2 hours

THE UNIVERSITY OF MANCHESTER

HYPERBOLIC GEOMETRY

?? Jan 2020
??:?? - ??:??

Answer THREE of the FOUR questions.
If all four questions are attempted then credit will be given for the three best answers.

Electronic calculators may be used in accordance with the University regulations

Notation: Throughout, \mathbb{H} denotes the upper half-plane, $\partial \mathbb{H}$ denotes the boundary of \mathbb{H}, \mathbb{D} denotes the Poincaré disc, and $\partial \mathbb{D}$ denotes the boundary of \mathbb{D}. All logarithms are natural logarithms.

MATH32051

1.

(i) Recall that the (Euclidean) circle in \mathbb{C} with centre $z_{0} \in \mathbb{C}$ and radius $r>0$ is given by the equation $\left|z-z_{0}\right|^{2}=r^{2}$. Show that this equation can be written in the form

$$
z \bar{z}+\beta z+\bar{\beta} \bar{z}+\gamma=0, \quad \beta \in \mathbb{C}, \gamma \in \mathbb{R}
$$

and determine β, γ in terms of z_{0}, r.
Show that the equation of a (Euclidean) circle in \mathbb{C} with real centre z_{0} has the form

$$
\begin{equation*}
z \bar{z}+\beta z+\beta \bar{z}+\gamma=0, \quad \beta, \gamma \in \mathbb{R} \tag{1}
\end{equation*}
$$

(ii) Consider the points $-5+12 i, 12+5 i \in \mathbb{H}$. Find the equation of the geodesic (i.e. find an equation of the form (1)) that passes through these two points.
This geodesic is a semi-circle. Determine its centre z_{0} and radius r. Hence write down the end-points of this geodesic.

Write down a Möbius transformation of \mathbb{H} that maps this geodesic to the imaginary axis.
The point $z_{1}=\frac{39}{5}+\frac{52}{5} i$ also lies on this geodesic. Briefly explain how you would construct a Möbius transformation that maps this geodesic to the imaginary axis and maps the point z_{1} to i. (You do not need explicitly calculate this Möbius transformation; instead, your answer should explain how you would do it.)
[8 marks]
(iii) Let $0<a<b$. Let σ be a path from $i a$ to $i b$. Prove that length ${ }_{\mathbb{H}}(\sigma) \geq \log b / a$ with equality if, and only if, σ is the straight line along the imaginary axis from $i a$ to $i b$.
[8 marks]
(iv) Consider the following statement.

Let H_{1}, H_{2} be two geodesics in \mathbb{H} that do not intersect. Then there exists a unique geodesic in \mathbb{H} that passes through both H_{1} and H_{2} at right-angles.

Suppose that H_{1}, H_{2} have distinct end-points on $\partial \mathbb{H}$. Prove that, in this case, the above statement is true. (Hint: Without loss of generality you can assume that H_{1} is the imaginary axis. What geodesics pass through H_{1} at right-angles?)
Is the Euclidean analogue of the above statement true?
[6 marks]

MATH32051

2.

(i) Recall that a Möbius transformation of \mathbb{D} is a transformation of the form

$$
\gamma(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}}
$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}-|\beta|^{2}>0$.
In each of the following cases, state whether the transformation is a Möbius transformation of \mathbb{D} or not giving a brief reason for your answer:
(a) $\gamma(z)=e^{i \theta} z, \theta \in \mathbb{R}$,
(b) $\gamma(z)=\frac{-1}{z}$.
(ii) Let

$$
\gamma_{1}(z)=\frac{\alpha_{1} z+\beta_{1}}{\overline{\beta_{1}} z+\overline{\alpha_{1}}}, \quad \gamma_{2}(z)=\frac{\alpha_{2} z+\beta_{2}}{\bar{\beta}_{2} z+\overline{\alpha_{2}}} \in \operatorname{Möb}(\mathbb{D})
$$

be two Möbius transformations of the Poincaré disc \mathbb{D}. (Here $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$ and $\left|\alpha_{1}\right|^{2}$ -$\left|\beta_{1}\right|^{2}>0,\left|\alpha_{2}\right|^{2}-\left|\beta_{2}\right|^{2}>0$.)
Show that the composition $\gamma_{1} \gamma_{2}$ is a Möbius transformation of \mathbb{D}.
(iii) Let $\Gamma \subset \operatorname{Möb}(\mathbb{D})$ be a Fuchsian group. Briefly outline a procedure which will generate a Dirichlet region for Γ.

