let γ1(z) = kz. Then γ1γ maps the geodesic with end-points −13, 13 to
the imaginary axis and maps z1 to i.

[8 marks]

Feedback. Some of you noticed that the points form a (5,12,13)
Pythagorean triple and from this wrote down the equation |z| =
13; this is absolutely fine. A common mistake was to write
γ(z) = (z + 13)/(z − 13) for the transformation that maps this
geodesic to the imaginary axis. Note that this is not a Möbius
transformation of H as ‘ad− bc’ is negative.

Question Q1(iv)

Learning Outcome Solutions
ILO1: assessed at medium level. Let σ : [a, b] → H, σ(t) = it. Then σ is a path from ia to ib. We have

Bookwork (proof from the lectures)

|σ′(t)| = |i| = 1 and Imσ(t) = t. Hence

lengthH(σ) =

∫ b

a

dt

t
= log t|ba = log b/a.

Now suppose that σ : [0, 1] → H is an arbitrary path from ia to ib. Write
σ(t) = x(t) + iy(t). Note that y(0) = a, y(1) = b. We have

lengthH(σ) =

∫ 1

0

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ 1

0

y(t)

y′(t)
dt

= log y(t)|10 = log b/a
with equality if and only if x′(t) = 0 and y′(t) does not change sign. Hence
x(t) = constant = 0 and y(t) strictly increases from a to b. Hence we
have equality if and only if σ(t) is the arc of imaginary axis from ia to ib.

[8 marks]
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Feedback. This is a proof from the course.

Question Q1(v)

Learning Outcome Solutions
ILO1: unseen Without loss of generality we can assume that H1 is the imaginary axis and

H2 is a semi-circle with real centre that is disjoint from H1, as illustrated.

Any geodesic that passes through H1 at right-angles must do some
horizontally. Consider geodesics that pass throughH1 horizontally and that
intersect H2; in particular consider the angle of intersection with H2, as
illustrated. The two extremes correspond to angles 0 and π, and this angle
increases continuously as the geodesic changes. Hence by the Intermediate
Value Theorem, there is a unique geodesic that intersects both H1 and H2

at right-angles.

[4 marks]

Feedback. There were few genuinely complete answers here
(as to be expected: the last part of a question really should be
stretching people’s abilities!). I was pleased by the number of
people who had the basic idea correct though.

Question Q2(i)

Learning Outcome Solutions
ILO4: assessed at a low level. Simi-

lar to example sheets. (a) This is a Möbius transformation of D: take α = eiθ/2, β = 0.

(b) This is not a Möbius transformation of D: it has the form
0z + 1

−1z + 0
,

so α would be 0 and β = 1, β̄ = −1.

[4 marks]

Feedback. For (a): a very common mistake was to write γ(z) =
eiθz+0
0z+1 so α = eiθ and β = 0. This isn’t correct (the denominator

doesn’t have a ᾱ term in it).
For (b): another way of seeing that this is not a Möbius trans-
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formation of D is to note that 0 ∈ D but γ(0) =∞ 6∈ D.

Question Q2(ii)

Learning Outcome Solutions

ILO4: assessed at a medium level,

Let

γ1(z) =
α1z + β1

β̄1z + ᾱ1
, γ2(z) =

α2z + β2

β̄2z + ᾱ2
.

similar to example sheets

Then

γ1γ2(z) = γ1

(
α2z + β2

β̄2z + ᾱ2

)

=
α1

(
α2z+β2
β̄2z+ᾱ2

)
+ β1

β̄1

(
α2z+β2
β̄2z+ᾱ2

)
+ ᾱ1

=
α1(α2z + β2) + β1(β̄2z + ᾱ2)

β̄1(α2z + β2) + ᾱ1(β̄2z + ᾱ2)

=
(α1α2 + β1β̄2)z + (α1β2 + β1ᾱ2)

(β̄1α2 + ᾱ1β̄2)z + (β̄1β2 + ᾱ1ᾱ2)
.

