2 hours

THE UNIVERSITY OF MANCHESTER

HYPERBOLIC GEOMETRY

15 January 2018
09:45-11:45

Answer all four questions in Section A (40 marks in all) and and two of the three questions in Section B (30 marks each).
If all three questions from Section B are attempted then credit will be given for the two best answers.

University approved calculators may be used.

Notation: Throughout, \mathbb{H} denotes the upper half-plane, $\partial \mathbb{H}$ denotes the boundary of \mathbb{H}, \mathbb{D} denotes the Poincaré disc, and $\partial \mathbb{D}$ denotes the boundary of \mathbb{D}.

SECTION A

Answer ALL four questions

A1.
(i) Recall that the equation of a straight line in \mathbb{R}^{2} is given by $a x+b y+c=0$ where $a, b, c \in \mathbb{R}$. Show that the equation of a straight line in \mathbb{C} can be written as $\beta z+\bar{\beta} \bar{z}+\gamma=0$ where $\beta \in \mathbb{C}$ and $\gamma \in \mathbb{R}$.
(ii) Which values of $\beta \in \mathbb{C}$ correspond to equations of horizontal straight lines?
(iii) Find an equation (i.e. determine β and γ) of the form $\beta z+\bar{\beta} \bar{z}+\gamma=0$ that describes the straight line through $-1+2 i$ and $3+2 i$.

A2.
(i) Let $\gamma_{1}, \gamma_{2} \in \operatorname{Möb}(\mathbb{H})$. What does it mean to say that γ_{1} and γ_{2} are conjugate Möbius transformations?
(ii) Recall that a Möbius transformation of \mathbb{H} is said to be hyperbolic if it has two fixed points on $\partial \mathbb{H}$ and no fixed points in \mathbb{H}.
Let $k>0$. Show that the dilation $\gamma(z)=k z$ is hyperbolic.
(iii) Let $\gamma \in \operatorname{Möb}(\mathbb{H})$ be hyperbolic. Show that γ is conjugate to a dilation.
[You may use without proof the facts that, (i) given a geodesic in \mathbb{H}, there exists a Möbius transformation of \mathbb{H} that maps that geodesic to the imaginary axis, (ii) if a Möbius transformation has fixed points at 0 and ∞ then it is a dilation or the identity.]

A3. Let Γ be a Fuchsian group acting on \mathbb{D}.
(i) Let F be an open subset of \mathbb{D}. What does it mean to say that F is a fundamental domain for Γ ?
(ii) Let

$$
\Gamma=\left\{\gamma_{k} \mid \gamma_{k}(z)=e^{2 \pi i k / 5} z, k=0,1,2,3,4\right\}
$$

denote the Fuchsian group generated by a rotation through angle $2 \pi / 5$. Show (by drawing the associated tessellation of $\mathbb{D})$ that $F=\{z \in \mathbb{D} \mid-\pi / 5<\arg (z)<\pi / 5\}$ is a fundamental domain for Γ.

A4.
(i) What does it mean to say that $\Gamma \subset \operatorname{Möb}(\mathbb{H})$ is a Fuchsian group?

What is meant by the orbit $\Gamma(z)$ of $z \in \mathbb{H} \cup \partial \mathbb{H}$?
(ii) Let $\Gamma=\left\{\gamma_{n} \mid \gamma_{n}(z)=2^{n} z, n \in \mathbb{Z}\right\}$. Sketch the orbit $\Gamma(1+i)$ of $1+i$.
[2 marks]
(iii) It was stated in the course that Γ is a Fuchsian group if and only if, for all $z \in \mathbb{H}$, the orbit $\Gamma(z)$ of z is a discrete subset of \mathbb{H}.
Let $\Gamma=\operatorname{PSl}(2, \mathbb{Z})$. Find a point $z \in \partial \mathbb{H}$ for which $\Gamma(z)$ is not a discrete subset of $\partial \mathbb{H}$. Explain briefly why, in the example you give, $\Gamma(z)$ is not discrete.

