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25. Solutions

Solution 1.1
We write Ty o(z,y) in the form Ry(x,y) + (a1, a2) where Ry denotes the 2 x 2 matrix that
rotates the plane about the origin by angle 6.

(i) (a) Let Ty g, Tt o € G. We have to show that the composition Ty , Ty o+ € G. Now

Ty.aTy o (2,y) = TopulTyw(x,y))
= Tpa(Ry (z,y) + (a, a3))
= Ro(Ry/(z,y) + (a1, a3)) + (a1, a2)
= RoRy(z,y) + (Re(ay,a3) + (a1, a2))
= Tor0/,Ry(a,ay)+(ar,a2) (T:Y)
where we have used the observation that RgRgr = Rgrgr. As 910/, Ry (a!) aly)+(ar,a2) €

G, the composition of two elements of G is another element of GG, hence the group
operation is well-defined.

(b) This is trivial: composition of functions is already known to be associative.

(c) The identity map on R? is the map that leaves every point alone. We choose
6 =0 and a = (0,0).

TO,(O,O) (x’ y) = RO(x’ y) + (Oa 0)

As Ry is the rotation through angle 0, it is clearly the identity matrix, so that
Ro(z,y) = (x,y). Hence Tp (9,0)(z,y) = (z,y). Hence G has an identity element.

(d) Let Ty, € G. We want to find an inverse for Ty, and show that it lies in G.
Write

Tpo(z,y) = (u,v).
Then
(u,v) = Ry(,y) + (a1, az2)

and some re-arrangement, together with the fact that R, V'— R_,, shows that
(x’ y) = R—@(ua ’U) - R—@(aly (12)-
Hence TGTal =T_9,—R_y(ar,a2)> Which is an element of G.

(ii) The rotations about the origin have the form Ty . It is easy to check that Ty Ty o =
Ty1¢' 0 so that the composition of two rotations is another rotation. The identity map
is a rotation (through angle 0). The inverse of rotation by 6 is rotation by —6. Hence
the set of rotations is a subgroup of G.
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(iii) The translations have the form T, where a € R2. Tt is easy to see that 10,0100 =
T0,a+«’ so that the composition of two translations is another translation. The identity
map is a translation (by (0,0)). The inverse of translation by (ai,az) is translation
by (—ai1, —az). Hence the set of translations is a subgroup of G.

Solution 2.1

(i) The path determined by both o7 and o3 is a horizontal line from i to 2 + i.

(ii) We first calculate [ f along tha path o using the parametrisation o;. Note that
oj(t) =1 and Im(oq(¢)) = 1. Hence

2
/0 ;o= /0 o1 ()lol ()] dt
2

- [
0

= 2

Now we calculate fg f along the path ¢ using the parametrisation 2. Note that
oh(t) =2t — 1 and Im(o2(t)) = 1. Hence

2
L ;o= / F(oa(t))|oh(t)] dt
2

- [2-1a
1

=t _t‘le
= (4-2)-(1-1)
= 2.

In this example, calculating fa f using the second parametrisation was only marginally
harder than using the first parametrisation. For more complicated paths, the choice
between a ‘good’ and a ‘bad’ parametrisation can make the difference between an
integral that is easy to calculate and one that is impossible using standard functions!

Solution 2.2

(i) Choose o : [a,1] — H given by o(t) = it. Then clearly o(a) = ia and o(1) =i (so
that o(-) has the required end-points) and o(t) belongs to the imaginary axis. (Note
there are many choices of parametrisations, your answer is correct as long as your
parametrisation has the correct end-points and belongs to the imaginary axis.)

1) For the parametrisation given above, |o =1 and Im(o =1{. Hence
ii) For th isati i b "(t 1 and I t t. H

1
1
Zdt = logt\i = —loga =logl/a.

lengths (o) = /

a
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Solution 2.3
The idea is simple: The distance between two points is the infimum of the (hyperbolic)
lengths of (piecewise continuously differentiable) paths between them. Only a subset of
these paths pass through a third point; hence the infimum of this subset is greater than
the infimum over all paths.

Let x,y,z € H. Let 0, : [a,b] — H be a path from z to y and let o, : [b,c] — H be a
path from y to z. Then the path o, . : [a,c] — H formed by defining

[ 0uy(t) fort € a,b]
02,5(t) = { oy,:(t) fort e [b,c]

is a path from x to z and has length equal to the sum of the lengths of 0 4,0, .. Hence
dp(z, z) < lengthy (o, ») = lengthy (o, ) + lengthy (o, 2).
Taking the infima over path from x to y and from y to z we see that dy(x, z) < dm(x,y) +

Solution 3.1
For a straight line we have a = 0, i.e. 8z + fZ+~v = 0.

Recall that the line ax + by + ¢ = 0 has gradient —a/b, z-intercept —c/a and y-intercept
—c/b. Let z = x 4 iy so that z = (2 + 2)/2 and y = (2 — z)/2i. Substituting these into
ax + by + ¢ we see that = (a —ib)/2 and v = c¢. Hence the gradient is Re(8)/Im(f3), the
x-intercept is at —y/2Re(3) and the y-intercept is at /2 Im(5).

Solution 3.2
A circle with centre zg and radius 7 has equation |z — zp|? — 72 = 0. Multiplying this out
(see the proof of Proposition 3.3.1) we have:
27— 29z — 202+ |22 =12 =0
and multiplying by a € R we have

azZ — gz — azpZ + a\z0]2 —ar?=0.