This is a Möbius transformation of D as

(α1α2 + β1β̄2)(β̄1β2 + ᾱ1ᾱ2)− (α1β2 + β1ᾱ2)(β̄1α2 + ᾱ1β̄2)

= (α1ᾱ1 − β1β̄1)(α2ᾱ2 − β2β̄2)

= (|α1|2 − |β1|2)(|α2|2 − |β2|2) > 0.

[8 marks]

Feedback. This is very similar to a calculation we did in the
lectures/one of the tutorials.

Question Q2(iii)

Learning Outcome Solutions
ILO5: assessed at medium level.
Similar to examples done in lectures (1) Choose p ∈ D such that γ(p) 6= p for all γ ∈ Γ \ {id}.
and in exercises. ILO2: assessed at (2) For each γ ∈ Γ \ {id}, construct the arc of geodesic [p, γ(p)].
a low level. Similar to exercises. (3) Construct the perpendicular bisector Lp(γ) of [p, γ(p)].

(4) Let Hp(γ) denote the half-plane of D determined by Lp(γ) that con-
tain p.

(5) Let D(p) =
⋂
γ∈Γ\{id}Hp(γ).

Note that the perpendicular bisector of [p, γ3(p)] is the diameter at
angle 60 degrees, and similarly for γ4. This allows us to determine Hp(γ)
for γ = γ3, γ4 and then D(p), as illustrated. The tessellation of D is also
illustrated.
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Let s1 denote the side of D(p) at angle −120 degrees; let s2 denote
the side of D(p) at angle 120 degrees. Then s1 is contained inside Lp(γ2)

and so has side-pairing transformation γs1 = γ−1
2 , namely rotation through

120 degrees anticlockwise. Similarly, s2 is contained inside Lp(γ1) and so

has side-pairing transformation γs2 = γ−1
1 , namely rotation through 120

degrees clockwise.
The resulting tessellation of H is illustrated below

[14 marks]

Feedback. This is very similar to an example given in the lec-
tures. Many people missed out the part about calculating the
side-pairing transformations. There were few good answers to
the last part: drawing the picture in H. Note that tessella-
tion of D comprises: one point inside the hyperbolic plane with
three geodesics emerging from that point (and with angle 120◦

between each geodesic) and going to the boundary.

Question Q2(iv)

Learning Outcome Solutions
ILO5: assessed at high level. Un- D(p) in (iii) will be a rotation of D(1/2)
seen. Any example along the lines of the one illustrated below will satisfy the

requirements in the question.

[4 marks]

Feedback. Lots of people had the right idea as to what the
question was asking, but drew the picture of a fundamental
domain for the group of integer translations acting on H, not
the group above.

Question Q3(i)
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Learning Outcome Solutions
ILO3: assessed at a medium level. Suppose the triangle looks as in the picture.

This is bookwork, done in lectures.
Apply a Möbius transformation so that the vertex on the boundary is

moved to ∞. Apply a translation and a dilation so that the semi-circular
geodesic lies along the imaginary axis; these are both Möbius transforma-
tions. Möbius transformations are conformal and area-preserving, so this
does not change the angles or area of ∆.

We have

AreaH(∆) =

∫ ∫
A

dx dy

y2

=

∫ b

x=a

∫
y=
√

1−x2
∞dy

y2
dx

=

∫ b

x=a

−1

y

∣∣∣∣∞√
1−x2

dx

=

∫ b

x=a

dx√
1− x2

=

∫ β

π−α
−1 dθ

= π − (α+ β)
where we have used the substitution x = cos θ, noting that when x = a we
have θ = π − α and when y = b we have θ = β.

[8 marks]

Feedback. This is (part of) the proof of the Gauss-Bonnet
Theorem.

Question Q3(ii)

Learning Outcome Solutions
ILO3: assessed at a medium level. Consider the picture below.
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Similar to exercises.
By Pythagoras’ Theorem, (r − 1)2 + b2 = r2. Expanding this out and

cancelling the r2 terms gives r = (1 + b2)/2.
Note that sin θ = b/r. Hence sin θ = 2b/(1 + b2).