SECTION B

Answer TWO of the three questions

B5. Let $X \subset \mathbb{C}$ and let $\rho: X \rightarrow \mathbb{R}$ be a continuous positive function. Let $\sigma:[a, b] \rightarrow X$ be a path in X and define

$$
\operatorname{length}_{\rho}(\sigma)=\int_{\sigma} \rho=\int_{a}^{b} \rho(\sigma(t))\left|\sigma^{\prime}(t)\right| d t
$$

We can then define the metric d_{ρ} on X by

$$
d_{\rho}(z, w)=\inf \left\{\operatorname{length}_{\rho}(\sigma) \mid \sigma \text { is a piecewise differentiable path from } z \text { to } w\right\} .
$$

A map $\gamma: X \rightarrow X$ is said to be an isometry if $d_{\rho}(\gamma(z), \gamma(w))=d_{\rho}(z, w)$ for all $z, w \in X$.
(i) Show that d_{ρ} satisfies the triangle inequality, i.e. $d_{\rho}\left(z_{1}, z_{3}\right) \leq d_{\rho}\left(z_{1}, z_{2}\right)+d_{\rho}\left(z_{2}, z_{3}\right)$ for all $z_{1}, z_{2}, z_{3} \in X$.
(ii) Suppose that $\gamma: X \rightarrow X$ is differentiable. Prove that

$$
\begin{equation*}
\text { length }_{\rho}(\gamma \circ \sigma)=\operatorname{length}_{\rho}(\sigma) \text { for all piecewise differentiable paths } \sigma \tag{*}
\end{equation*}
$$

if and only if $\rho(\gamma(z))\left|\gamma^{\prime}(z)\right|=\rho(z)$ for all $z \in X$.
Briefly explain why, if $\left(^{*}\right)$ holds, then γ is an isometry.
[You may use, without proof, the fact that if f is continuous and $\int_{\sigma} f=0$ for all piecewise smooth paths σ then $f=0$.]
(iii) Consider the case when $X=\mathbb{H}$ and $\rho(z)=1 / \operatorname{Im} z$.

Let $\gamma(z)=(a z+b) /(c z+d), a, b, c, d \in \mathbb{R}, a d-b c>0$, be a Möbius transformation of \mathbb{H}. It was proved in the course that

$$
\operatorname{Im} \gamma(z)=\frac{a d-b c}{|c z+d|^{2}} \operatorname{Im} z, \text { and } \gamma^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} .
$$

Use (ii) and these facts to show that Möbius transformations of \mathbb{H} are isometries.
(iv) Suppose that $\rho: \mathbb{H} \rightarrow \mathbb{R}$ is such that $d_{\rho}(\gamma(z), \gamma(w))=d_{\rho}(z, w)$ for all $z, w \in \mathbb{H}$ and all $\gamma \in \operatorname{Möb}(\mathbb{H})$.
By considering translations, $\gamma(z)=z+b$, use the result in (ii) to show that $\rho(x+i y)=\rho(y)$, i.e. $\rho(z)$ depends only on the imaginary part of z.

By considering dilations, $\gamma(z)=k z$, now use (ii) again to show that $\rho(z)$ is a constant multiple of $1 / \operatorname{Im} z$.
(v) Now take $X=\mathbb{C}$. Let $\rho: \mathbb{C} \rightarrow \mathbb{R}$ be a positive continuous function so that d_{ρ} defines a metric on \mathbb{C}. Let $a+i b \in \mathbb{C}$ and define the translation $T_{a, b}(x+i y)=(x+a)+i(y+b)$.
Suppose that every translation $T_{a, b}$ is an isometry with respect to d_{ρ}. Show that d_{ρ} is a constant multiple of the Euclidean metric on \mathbb{C}.
[4 marks]

B6. Recall that the hyperbolic area in the upper half-plane \mathbb{H} of a subset $A \subset \mathbb{H}$ is given by

$$
\operatorname{Area}_{\mathbb{H}}(A)=\iint_{A} \frac{1}{y^{2}} d x d y
$$

(i) Let Δ be a hyperbolic triangle in \mathbb{H} with internal angles α, β, γ.