Comparing the coefficients of this with azz 4+ Bz + $Z +v = 0 we see that 8 = —az and
v = a|z|? — ar?. Hence the centre of the circle is zg = —(3/a and the radius is given by

_ s 7 _ [IBF v
Y (PN R <
«o «o «
Solution 3.3

We first show that v maps H to itself, i.e. if z € H then v(z) € H. To see this, let
z =u+iw € H. Then Im(z) = v > 0. Let y(2) = (az + b)/(cz + d) be a Mdbius
transformation of H. Then

a(u+iv) +b  (au+b+iav) (cu+d —icv)
clu+iv)+d  (cu+d+icv) (cu+d—icv)’

(2) =

which has imaginary part

1 1

m(—cv(au + b) + (CU + d)GfU) = m(ad — bC)’U
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which is positive. Hence v maps H to itself.
If v(2) = (az+b)/(cz + d) then letting w = (az + b)/(cz + d) and solving for z in terms
of w shows that v~ 1(2) = (dz — b)/(—cz + a). Hence v~ ! exists and so v is a bijection.

Solution 3.4

(i) If v1 = (@12 +b1)/(c12+ d1) and v2 = (agz + ba)/(c2z + da) then their composition is
a (a1z+b1) +b
( ) 2 c1z+d1 2
T2z
e (228 + da
asay + bacy)z + (agby + bady)
caa1 + docy)z + (caby + dady)’

(
(
which is a Mobius transformation of H as

(aga1 + bacy)(caby + dady) — (agby + bady)(c2a1 + dacy)
= (a1d1 — blcl)(agdg — b262) > 0.

(ii) Composition of functions is associative.
(iii) The identity map z — z is a Mébius transformation of H (take a = d = 1,b = ¢ = 0).

(iv) It follows from the solution to Exercise 3.3 that if v is a Mo6bius transformation of H

then so is 1.

Solution 3.5
Let v(2) = (az +b)/(cz + d).

For the dilation z — kz take a = k,b =0,c =0,d = 1. Then ad — bc = k > 0 so that v
is a Mobius transformation of H.

For the translation z — z + b take a = 0,b = b,c = 0,d =1. Then ad —bc =1 > 0 so
that v is a Mobius transformation of H.

For the inversion z — —1/z take a = 0,b = —1,c¢ =1,d = 0. Then ad —bc =1 > 0 so
that v is a Mobius transformation of H.

Exercise 3.6
Let A be either an arc of circle in H or part of a straight line in H. Let v € M6b(H). Show
that v(A) is also either an arc of circle in H or part of a straight line in H.

Solution 3.6
Let v € MOb(H). We know that A is contained in either a circle or straight line in C, and
so can be described as

A={z€eH|azz+Bz+pz+~=0}

for some o,y € R and 8 € C. We need to show that v(A) = {z € H | &/22+ B2+ B2+ =
0} for (possibly different) o/,7" € R and ' € C.

We know that v maps H to H. Hence it is sufficient to prove that if z solves azz 4+ 5z +
BZ 4+~ = 0 then y(z) solves &/2Z+ 'z + B'Z++ = 0.
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Write v(z) = (az+b)/(cz +d) where a,b,c,d € R and ad —bc > 0. Let w = ~(z). Then
z=~"Hw) = (dw —b)/(—cw + a). B
Suppose that z solves azz + 5z + fz + v = 0. Then w solves

dw—b dw —b dw —b ~( dw—2>
a . +B(———)+B(—=——]+r=0.
—cw + a —cw + a —cw +a —cw + a

a(dw — b)(dw — b) + S(dw — b)(—cw + a)
+B(dw — b)(—cw + a) + y(—cw + a)(—cw + a) = 0.

Hence

Expanding this out and gathering together terms gives
(ad® — (B + B)ed + ye*)wib + (—abd + Bad + Bbe — yac)w
+(—abd + Bad + Bbc — yac)w + (ab® — (B + B)ab + va?) = 0. (25.1)
Let

o = ad®— (B+ B)cd +c?
B = —abd+ Bad+ Bbc — yac
v = ab® — (B + B)ab+ va?.
Recall that 8 + 3 = 2Re(), a real number. Hence o/, are real. Hence w satisfies an

equation of the form o/ww + 'w + B'w + +" with o/, 8,7 € R, which is the equation of
either a vertical line or a circle with real centre.

Solution 4.1

To see that v maps OH to itself bijectively, it is sufficient to find an inverse. Notice that
v 1(2) = (dz — b)/(—cz + a) (defined appropriately for z = oo, namely we set vy~ !(c0) =
—d/c) is an inverse for 7.

Solution 4.2

Let v(z) = (az + b)/(cz + d). Then

(cz+d)a— (az+b)e  ad—bc

/ p— p—
(=) = (cz +d)? (cz +d)?
so that P
, ~ad—bc
|’7 (Z)|_ ’CZ—i-d‘Q

To calculate the imaginary part of v(z), write z =  + iy. Then
a(z+1y)+b  (ax+b+iay) (cx +d — icy)
V(z) = . = ~ )
clx+iy)+d  (cx+d+icy) (cx+d—icy)
which has imaginary part

1
1
- 7|cz e (ad — be)y
1
= m(ad — bC) Im(z)

Solution 4.3
Let z = x + iy and define y(z) = —x + iy.
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(i) Suppose that v(z1) = v(z2). Write 21 = x1 + iy1, 20 = 2 + iy2. Then —z1 +iy; =
—x9 + 1y2. Hence r1 = x9 and y; = o, so that z; = zo. Hence +y is injective. Let
z =x +1iy € H. take w = —x + iy. Then y(w) = —(—x) + iy = z + iy = z. Hence ~
is surjective. Hence + is a bijection.

(ii) Let o(t) = o1(t) +io2(t) : [a,b] — H be a piecewise continuously differentiable path
in H. Note that
Yo O'(t) = —Ul(t) + iO’Q(Zf).

Hence

b
lengthg(y00) = [ pe [0 + (0

b
= /aag(t)|a(t)|dt

= lengthy(o).