Consider the hyperbolic triangle with vertices at (2 +
√

3)i, 0, 1. The

internal angles at 0,1 are 0. The internal angle at (2 +
√

3)i corresponds to

a = 1, b = (2 +
√

3) in the above. Hence

sin θ =
2(2 +

√
3)

1 + (4 + 4
√

3 + 3)
=

2(2 +
√

3)

4(2 +
√

3)
=

1

2

so that θ = π/6.
By the Gauss-Bonnet Theorem, the hyperbolic area of this triangle is

π − π/6 = 5π/6.

[8 marks]

Feedback. There were a lot of mistakes in calculating sin θ.
For some reason, many people made the algebraic slip of either
writing

sin θ =
2
√

3

1 + (4 + 4
√

3 + 3)
rather than 2(2 +

√
3) in the numerator, or, when factorising

the denominator, writing 1 + (4 + 4
√

3 + 3) = 4(1 +
√

3) (or
similar).

Question Q3(iii)

Learning Outcome Solutions
ILO3: assessed at a medium level. Apply a Möbius transformation so that the ideal vertex is at ∞ and the
Bookwork, covered in lectures. right-angle occurs at i, as illustrated.

As the finite side must lie along the unit circle, straightforward Eu-
clidean geometry says that the other vertex is at cosα + i sinα (see dia-
gram). Then

cosh a = cosh dH(i, cosα+ i sinα)

= 1 +
| cosα+ i(sinα− 1)|2

2 sinα

= 1 +
cos2 α+ (sinα− 1)2|

2 sinα

=
2 sinα+ cos2 α+ sin2 α− 2 sinα+ 1

2 sinα

=
1

sinα
.
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A Euclidean analogue would involve a degenerate ‘triangle’ with one
vertex at infinity (and so two parallel sides). In this case. the length of the
finite side can be arbitrary (see picture).

[8 marks]

Feedback. The angle of parallelism was proved in the lectures.
The angle of parallelism concerns a right-angled triangle with
one vertex at infinity. There are several ways of trying to come
up with a Euclidean example (one of which is above); none of
them make any real sense. Any sensible and reasoned answer
was accepted (but you had to give a reason: just writing ‘yes’
or ‘no’ isn’t sufficient).

Question Q3(iv)

Learning Outcome Solutions
ILO3: assessed at high level. Un- By the angle of parallelism formula, we can find the angle α.

seen, involves putting together ideas

We have

cosh(log(2 +
√

3)) =
elog(2+

√
3) + e−(log(2+

√
3))

2

=
2 +
√

3 + 1
2+
√

3

2

=
(2 +

√
3)(2 +

√
3) + 1

2(2 +
√

3)

=
4 + 4

√
3 + 3 + 1

2(2 +
√

3)

=
4(2 +

√
3)

2(2 +
√

3)
= 2.

from the course in a way that stu- Hence sinα = 1/2 so that α = π/6.
dents haven’t considered. By the Gauss-Bonnet Theorem, the hyperbolic area of this triangle is

π − (π/2 + π/6) = π/3.

[6 marks]

Feedback. There were lots of right answers here. Note the

side of finite hyperbolic length has length log(2+
√

3)—a rather
odd choice of number! This suggests that this isn’t a randomly
picked number and that something will simplify quite consider-
ably later on. If you end up with sinα being equal to something
that does not allow you to write down θ explicitly then you’ve
probably gone wrong.

Question Q4(a)(i)

Learning Outcome Solutions
ILO7: assessed at low level. Stan- An elliptic cycle E satisfies the elliptic cycle condition if there exists an
dard definitions from the course. integer m ≥ 1 such that m× sumE = 2π (here sumE denotes the angle sum

along the elliptic cycle).
A parabolic cycle P satisfies the parabolic cycle condition if the corre-
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sponding parabolic cycle transformation is either parabolic or the identity.

[4 marks]

Feedback. Standard definitions!

Question Q4(a)(ii)

Learning Outcome Solutions
ILO7: assessed at medium level. Label the diagram as below

Similar to example sheets. ILO8: as-

sessed at medium level. Description

We have the elliptic cycle(
−3 + 3i
s1

)
γ1→

(
3 + 3i
s2

)
∗→
(

3 + 3i
s3

)
γ2→

(
−3 + 3i
s4

)
∗→
(
−3 + 3i
s1

)
of construction of H/Γ is similar to This gives
exercise sheets. • elliptic cycle E = −3 + 3i→ 3 + 3i,

• elliptic cycle transformation γ2γ1,
• sumE = π/2 + π/2 = π.

