$\underline{2 \text{ hours}}$

THE UNIVERSITY OF MANCHESTER

HYPERBOLIC GEOMETRY

?? Jan 2020 ??:?? - ??:??

Answer **THREE** of the **FOUR** questions. If all four questions are attempted then credit will be given for the three best answers.

Electronic calculators may be used in accordance with the University regulations

Notation: Throughout, \mathbb{H} denotes the upper half-plane, $\partial \mathbb{H}$ denotes the boundary of \mathbb{H} , \mathbb{D} denotes the Poincaré disc, and $\partial \mathbb{D}$ denotes the boundary of \mathbb{D} . All logarithms are natural logarithms.

© The University of Manchester, 2020

Page 1 of 6

- 1.
 - (i) Recall that the (Euclidean) circle in \mathbb{C} with centre $z_0 \in \mathbb{C}$ and radius r > 0 is given by the equation $|z z_0|^2 = r^2$. Show that this equation can be written in the form

$$z\bar{z} + \beta z + \bar{\beta}\bar{z} + \gamma = 0, \quad \beta \in \mathbb{C}, \gamma \in \mathbb{R}$$

and determine β, γ in terms of z_0, r .

Show that the equation of a (Euclidean) circle in \mathbb{C} with real centre z_0 has the form

$$z\bar{z} + \beta z + \beta \bar{z} + \gamma = 0, \quad \beta, \gamma \in \mathbb{R}$$
⁽¹⁾

[6 marks]

(ii) Consider the points -5 + 12i, $12 + 5i \in \mathbb{H}$. Find the equation of the geodesic (i.e. find an equation of the form (1)) that passes through these two points.

This geodesic is a semi-circle. Determine its centre z_0 and radius r. Hence write down the end-points of this geodesic.

Write down a Möbius transformation of \mathbb{H} that maps this geodesic to the imaginary axis.

The point $z_1 = \frac{39}{5} + \frac{52}{5}i$ also lies on this geodesic. Briefly explain how you would construct a Möbius transformation that maps this geodesic to the imaginary axis and maps the point z_1 to *i*. (You do not need explicitly calculate this Möbius transformation; instead, your answer should explain how you would do it.)

[8 marks]

(iii) Let 0 < a < b. Let σ be a path from *ia* to *ib*. Prove that $\text{length}_{\mathbb{H}}(\sigma) \ge \log b/a$ with equality if, and only if, σ is the straight line along the imaginary axis from *ia* to *ib*.

[8 marks]

(iv) Consider the following statement.

Let H_1, H_2 be two geodesics in \mathbb{H} that do not intersect. Then there exists a unique geodesic in \mathbb{H} that passes through both H_1 and H_2 at right-angles.

Suppose that H_1, H_2 have *distinct* end-points on $\partial \mathbb{H}$. Prove that, in this case, the above statement is true. (Hint: Without loss of generality you can assume that H_1 is the imaginary axis. What geodesics pass through H_1 at right-angles?)

Is the Euclidean analogue of the above statement true?

[6 marks]

(i) Recall that a Möbius transformation of $\mathbb D$ is a transformation of the form

$$\gamma(z) = \frac{\alpha z + \beta}{\bar{\beta}z + \bar{\alpha}}$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 - |\beta|^2 > 0$.

In each of the following cases, state whether the transformation is a Möbius transformation of \mathbb{D} or not giving a brief reason for your answer:

(a)
$$\gamma(z) = e^{i\theta}z, \ \theta \in \mathbb{R},$$
 (b) $\gamma(z) = \frac{-1}{z}$.

[4 marks]

(ii) Let

$$\gamma_1(z) = \frac{\alpha_1 z + \beta_1}{\bar{\beta}_1 z + \bar{\alpha}_1}, \quad \gamma_2(z) = \frac{\alpha_2 z + \beta_2}{\bar{\beta}_2 z + \bar{\alpha}_2} \in \mathrm{M\ddot{o}b}(\mathbb{D})$$

be two Möbius transformations of the Poincaré disc \mathbb{D} . (Here $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$ and $|\alpha_1|^2 - |\beta_1|^2 > 0, |\alpha_2|^2 - |\beta_2|^2 > 0.$)

Show that the composition $\gamma_1 \gamma_2$ is a Möbius transformation of \mathbb{D} .

[8 marks]

(iii) Let $\Gamma \subset \text{M\"ob}(\mathbb{D})$ be a Fuchsian group. Briefly outline a procedure which will generate a Dirichlet region for Γ .

Let γ_3 denote rotation around the origin through 120 degrees anticlockwise; let γ_4 denote rotation around the origin 120 degrees clockwise. Let $\Gamma = \{ id, \gamma_3, \gamma_4 \}$.