Let z,w € H. Note that o is a piecewise continuously differentiable path from z to w
if and only if v o o is a piecewise continuously differentiable path from v(z) to v(w).
Hence

du(v(2),v(w)) = inf{lengthy(yoo) | o is a piecewise continuously
differentiable path from z to w}
= inf{lengthy (o) | o is a piecewise continuously
differentiable path from z to w}
= du(z,w).

Hence ~ is an isometry of H.

Solution 4.4

Let Hy, Hy € H. Then there exists v; € Mob(H) such that 1 (H;) is the imaginary axis.
Similarly, there exists 72 € Mob(H) such that yo(Ha) is the imaginary axis. Hence 7, *
maps the imaginary axis to Ha. Hence vy Lo~ is a Mobius transformation of H that maps
Hy to Hs.

Solution 5.1

By Lemma 5.2.1 we can find a Mobius transformation «; of H that maps H; to the imaginary
axis and 21 to ¢ and a Mdbius transformation 5 of H that maps Hs to the imaginary axis and
zo to 7. The composition of two Mo6bius transformations of H is a Mobius transformation
of H. Hence v, lo ~1 is a Mobius transformation of H that maps Hy to Hy and z; to zs.

Solution 5.2

(i) The geodesic between —3 + 47 to —3 + 5i is the arc of vertical straight line between
them. It has equation z + z 4+ 6 = 0.

(ii) Both —3 + 47 and 3 + 4¢ lie on the circle in C with centre 0 and radius 5. Hence
the geodesic between —3 + 4¢ and 3 + 44 is the arc of semi-circle of radius 5 centre 0
between them. It has equation 2z — 5% = 0.
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(iii) Clearly the geodesic between —3+4i and 5+ 124 is not a vertical straight line. Hence
it must have an equation of the form zz 4+ 8z + 8z + v = 0. Substituting the two
values of z = —3 + 44,5 + 12¢ we obtain two simultaneous equations:

25—-684+~v=0,169+106+~v=0

which can be solved to give 8 = —9,v = —79.

Solution 5.3

(i) Let v be a Mébius transformation of H. As + is an isometry, by Proposition 4.1.2 we
know that
cosh dg((2),v(w)) = cosh dy(z, w).

Hence LHS(v(2), v(w)) = LHS(z, w).

By Exercise 4.2 we know that if v is a Mobius transformation then Im(v(z)) =

|7 (z)|Im(z). By Lemma 5.5.1 it follows that

hG) =y L =wP e (w)

21Im(7(2)) Im(y(w)) 2|7 (2)[ T (2) ] (w) | Tm (w)
|2 — w|®

2Tm(z) Im(w) "

1+

= 1+

Hence RHS(v(z),v(w)) = RHS(z, w).

(ii) Let H be the geodesic passing through z and w. Then by Lemma 4.3.1 there exists a
Mébius transformation v of H mapping H to the imaginary axis. Let v(z) = ia and
~v(w) = ib. By interchanging z and w if necessary, we can assume that a < b. Then

LHS(y(2),7(w)) = coshdu(y(2),y(w))
= coshdpy(ia,ib)
= coshlogb/a
elogb/a + eloga/b
2
bla+a/b b +a?
2 2ab

Moreover,

RHS(y(2),v(w)) = RHS(ia,ib)
lia — ib|?

=1
+ 2ab

Hence LHS(7(2), v(w)) = RHS(7(2), y(w)).
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(iii) For any two points z,w let H denote the geodesic containing both z,w. Choose a
Moébius transformation v of H that maps H to the imaginary axis. Then

LHS(z,w) = LHS(v(2),v(w)) = RHS(y(z),v(w)) = RHS(z, w).

Solution 5.4
Let C = {w € H | dg(z,w) = r} be a hyperbolic circle with centre z € H and radius r > 0.
Recall | 2
z—w

sh d =14+ —.
cosh dn(z, w) * 2Tm(z) Im(w)
Let z = xg + iyg and w = x 4+ ty. Then

(z — 20)* + (y — yo)?

coshr =1+
2y0y

which can be simplified to
(x —x0)? + (y — yocoshr)? + y& — y2 cosh® r = 0

which is the equation of a Euclidean circle with centre (xg, yo cosh r) and radius yoV/ cosh’?r — 1 =
yo sinh r.

Solution 5.5

(i) Let o : [a,b] — H be any piecewise continuously differentiable path. As we are
assuming length (o) = length (v o o) we have

b
[ ool @lde = tength, (o)
= length,(yo0)

b
- /pwwmmwwwwwt
b
= /pwwwnww@deMt

where we have used the chain rule to obtain the last equality. Hence

b
| (@) (@] - plo®)) o' t)] de = o

Using the hint, we see that
p(1(2))1Y (2)] = p(2) (25.2)
for all z € H.

(ii) Take v(z) = z+ b in (25.2). Then |y/(z)| = 1. Hence
oz +b) = p(2)

for all b € R. Hence p(z) depends only the imaginary part of z. Write p(z) = p(y)
where z = = + 1y.
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(iii)

Take v(z) = kz in (25.2). Then |y/(z)| = k. Hence

kp(ky) = p(y).

Setting y = 1 and letting ¢ = p(1) we have that p(k) = p(1)/k = ¢/k. Hence
o(2) = ¢/ Tm(z).

Solution 5.6

(i)

Draw in the tangent lines to the circles at the point of intersection; then @ is the angle
between these two tangent lines.