Hence the elliptic cycle condition holds with m = 2.
We have the parabolic cycle(

0
s3

)
γ2→
(

0
s4

)
∗→
(

0
s3

)
.

This gives
• parabolic cycle P1 = 0,
• parabolic cycle transformation γ2,

Hence the parabolic cycle condition will hold if γ2 is parabolic or the iden-
tity. Note that

−3z

z − 3
= z ⇔ −3z = z2 − 3z ⇔ z = 0

so that γ2 is parabolic.
We have the parabolic cycle(

∞
s1

)
γ1→
(
∞
s2

)
∗→
(
∞
s1

)
.

This gives
• parabolic cycle P2 =∞,
• parabolic cycle transformation γ1,

Hence the parabolic cycle condition will hold if γ2 is parabolic or the iden-
tity. Note that γ2 is a translation, so that γ2 is parabolic.

Denote γ1, γ2 by abstract symbols a, b, resptively. By Poincaré’s Theo-
rem, γ1, γ2 generate a Fuchsian group Γ with presentation

〈a, b | (ba)2 = e〉.
The quotient space H/Γ has genus 0, two cusps and one marked point

of order 2.
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To check that γ1, γ2 satisfy the relation (ba)2 = e, we can consider the
matrix product([

−3 0
1 −3

] [
1 6
0 1

])2

=

[
−3 −18
1 3

]2

=

[
−9 0
0 −9

]
which corresponds to the identity Möbius transformation, as expected.

[14 marks]

Feedback. Calculating elliptic cycles, parabolic cycles, check-
ing the ECC and PCC, etc, are (as I hope you’ve realised)
usually pretty easy. Almost everybody who checked the PCC
by calculating the trace remembered to normalise, and I count
this amongst my greatest achievements this semester!!!
There was some confusion over how to draw H/Γ. I think this
is easiest seen by thinking in your head how to glue together
the paired sides as indicated. First note that there are two
parabolic cycles, hence two cusps. Imagine the quadrilateral
as a diamond-shaped sheet of paper (or piece of pastry), albeit
with two opposing corners at infinity. Glue the bottom left side
to the bottom right side, and the top left side to the top right
side. This gives a surface of genus 0 (no holes in it) and two
cusps (with the pastry analogy: it looks like a Cornish pasty
that goes off to infinity at both ends).

Question Q4(b)(i)

Learning Outcome Solutions
ILO6: assessed at low level. Book- Fk contains the set of all finite words ai1ai2 . . . ain in symbols aij chosen

work: standard definition from the from S ∪ S−1 subject to aij±1 6= a−1
ij

.

course. The group operation is concatenation of words.
The group identity is the empty word e.

If w = ai1ai2 . . . ain then w−1 = a−1
in
. . . a−1

i2
a−1
i1

.

[4 marks]

Feedback. Read the question: it tells you what you need to
define! Many people missed out either how to do inverses or
what the group operation actually is, etc, but got the remainder
right. This suggests that you know what the answer is, but
you’re not writing it down.

Question Q4(b)(ii)

Learning Outcome Solutions
ILO6: assessed at medium (first In F2 with symbols a, b:
part) high (second part) level. The • words of length 1: a, b, a−1, b−1.
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first part is similar to exercise sheets. • words of length 2: a2, ab, ab−1, ba, ba−1, b2, a−2, a−1b, a−1b−1,
The second part is unseen. b−1a, b−1a−1, b−2.

There are 4× 3n−1 words of length. This is easily proved by induction.
The base case is above. Given a word of length n− 1 one can form a new
word of length n by concatenating any one of 3 symbols at the end (not
4, as otherwise it would cancel with the final symbol of the original word).
As there are no other relations in F2, all these words are distinct.

[8 marks]

Feedback. The first part was generally answered correctly. For
the second part, many people had the right idea but got the
wrong formula (involving factorials or n-choose-r, etc).
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