Let γ_{3} denote rotation around the origin through 120 degrees anticlockwise; let γ_{4} denote rotation around the origin 120 degrees clockwise. Let $\Gamma=\left\{\mathrm{id}, \gamma_{3}, \gamma_{4}\right\}$.
Let $p=1 / 2$ and determine the Dirichlet polygon $D(p)$.
Sketch the resulting tessellation in \mathbb{D}.
Sketch the corresponding tessellation in the upper half-plane \mathbb{H}.
[12 marks]
(iv) Give an example of a convex hyperbolic polygon D which cannot be a Dirichlet polygon for any Fuchsian group. Justify your answer.
[6 marks]
3. Throughout this question you may use the fact that $\cosh d_{\mathbb{H}}(z, w)=1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)}$. You may also use the fact that $\sin \pi / 6=1 / 2$.
(i) Recall that if $A \subset \mathbb{H}$ then $\operatorname{Area}_{\mathbb{H}}(A)=\iint_{A} \frac{d x d y}{y^{2}}$.

Let Δ be a hyperbolic triangle with internal angles $\alpha, \beta, 0$. Prove that $\operatorname{Area}_{\mathbb{H}}(A)=\pi-(\alpha+\beta)$. (You may NOT assume the Gauss-Bonnet theorem; you should prove this directly from the formula for the hyperbolic area above.)
(ii) Consider the diagram in Figure 1(i) below. Show that

$$
\begin{equation*}
\sin \theta=\frac{2 b}{1+b^{2}} \tag{2}
\end{equation*}
$$

Figure 1: See Q3(ii).
[Hint: suppose the geodesic through 1 and $i b$ is a semi-circle with centre x and radius r. Consider the (Euclidean) right-angled triangle with vertices at $x, 0, i b$ and use the (Euclidean) Pythagoras Theorem.]
Consider the hyperbolic triangle in \mathbb{H} with vertices at $(2+\sqrt{3}) i, 0,1$ as illustrated in Figure 1(ii). Use the Gauss-Bonnet Theorem and (2) to calculate the hyperbolic area of this triangle.
(iii) Let Δ be a right-angled hyperbolic triangle with one ideal vertex and internal angles $\alpha, 0, \pi / 2$. Then Δ has one side with finite hyperbolic length; let a denote the hyperbolic length of this side.

Prove the angle of parallelism formula: $\sin \alpha=1 / \cosh a$.
Is there a Euclidean analogue of this result?

MATH32051

(iv) Let Δ be a right-angled hyperbolic triangle with one ideal vertex. Suppose that the side of Δ of finite hyperbolic length has hyperbolic length $\log (2+\sqrt{3})$.
Calculate $\operatorname{Area}_{\mathbb{H}}(\Delta)$.
[6 marks]

MATH32051

4.

(a) (i) Let \mathcal{E} be an elliptic cycle with corresponding elliptic cycle transformation γ. What does it mean to say that \mathcal{E} satisfies the elliptic cycle condition?
Let \mathcal{P} be a parabolic cycle with corresponding parabolic cycle transformation γ. What does it mean to say that \mathcal{P} satisfies the parabolic cycle condition?
(ii) Consider the hyperbolic polygon as illustrated in Figure XXXX. [picture]
Define

$$
\begin{equation*}
\gamma_{1}(z)=z+6, \quad \gamma_{2}(z)=\frac{-3 z}{z-3} \tag{3}
\end{equation*}
$$

Use Poincaré's Theorem to show that γ_{1} and γ_{2} generate a Fuchsian group Γ. Give a presentation of Γ in terms of generators and relations. Briefly describe the quotient space \mathbb{H} / Γ.
Show by explicit calculation that γ_{1}, γ_{2}, as defined in (3), satisfy the relation or relations that you have given in your presentation of Γ.
[14 marks]
(b) (i) Let $\mathcal{S}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a finite set of symbols. Briefly explain how to construct the free group on k generators, \mathcal{F}_{k}.
(Your answer should include: a description of the elements of \mathcal{F}_{k}, a description of the group operation, a description of the group identity, a description of how to find the inverse of an element in \mathcal{F}_{k}. You do not need to prove that the group operation is well-defined.)
[4 marks]
(ii) Consider \mathcal{F}_{2}, the free group on 2 generators a, b. Show that there are 4 words of length 1 and 12 words of length 2 in \mathcal{F}_{2}.
How many words of length n are there in \mathcal{F}_{2} ? Justify your answer.