Draw the (Euclidean!) triangle with vertices at the point of intersection and the two
centres. See Figure 25.1. The internal angle of this triangle at the point of intersection
is split into three; the middle part is equal to 8. Recall that a radius of a circle meets
the tangent to a circle at right-angles. Hence both the remaining two parts of the
angle in the triangle at the point of intersection is given by /2 —6. Hence the triangle
has angle 7/2 — 04+ 60 4+ 7/2 — 0 = 7w — 0 at the vertex corresponding to the point of
intersection.

Figure 25.1: The Euclidean triangle with vertices at c¢1, co and the point of intersection.

(i)

The cosine rule gives the required formula (recall that cosm — 6 = — cos 0).

The points —6 and 6 clearly lie on the semi-circle with centre 0 and radius 6. Similarly,
the points 4y/2 and 6v/2 clearly lies on the semi-circle with centre 5v/2 and radius

V2.

(If you can’t determine the geodesic by considering the geometry then you can find
it as follows. We know geodesics have equations of the form azz + fz+ z+~v =10
where a, 3,7 € R. The geodesic between 4v/2 and 6v/2 is clearly a semi-circle, and
so a # 0; we divide through by a to assume that « = 1. Hence we are looking for
an equation of the form zZ + Sz + 8z + v = 0. Substituting first z = 4v/2 and then
2 = 64/2 we obtain the simultaneous equations 32+8v/25+~ = 0, 72+ 1226+~ = 0.
Solving these gives B = —5v/2, v = 48. Putting z = z + iy we thus have the equation
2?2 +y? — 1022 + 48 = 0. Completing the square gives (z — 5v/2)% + % = (v/2)?, so
that we have a semi-circle in C with centre 5v/2 and radius \/5)
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-6 4/2 6 6v/2

Figure 25.2: The angle .

Part (i) allows us to calculate the angle v in Figure 25.2. Substituting ¢; = 0, r; = 6,
ca = 5v/2, ro = \/2 into the result from (i) shows that cos = 1/4/2 so that ¢ = 7 /4.
The angle in Figure 5.6 that we want to calculate is ¢ = 7w — ¢ = 37 /4.

Solution 5.7
Suppose that the semi-circular geodesic has centre at x € R and radius r. Construct the
(Euclidean) right-angled triangle with vertices x,0,ib, as illustrated in Figure 25.3. As

Figure 25.3: The (Euclidean) triangle with vertices at x, 0, ib.

the radius of the semicircle is r, we have that | — ib| = r and |z — a|] = r; hence the
base of the right-angled triangle has length » — a. By Pythagoras’ Theorem, we have that
(r —a)? + b? = r2. Expanding this out and simplyfying it we have r = (a® + b?)/2a. From
Figure 25.3 we also have that

r—a

b
sinf = —, cosf =
r r

and the result follows after substituting in r = (a® + b?)/2a.

Solution 6.1

(i) First note that h is a bijection from H to its image because it has an inverse g(z) =
(—z+1)/(—iz +1).

We now show that h(H) = D. Let z = u + iv € H so that v > 0. Now

U+ —1

"= -1
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(i)

(iii)

uti(v—1) —(v+1)—

—(wv+1)+iu—(v+1)—iu

—2u +i(1 — u? — v?)
(v+1)2 +u?

To show that h(H) = D it remains to show that the above complex number has
modulus less than 1. To see this first note that:

(2u)? 4+ (1 — u?® — v?)?
= w4+ 20 +1 - 207 + 2u%0° + o (25.3)
(v +1)% +u?)?
= v+ 4l 4607+ +1
+ 2u?0? + 4uPv 4 2u® + ut. (25.4)

To prove that |h(z)| < 1 it is sufficient to check that (25.3) < (25.4). By cancelling
terms, it is sufficient to check that

—202 < 4% + 602 + dv + 4uw.

This is true because the left-hand side is clearly negative, whereas the right-hand side
is positive, using the fact that v > 0.

To show that h maps OH bijectively to 0D note that for u € R

—2u +i(1 — u?)
u?+1

h(u) =

which is easily seen to have modulus one (and so is a point on 0D). Note that
h(co) = —i and that h(u) # —i if u is real. Hence h is a bijection from OH to 9D.

We have already seen that g(z) = h=!(z) = (=2 +1)/(—iz + 1). Calculating ¢(z) is
easy. To calculate Im(g(z)) write z = u + iv and compute.

Let o(t) =t,0 <t < z. Then o is a path from 0 to z and it has length

2 o2
[ - [ o
0.1—‘2” 0 1—1¢

= — + ——dt
/1—ﬁﬁ+t
14z

11—z

= log

To show that this is the optimal length of a path from 0 to z (and thus that the
real-axis is a geodesic) we have to show that any other path from 0 to z has a larger
length.

Let o(t) = x(t) +iy(t), a <t < b be a path from 0 to z. Then it has length

b 9 /
[ gl

TR+ () dt

b 2
Ll—@@“ﬁW%
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b

> /al_i(t)ﬂ’(t)dt
A0 z'(t)
- [t the
B 1+z(t)]°
B logl_x(t)a

1+x
= logl_ :

with equality precisely when ¢/(t) = 0 and y(t) = 0, i.e. with equality precisely when
the path lies along the real axis.

Solution 6.2
Recall h(z) = (2 —14)/(iz — 1) and h=(2) = (—z +1)/(—iz + 1). Let y(2) = (az +b)/(cz +
d), ad — bc > 0, be a Mobius transformation of H. We claim that hyh~! is a Mdbius
transformation of D.

To see this, first note that (after a lot of algebral)

[a+d+i(b—c)z+[—(b+c)—i(a—d)
[—(b+c)+ila—d)]z+]a+d—1i(b—c)]
az+f3

Bz+a’

hyh™Y(z) =

Finally, we must check that |a|?> — 3|2 > 0 which is a simple calculation, using the fact
that ad — bc > 0.