Let p = 1/2 and determine the Dirichlet polygon D(p).

Sketch the resulting tessellation in \mathbb{D} .

Sketch the corresponding tessellation in the upper half-plane \mathbb{H} .

[12 marks]

(iv) Give an example of a convex hyperbolic polygon D which cannot be a Dirichlet polygon for any Fuchsian group. Justify your answer.

[6 marks]

3. Throughout this question you may use the fact that $\cosh d_{\mathbb{H}}(z, w) = 1 + \frac{|z - w|^2}{2 \operatorname{Im}(z) \operatorname{Im}(w)}$. You may also use the fact that $\sin \pi/6 = 1/2$.

(i) Recall that if $A \subset \mathbb{H}$ then $\operatorname{Area}_{\mathbb{H}}(A) = \int \int_{A} \frac{dx \, dy}{y^2}$.

Let Δ be a hyperbolic triangle with internal angles $\alpha, \beta, 0$. Prove that $\operatorname{Area}_{\mathbb{H}}(A) = \pi - (\alpha + \beta)$. (You may *NOT* assume the Gauss-Bonnet theorem; you should prove this directly from the formula for the hyperbolic area above.)

[8 marks]

(ii) Consider the diagram in Figure 1(i) below. Show that

$$\sin \theta = \frac{2b}{1+b^2}.\tag{2}$$

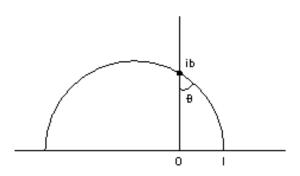


Figure 1: See Q3(ii).

[Hint: suppose the geodesic through 1 and ib is a semi-circle with centre x and radius r. Consider the (Euclidean) right-angled triangle with vertices at x, 0, ib and use the (Euclidean) Pythagoras Theorem.]

Consider the hyperbolic triangle in \mathbb{H} with vertices at $(2 + \sqrt{3})i$, 0, 1 as illustrated in Figure 1(ii). Use the Gauss-Bonnet Theorem and (2) to calculate the hyperbolic area of this triangle.

[8 marks]

(iii) Let Δ be a right-angled hyperbolic triangle with one ideal vertex and internal angles α , 0, $\pi/2$. Then Δ has one side with finite hyperbolic length; let *a* denote the hyperbolic length of this side.

Prove the angle of parallelism formula: $\sin \alpha = 1/\cosh a$.

Is there a Euclidean analogue of this result?

[8 marks]

P.T.O.

(iv) Let Δ be a right-angled hyperbolic triangle with one ideal vertex. Suppose that the side of Δ of finite hyperbolic length has hyperbolic length $\log(2 + \sqrt{3})$. Calculate $\operatorname{Area}_{\mathbb{H}}(\Delta)$.

[6 marks]

MATH32051

- **4**.
 - (a) (i) Let \mathcal{E} be an elliptic cycle with corresponding elliptic cycle transformation γ . What does it mean to say that \mathcal{E} satisfies the *elliptic cycle condition*?

Let \mathcal{P} be a parabolic cycle with corresponding parabolic cycle transformation γ . What does it mean to say that \mathcal{P} satisfies the *parabolic cycle condition*?

[4 marks]

(ii) Consider the hyperbolic polygon as illustrated in Figure XXXX.[picture]D. C

Define

$$\gamma_1(z) = z + 6, \quad \gamma_2(z) = \frac{-3z}{z - 3}.$$
 (3)

Use Poincaré's Theorem to show that γ_1 and γ_2 generate a Fuchsian group Γ . Give a presentation of Γ in terms of generators and relations. Briefly describe the quotient space \mathbb{H}/Γ .

Show by explicit calculation that γ_1, γ_2 , as defined in (3), satisfy the relation or relations that you have given in your presentation of Γ .

[14 marks]

(b) (i) Let $S = \{a_1, \ldots, a_k\}$ be a finite set of symbols. Briefly explain how to construct the free group on k generators, \mathcal{F}_k .

(Your answer should include: a description of the elements of \mathcal{F}_k , a description of the group operation, a description of the group identity, a description of how to find the inverse of an element in \mathcal{F}_k . You do not need to prove that the group operation is well-defined.)

[4 marks]

(ii) Consider \mathcal{F}_2 , the free group on 2 generators a, b. Show that there are 4 words of length 1 and 12 words of length 2 in \mathcal{F}_2 .

How many words of length n are there in \mathcal{F}_2 ? Justify your answer.

[8 marks]

END OF EXAMINATION PAPER