Prove the Gauss-Bonnet theorem:

$$
\operatorname{Area}_{\mathbb{H}}(\Delta)=\pi-(\alpha+\beta+\gamma)
$$

[If you reduce the triangle Δ to a special case, then you should briefly justify how and why this is valid.]
(ii) Let Q be a hyperbolic quadrilateral with internal angles $\alpha, \beta, \gamma, \delta$. Show that

$$
\begin{equation*}
\operatorname{Area}_{\mathbb{H}}(\mathrm{Q})=2 \pi-(\alpha+\beta+\gamma+\delta) \tag{1}
\end{equation*}
$$

(iii) The area in the Poincaré disc model \mathbb{D} of a subset $A \subset \mathbb{D}$ is given by

$$
\operatorname{Area}_{\mathbb{D}}(A)=\iint_{A} \frac{4}{\left(1-\left(x^{2}+y^{2}\right)\right)^{2}} d x d y
$$

Let $r \in(0,1)$. Let $C_{r}=\{z \in \mathbb{D}| | z \mid \leq r\}$. Prove that

$$
\operatorname{Area}_{\mathbb{D}}\left(C_{r}\right)=\frac{4 \pi r^{2}}{1-r^{2}}
$$

[You may use the fact that the area form in polar co-ordinates is $\rho d \rho d \theta$.]
(iv) Recall that a regular hyperbolic n-gon has n sides, each of equal length, and n equal internal angles.
Show (by explicit construction in \mathbb{D}, considering a 4 -gon with vertices at $r, i r,-r,-i r$ and applying parts (ii), (iii) above) that there exists a regular hyperbolic 4-gon with internal angle α if and only if $\alpha \in[0, \pi / 2)$.
[10 marks]
(v) Show that if there is a tessellation of the hyperbolic plane by regular hyperbolic 4-gons with k polygons meeting at each vertex then $k>4$.

B7.
(i) Let $\gamma(z)=(a z+b) /(c z+d) \in \operatorname{Möb}(\mathbb{H}), a, b, c, d \in \mathbb{R}, a d-b c>0$. Recall that γ is parabolic if it has one fixed point on $\partial \mathbb{H}$ and no fixed points in \mathbb{H}.

Assume that $c \neq 0$. By considering the equation $\gamma\left(z_{0}\right)=z_{0}$, show that γ has a unique fixed point on $\partial \mathbb{H}$ (and so is parabolic) if and only if $(d-a)^{2}+4 b c=0$.
(ii) Let $k>0$ and let $\ell>1$. Define

$$
\gamma_{1}(z)=\frac{k z}{(k+1) z+1}, \quad \gamma_{2}(z)=\frac{\left(1-\ell^{2}\right) z-2 \ell^{2}}{2 z+\left(1-\ell^{2}\right)} .
$$

Show that γ_{1} pairs the sides s_{1} and s_{2} of the quadrilaterial with vertices at $-1,0,1, i \ell$, as illustrated in Figure 1 below. (One can also show that γ_{2} pairs the sides s_{3} and s_{4} as illustrated; you do not need to do this.)

Figure 1: A hyperbolic quadrilateral, see B7(ii).
(iii) Let \mathcal{E} be an elliptic cycle. What does it mean to say that \mathcal{E} satisfies the Elliptic Cycle Condition? Let \mathcal{P} be a parabolic cycle. What does it mean to say that \mathcal{P} satisfies the Parabolic Cycle Condition?
[4 marks]
(iv) Show that, in the diagram given in Figure 1, there is one elliptic cycle and two parabolic cycles.

Use Poincaré's Theorem to determine conditions on k and θ for which γ_{1} and γ_{2} generated a Fuchsian group. When do γ_{1}, γ_{2} generate a Fuchsian group Γ, give a presentation of Γ in terms of generators and relations.
[12 marks]
(v) Consider the diagram in Figure 2 below. Show that

$$
\sin \theta=\frac{2 \ell}{\ell^{2}+1}
$$

Figure 2: See B7(v).

Hence give explicit transformations γ_{1}, γ_{2} that generate a group with presentation $\left\langle a, b \mid b^{6}=e\right\rangle$. [Hint: suppose the geodesic through 1 and $i \ell$ is a semi-circle with centre x and radius r and consider the (Euclidean) right-angled triangle with vertices $x, 0, i \ell$, using the (Euclidean) Pythagoras theorem to find a relationship between ℓ and r. You may also assume that $\sin \pi / 6=$ 1/2.]