Solution 6.3

Let
a1z + P1 oz + Pa
N ==——"— %G ==""7—

- Bizta’ " Bz 4
where a1, 1, a2, 82 € C and |a1[* —[B1[* = 1 and [az|* — |B2|* = 1. We want to show that
Y172 € M6b(D). Note that

a172(2) + b

B1ye(2) + a1

o ($22) + A

fi(gz2) +a

(102 + B12)z + (0182 + Brdin)
(Brag + a1 2)z + (B1f2 + ara)
az+

Bz +a

7(12(2)) =

where o = ajan + B1 82 and B = a1 82 + Bias. It is straightforward to check that

jaf? =B = (laa|* = [B1*) (Jaz|* — |B2|*) > 0.

Hence 172 € Mob(DD).
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Suppose that

az+p
Bz+a
Then
az —
w=—-:
—Bz+ «
Hence B 5
_ az —
7 H2)

T Brta

and it is easy to see that y~! € Mob(DD).
Clearly the identity map z +— z is a Mdbius transformation of D (take o = 1,8 = 0).
Hence M6b(ID) is a group.

Solution 6.4
The map h : H — D defined in (6.1.1) maps geodesics in H to geodesics in D.

Suppose that z € H lies on a geodesic. Then z lies on either a horizontal straight line
or semi-circle with real centre with an equation of the form

azz+ Pz + Pz +v=0.

Let w = h(z). Then

—w+1
7= —"
—iw + 1
so that L
. —w—1
Z=- .
1w+ 1
Hence w satisfies an equation of the form
—w+i —w—1 —w+1 —w— 1
= 0.
it Pt Pwrl T

Equivalently, w satisfies an equation of the form

a(—w +i)(—w —i) + f(—w+i)(iw + 1) + B(—w — i) (—iw + 1) + y(—iw + 1)(iw + 1) = 0.

Multiplying this out and collecting terms we see that w satisfies an equation of the form
(a+y)ww + (=28 + i(a — ¥))w + (=26 —i(a —v))w + (a +v) = 0.

Let o =a+7, 8/ = —-26+i(a— 7). Then o/ € R and ' € C. Moreover w satisfies an
equation of the form B
dww + f'w + o+ o =0.

Solution 6.5

By applying a Mobius transformation of D, we can move the circle so that its centre is at
the origin 0 € D. (This uses the additional facts that (i) a hyperbolic circle is a Euclidean
circle (but possibly with a different centre and radius), and (ii) Mdbius transformations of
D map circles to circles.) As Mobius transformations of D preserve lengths and area, this
doesn’t change the circumference nor the area.
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Let C, = {w € D | dp(0,w) = r}. By Proposition 6.2.1 and the fact that a rotation is a
Mobius transformation of I, we have that C,. is a Euclidean circle with centre 0 and radius
R where

1+R
1-R
Hence R = (" — 1)/(e" + 1) = tanh(r/2).
Now 9
circumference(C,.) = /(7 1—7|z|2

where o(t) = Re®, 0 < t < 27 is a path that describes the Euclidean circle of radius R,
centred at 0. Now

2
circumference(C, = / -~

2 2) ,
= | el

2w 2R
= 2
[ ==

AR
1— R?

and substituting for R in terms of r gives that the circumference of C) is 27 sinhr.
Similarly, the area of C. is given by

Area(C) = [ [ T ﬁ @z

where D, = {w € D | dp(0,w) < r} is the disc of hyperbolic radius r with centre 0. Now
D, is the Euclidean disc of radius R = tanh(r/2) centred at 0. Recall that when integrating
using polar co-ordinates, the area element is pdpdf. Then

27 R 4
Areap(C,) = / / ———pdpdf
n(Cr) =0 J p=0 (1—P2)2p P
1 R

= 4

1— p2
R2

TR

= 4msinh?r/2.

p=0

= 4

Solution 7.1

(i) Clearly both (=1 +iv/3)/2 and (1 + iv/3)/2 lie on the unit circle in C with centre 0
and radius 1.

One can determine the other two geodesics by recognition; alternatively one can argue
as follows. Consider 0, (—1 + iv/3)/2. These two points lie on a geodesic given by a
semi-circle with equation zZ + 8z + 5Z + = 0. Substituting these two values of z in
gives the simultaneous equations v =0, 1 — 4+~ = 0. Hence g =1, v = 0. Hence
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the equation of the geodesic through 0, (=1 + iy/3)/2 is given by 2Z + z + 2z = 0.
Writing z = x + 4y this becomes z? + y? + 2z = 0. Completing the square gives
(x +1)2 +y? = 1. Hence 0, (—1 +41/3)/2 lie on the circle in C with centre —1 and
radius 1.

A similar calculation shows that 0, (1 4+ iv/3)/2 lie on the circle in C with centre 1
and radius 1.

(ii) As the vertex 0 is on the boundary of H, the internal angle is 0.
We can calculate the angles 17,9 in Figure 25.4 using Exercise 5.6. We obtain

1 P2

Figure 25.4: The angles 91, ¥s.

cos iy = (01 - (F+ 19 = —

1
2 2
so that ¢; = 27 /3. As 01 = m — 11 we have 6, = /3.
Similarly, 6 = /3.
By the Gauss-Bonnet Theorem, the area of the triangle is 7 — (0+ /3 + 7 /3) = 7/3.

Solution 7.2

Let @ be a hyperbolic quadrilateral with vertices A, B,C, D (labelled, say, anti-clockwise)
and corresponding internal angles a, 3,7, d. Construct the geodesic from A to C', creating
triangles ABC' (with internal angles a4, ,71) and CDA (with internal angles 79,4, ag),
where a1 + g = « and 1 4+ 2 = 7. By the Gauss-Bonnet Theorem

Areap(Q) = Areag(ABC) 4+ Areag(CDA)
= m—(a+B+mn)+m—(az+f+1)
21 — (e + B+ v +9).

