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Answer THREE of the FOUR questions.
If all four questions are attempted then credit will be given for the three best answers.
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Notation: Throughout, H denotes the upper half-plane, ∂H denotes the boundary of H, D denotes
the Poincaré disc, and ∂D denotes the boundary of D. All logarithms are natural logarithms.
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1.

(i) Recall that the (Euclidean) circle in C with centre z0 ∈ C and radius r > 0 is given by the
equation |z − z0|2 = r2. Show that this equation can be written in the form

zz̄ + βz + β̄z̄ + γ = 0, β ∈ C, γ ∈ R

and determine β, γ in terms of z0, r.

Show that the equation of a (Euclidean) circle in C with real centre z0 has the form

zz̄ + βz + βz̄ + γ = 0, β, γ ∈ R (1)

[6 marks]

(ii) Consider the points −5 + 12i, 12 + 5i ∈ H. Find the equation of the geodesic (i.e. find an
equation of the form (1)) that passes through these two points.

This geodesic is a semi-circle. Determine its centre z0 and radius r. Hence write down the
end-points of this geodesic.

Write down a Möbius transformation of H that maps this geodesic to the imaginary axis.

The point z1 =
39

5
+

52

5
i also lies on this geodesic. Briefly explain how you would construct a

Möbius transformation that maps this geodesic to the imaginary axis and maps the point z1
to i. (You do not need explicitly calculate this Möbius transformation; instead, your answer
should explain how you would do it.)

[8 marks]

(iii) Let 0 < a < b. Let σ be a path from ia to ib. Prove that lengthH(σ) ≥ log b/a with equality if,
and only if, σ is the straight line along the imaginary axis from ia to ib.

[8 marks]

(iv) Consider the following statement.

Let H1, H2 be two geodesics in H that do not intersect. Then there exists a unique
geodesic in H that passes through both H1 and H2 at right-angles.

Suppose that H1, H2 have distinct end-points on ∂H. Prove that, in this case, the above
statement is true. (Hint: Without loss of generality you can assume that H1 is the imaginary
axis. What geodesics pass through H1 at right-angles?)

Is the Euclidean analogue of the above statement true?

[6 marks]

Page 2 of 6 P.T.O.



MATH32051

2.

(i) Recall that a Möbius transformation of D is a transformation of the form

γ(z) =
αz + β

β̄z + ᾱ

where α, β ∈ C and |α|2 − |β|2 > 0.

In each of the following cases, state whether the transformation is a Möbius transformation of
D or not giving a brief reason for your answer:

(a) γ(z) = eiθz, θ ∈ R, (b) γ(z) =
−1

z
.

[4 marks]

(ii) Let

γ1(z) =
α1z + β1
β̄1z + ᾱ1

, γ2(z) =
α2z + β2
β̄2z + ᾱ2

∈ Möb(D)

be two Möbius transformations of the Poincaré disc D. (Here α1, α2, β1, β2 ∈ C and |α1|2 −
|β1|2 > 0, |α2|2 − |β2|2 > 0.)

Show that the composition γ1γ2 is a Möbius transformation of D.

[8 marks]

(iii) Let Γ ⊂ Möb(D) be a Fuchsian group. Briefly outline a procedure which will generate a
Dirichlet region for Γ.

Let γ3 denote rotation around the origin through 120 degrees anticlockwise; let γ4 denote
rotation around the origin 120 degrees clockwise. Let Γ = {id, γ3, γ4}.
Let p = 1/2 and determine the Dirichlet polygon D(p).

Sketch the resulting tessellation in D.

Sketch the corresponding tessellation in the upper half-plane H.

[12 marks]

(iv) Give an example of a convex hyperbolic polygon D which cannot be a Dirichlet polygon for
any Fuchsian group. Justify your answer.

[6 marks]
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3. Throughout this question you may use the fact that cosh dH(z, w) = 1 +
|z − w|2

2 Im(z) Im(w)
. You may

also use the fact that sinπ/6 = 1/2.

(i) Recall that if A ⊂ H then AreaH(A) =

∫ ∫
A

dx dy

y2
.

Let ∆ be a hyperbolic triangle with internal angles α, β, 0. Prove that AreaH(A) = π− (α+β).
(You may NOT assume the Gauss-Bonnet theorem; you should prove this directly from the
formula for the hyperbolic area above.)

[8 marks]

(ii) Consider the diagram in Figure 1(i) below. Show that

sin θ =
2b

1 + b2
. (2)

Figure 1: See Q3(ii).

[Hint: suppose the geodesic through 1 and ib is a semi-circle with centre x and radius r.
Consider the (Euclidean) right-angled triangle with vertices at x, 0, ib and use the (Euclidean)
Pythagoras Theorem.]

Consider the hyperbolic triangle in H with vertices at (2 +
√

3)i, 0, 1 as illustrated in Fig-
ure 1(ii). Use the Gauss-Bonnet Theorem and (2) to calculate the hyperbolic area of this
triangle.

[8 marks]

(iii) Let ∆ be a right-angled hyperbolic triangle with one ideal vertex and internal angles α, 0, π/2.
Then ∆ has one side with finite hyperbolic length; let a denote the hyperbolic length of this
side.

Prove the angle of parallelism formula: sinα = 1/ cosh a.

Is there a Euclidean analogue of this result?

[8 marks]
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(iv) Let ∆ be a right-angled hyperbolic triangle with one ideal vertex. Suppose that the side of ∆
of finite hyperbolic length has hyperbolic length log(2 +

√
3).

Calculate AreaH(∆).

[6 marks]
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4.

(a) (i) Let E be an elliptic cycle with corresponding elliptic cycle transformation γ. What does
it mean to say that E satisfies the elliptic cycle condition?

Let P be a parabolic cycle with corresponding parabolic cycle transformation γ. What
does it mean to say that P satisfies the parabolic cycle condition?

[4 marks]

(ii) Consider the hyperbolic polygon as illustrated in Figure XXXX.

[picture]

Define

γ1(z) = z + 6, γ2(z) =
−3z

z − 3
. (3)

Use Poincaré’s Theorem to show that γ1 and γ2 generate a Fuchsian group Γ. Give a
presentation of Γ in terms of generators and relations. Briefly describe the quotient space
H/Γ.

Show by explicit calculation that γ1, γ2, as defined in (3), satisfy the relation or relations
that you have given in your presentation of Γ.

[14 marks]

(b) (i) Let S = {a1, . . . , ak} be a finite set of symbols. Briefly explain how to construct the free
group on k generators, Fk.
(Your answer should include: a description of the elements of Fk, a description of the group
operation, a description of the group identity, a description of how to find the inverse of
an element in Fk. You do not need to prove that the group operation is well-defined.)

[4 marks]

(ii) Consider F2, the free group on 2 generators a, b. Show that there are 4 words of length 1
and 12 words of length 2 in F2.

How many words of length n are there in F2? Justify your answer.

[8 marks]

END OF EXAMINATION PAPER
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