Solution 7.3

Let D(r) be the hyperbolic polygon with vertices at r,7w, ...,rw" 1. Let a;j(r) denote the
internal angle at vertex rw?. For each 0 < k < n — 1, consider the Mobius transformation
of I given by v;(2) = wFz; this rotates the polygon so that vertex v; is mapped to vertex
Uitk Thus v (D(r)) = D(r). As Mobius transformations of D) preserve angles, this shows
that the internal angle at vertex v; is equal to the internal angle at vertex viyx. By varying
k, we see that all internal angles are equal.

By the Gauss-Bonnet Theorem, we see that

AreagD(r) = (n — 2)7 — na(r).
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Notice that D(r) is contained in C'(r), the hyperbolic disc with hyperbolic centre 0 and
Euclidean radius r. By (the solution to) Exercise 6.5, we see that

lim AreagD(r) < lim AreagC/(r)
r—0 r—0

472
p— 1. p— O
rl_I)I(l) 1— 7“2
Hence 9
lim o(r) = (n=2)m
r—0 n

As 7 — 1, each vertex rw® — w¥ € OD. The internal angle at a vertex on the boundary

is equal to 0. Hence lim,_,; o(r) = 0.

Hence given any « € [0, (n — 2)7/n), we can find a value of r for which a = a(r), and
hence construct a regular n-gon with internal angle «.

Conversely, suppose that D is a regular hyperbolic polygon with each internal angle
a > (n—2)m/n. Then we have that na > (n — 2)w. By the Gauss-Bonnet Theorem,

AreagD=(n—2)t —na<(n—2)r — (n —2)m = 0.
As area must be positive, this is a contradiction.

Solution 7.4
(Not examinable—included for interest only!)

Clearly n > 3 and k > 3.

The internal angle of a regular (Euclidean) n-gon is (n — 2)w/n. Suppose that k n-gons
meet at each vertex. As the polyhedron is convex, the angle sum must be less than 2.
Hence
(n—2)m

n
Rearranging this and completing the square gives (k — 2)(n — 2) < 4. As n, k are integers
greater than 3, we must have that either n = 3 or £ = 3. It is easy to see that the only
possibilities are (n,k) = (3,3), (3,4), (3,5), (4,3) and (5,3), as claimed.

Solution 8.1
First note that

k < 2.

2 1
cos“ax = ———
1 + tan? «

1

1+ tanh? a

sinh? b
sinh? b

sinh?b + tanh®a’

Now using the facts that cosh ¢ = coshacoshb and tanh? a = 1 — 1/ cosh? a we see that

cosh? b

cosh? ¢

tanh’a =1 —

Substituting this into the above equality gives
9 sinh? b
costa = 2 cosh? b
Slnh b + 1-— m
tanh? b

tanh? ¢
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(after some manipulation, using the fact that cosh? — sinh? = 1).
To see that sin 5 = sinh b/ sinh ¢ we multiply the above equation and the equation given
in Proposition 8.2.1 together to obtain

tanh b tanh a

tanh ¢ sinh
sinh b cosh ¢ sinha 1

sinae =

cosh b sinh ¢ cosh a sinh b
sinh a

sinh ¢’
using the fact that cosh ¢ = cosh a cosh b.

Solution 8.2
We prove the first identity. By Proposition 8.2.1 we know that
tanhb . sinh b

cosa = sin 8 = — i
tanh ¢’ sinh ¢

Hence .
cosae tanhbsinhe coshe

sin 8 " tanhcsinhb  coshb

= cosha,

using the hyperbolic version of Pythagoras’ Theorem.
We prove the second identity. By Proposition 8.2.1 we have that

tanh a tanh b
anf =

sinha’
Hence

sinh ¢ sinh b
tanh b tanh a

by the hyperbolic versin of Pythagoras’ Theorem.

Take a Euclidean right-angled triangle with sides of length a,b and ¢, with ¢ being
the hypotenuse. Let « be the angle opposite a and § opposite b. Then cosa = b/c and
sin 8 = b/c so that

cotacot = = cosh a cosh b = coshc,

cos acosec 3 = 1.

As in a Euclidean triangle the angles sum to 7, we must have that 5 = 7/2 — «. Hence the
above identity says that sin(m/2 — ) = cos a.
Similarly, we have that tana = a/b and tan 8 = b/a. Hence

cotacot f = 1.
Again, this can be re-written as tan(w/2 — «) = 1/ tan a.

Solution 8.3
Note that

1 inh 1
cosoz:\/l—sin2 =4/1— :Slna

cosh?a cosha tanha’

Hence )
‘ sin av 1 cosha 1
ano = = - = — .
cosa  cosha sinha sinh a
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Solution 8.4

Label the vertices A, B and C so that the angle at A is «, etc. By applying a Md&bius
transformation of H we may assume that none of the sides of A are segments of vertical
lines. Construct a geodesic from vertex B to the geodesic segment [A, C] in such a way that
these geodesics meet at right-angles. This splits A into two right-angled triangles, BD A
and BDC'. Let the length of the geodesic segment [B, D] be d, and suppose that BDA has
internal angles 1, 7/2,« and side lengths d, by, ¢, as in the figure. Label BDC' similarly.

See Figure 25.5.

Figure 25.5: The sine rule.

From Proposition 8.2.1 we know that

sinh by B, = tanh d
sinhe’ “®P1T Tanhe

sin 81 =

)

S1

n oo =

sinh by
2 ¢
sinha’

OS

By the hyperbolic version of Pythagoras’ Theorem we know that

2

cosh ¢ = cosh by cosh d, cosh a = cosh by cosh d.

Hence

sinf8 = sin(81 + B2)

= sin 81 cos Bo + sin B9 cos 51
sinh by sinh d cosh a

tanh d

~ tanha’

sinh by sinh d cosh ¢

sinh ¢ cosh d sinh a

sinh by sinh d

= ———coshby +

sinh esinh a

sinh d

sinh a sinh ¢

sinh a cosh d sinh ¢

sinh by sinh d cosh by

= —————(sinh by cosh by + sinh by cosh by)

sinh a sinh ¢

sinh d

= ——— " sinh(by +by)

sinh a sinh ¢
sinh bsinh d

sinh asinh ¢’
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Using Proposition 8.2.1 again, we see that sin & = sinh d/ sinh ¢ and siny = sinh d/ sin a.
Substituting these into the above equality proves the result.

Solution 9.1

71 has one fixed point in H at (—3 + iv/51)/6 and so is elliptic. v has fixed points at co
and —1 and so is hyperbolic. 3 has one fixed point at ¢ and so is elliptic. 74 has one fixed
point at 0 and so is parabolic.

Solution 9.2
We have

o

7(2) =

N
S+

and 3 and 4 are already normalised.

Solution 9.3

(i)

(if)

Clearly the identity is in SL(2,R). If A € SL(2,R) is the matrix (a,b;c,d) then A~!
has matrix (d,—b; —c,a), which is in SL(2,R). If A,B € SL(2,R) then det AB =
det Adet B =1 so that the product AB € SL(2,R).

We show that SL(2,Z) is a subgroup. Clearly the identity is in SL(2,Z). If A,B €
SL(2,Z) then the product matrix AB has entries formed by taking sums and products
of the entries of A and B. As the entries of A, B are integers, so are any combination
of sums and products of the entries. Hence AB € SL(2,Z). Finally, we need to
check that if A € SL(2,Z) then so is A~!. This is easy, as if A = (a,b;c,d) then
A~! = (d,—b; —c,a), which has integer entries.

Solution 10.1

(1)

Recall that the Mobius transformation ~; of H is conjugate to the Mobius trans-
formation o of H if there exists a Mdbius transformation g € Mo6b(H) such that
gy~ =2

Clearly + is conjugate to itself (take g = id).

If v = gy19~ " then 41 = ¢ 1429 so that 7 is conjugate to 7 if v1 is conjugate to 7s.

1 -1

If %9 = gy197 " and 3 = hyoh~! then 43 = (hg)y1(hg)~! so that 73 is conjugate to

V1-

Let 71 and 72 be conjugate. Write vo = g1~ where g € M6b(H). Then

n@) =z & g lpgle) =
< 2(g(z)) =g(z)

so that x is a fixed point of ~; if and only if g(z) is a fixed point of 7. Hence g
maps the set of fixed points of 71 to the set of fixed points of v5. As ¢ is a Mdobius
transformation of H and therefore a bijection, we see that 71 and o have the same
number of fixed points.
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Solution 10.2
Let A = (a;5), B = (bij) be two matrices. We first show that trace(AB) = trace(BA).
Recall that the trace of a matrix is the sum of the diagonal elements. Hence

trace(AB) = Z (AB)y;

= Z Z aijbji = Z ijiaij = Z(BA)]
i VA

J

= trace(BA)
where (AB);; denotes the (7,7)th entry of AB.
Let
(Z 12 + by (Z) _ a2% + by
m _clz—|—d1’ 12 _622+d2

be two conjugate Mobius transformations of H. Let

. a1 b o az by
A1_<Cl d1>’A2_<02 d2)’

be their corresponding (normalised) matrices. Let g be a Mébius transformation of H such
that 71 = ¢ '929. Suppose that ¢ has matrix A. By replacing A by —A if necessary, it
follows from the remarks in Lecture 10 that A; = A~1A5A.
Hence
trace(A;) = trace(A 1Ay A) = trace(A AA™!) = trace(4y).

Hence 7(71) = trace(A;)? = trace(A42)? = 7(72).

Solution 10.3
Let v1(z) = z + b where b > 0 and let y2(2) = z + 1. As both v; and 2 have fixed
points at oo and a conjugacy acts a ‘change of co-ordinates’, we look for a conjugacy from
1 to 7y, that fixes co. We will try g(z) = kz for some (to be determined) & > 0. Now
g 'mg(z) = g ' (kz) = g Y (kz +b) = z + b/k. So we choose k = b.
Now let v1(z) = 2z — b where b > 0 and let v2(2) = z — 1. Again, let g(z) = kz for some
k> 0. Then g~ 'y19(2) = g~ 'y(k2) = g *(kz — b) = z — b/k. So again we choose k = b.
Suppose that v1(z) = z + 1 and 72(z) = z — 1 are conjugate. Then there exists g(z) =
(az+b)/(cz+d) € Méb(H) such that y19(z) = gv2(2). In terms of matrices, this says that

o) (Ea)==(2a) (o)

That is,
a+c b+d\ (a —a+b
c d ~\ ¢ —c+d )’
Comparing coefficient in the ‘4’ case, we see that ¢ = 0 and d = —a. Hence ad — bc =
—a? < 0, a contradiction. In the ‘—’ case, we see that ¢ = 0, d = 0, so that ad — bc = 0,

again a contradiction. Hence 71,72 are not conjugate in Mob(H).

Solution 11.1
Let 71(2) = ki1z and ~9(z) = koz where ki, ko # 1. Suppose that ~; is conjugate to
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~v2. Then there exists a Mdbius transformation of H, v(z) = (az + b)/(cz + d), such that
¥711(2) = y27(z). Explicitly:

akiz+b az+b
ckiz+d \eztd)”

Multiplying out and equating coefficients gives
acky = ackiks, adky + bc = koad + k1kabe, bd = kobd.

As ko # 1 the third equation implies that bd = 0.

Case 1: b = 0. If b = 0 then the second equation implies that adk; = adks. So either
ki = ko or ad = 0. If ad = 0 then, as b = 0, we have ad — bc = 0 so v is not a Md&bius
transformation of H. Hence k1 = ks.

Case 2: d =0. If d =0 then bec = becki1ks. So either k1ko = 1 or be = 0. If bec = 0 then,
as d = 0, we have ad — bc = 0 so 7 is not a Md&bius transformation of H. Hence k1ks = 1.

Here is a sketch of an alternative method. If 71 (2) = k12 and ~2(z) = koz are conjugate
then they have the same trace. The trace of 41 is seen in Exercise 11.2 below to be
(Vk1 +1/v/k1)?, and the trace of 72 is (vVk2 + 1/v/k2)?. Equating these shows (after some
manipulation) that k; = ks or k1 = 1/ks.

Solution 11.2
Let v be hyperbolic. Then ~ is conjugate to a dilation z — kz. Writing this dilation in a
normalised form

k

—Z

szTk
Vk

we see that

T(y) = <x/E+ \%)2

Solution 11.3

Let ~ be an elliptic Mébius transformation. Then v is conjugate (as a Mobius transfor-
mation of D) to the rotation of D by 6, i.e. v is conjugate to z + e®z. Writing this
transformation in a normalised form we have

¢i0/2,,

g yoL

which has trace . -
(619/2 + 6*19/2)2 — 40052(9/2).

Hence 7(7y) = 4 cos?(0/2).

Solution 12.1
Fix ¢ > 0 and let

r,= {7(2) = Zjis | a,b,c,d € Z, b, c are divisible by q} .

First note that id € I'y (take a =d =1,b=c¢=0).
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Let v1 = (a1z2 + b1)/(c12 + d2),v2 = (agz + b2)/(c2z + d2) € T';. Then

(ara2 + bic2)z + (a1b + bida)
(crag + dyca)z + (c1by + dids)”

1172(2) =

Now ¢ divides b1, ba, c1, co. Hence ¢ divides a1by + bida and cras + dica. Hence y1y2 € Ty,
If v(z) = (az + b)/(cz + d) € Ty then v~ 1(2) = (dz — b)/(—cz + a). Hence vy~ € T,.
Hence Iy is a subgroup of Mob(H).

Solution 12.2
The group generated by v1(z) = z 4+ 1 and 72(2) = kz (k # 1) is not a Fuchsian group.
Consider the orbit I'(7) of i. First assume that & > 1. Then observe that

Yo " Y (1) = vy " (KT) = 5 (K" +m) =i+ m/E".

By choosing n arbitrarily large we see that m/k™ is arbitrarily close to, but not equal
to, 0. Hence 7 is not an isolated point of the orbit I'(7). Hence I'(7) is not discrete. By
Proposition 12.5.1, T" is not a Fuchsian group.

The case where 0 < k < 1 is similar, but with ~, "7{"v4 replaced by v§~v{"v5 "

Solution 13.1
See Figure 25.6.

Figure 25.6: Solution to Exercise ex:examplesoftwotessellations.

Solution 14.1
(Not examinable—included for interest only!)

Recall that a subset C' C H is convex if: Vz,w € C,[z,w] C C; that is, the geodesic
segment between any two points of C lies inside C.

Let us first show that a half-plane is convex. We first show that the half-plane Hy =
{z € H| Re(z) > 0} is convex; in fact this is obvious by drawing a picture. Now let H be
any half-plane; we have to show that H is convex. Recall that H is defined by a geodesic
£ of H and that the group of Mdbius transformations of H acts transitively on geodesics.
Hence we can find a Mobius transformation v of H that maps the imaginary axis to /.
Hence v maps either Hy or {z € H | Re(z) < 0} to H. In the latter case we can first
apply the isometry z — —Z so that Hjy is mapped by an isometry to H. As isometries map
geodesic segments to geodesic segments, we see that H is convex.
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Finally, let D = NH; be an intersection of half-planes. Let z,w € D. Then z,w € H;
for each i. As H; is convex, the geodesic segment [z, w] C H; for each i. Hence [z,w] C D
so that D is convex.

Solution 14.2

(i) By Proposition 14.3.1, z € H is on the perpendicular bisector of [z1, 5] if and only if
du(z,z1) = du(z, z2). Note that
du(z,2z1) = du(z,22) < coshdy(z,z1) = coshdg(z, z2)
|z — z1|? |2 — 2of?
o 1+ g FT
+ 2y; Im(2) 2yo Im(z)

& yolz — z1\2 =y|z — z2]2.

(ii) Let z = = 4+ iy. Then z is on the perpendicular bisector of 1 + 2i and (6 + 8i)/5
precisely when

5 5

4((m—1)2+(y—2)2):5<<x—§>2+<y—§>2>.

Expanding this out and collecting like terms gives

Sl in) ~ (14 20P =2la+ i) - (545 ) P

i.e.

z? — Az + y2 =0
and completing the square gives
(x—2)2+y?=4=22
Hence the perpendicular bisector is the semi-circle with centre (2,0) and radius 2.
Solution 15.1
Let I' = {7, | m(2) = 2"z}. Let p = i and note that v,(p) = 2" # p unless n = 0.
For each n, [p,v,(p)] is the arc of imaginary axis from ¢ to 2™i. Suppose first that n > 0.

Recalling that for a < b we have dy(ai,bi) = logb/a it is easy to see that the midpoint of
[i,27] is at 2%/2i. Hence L,(v,) is the semicircle of radius 2"/2 centred at the origin and

Hy(7n) = {z € H| |2| < 2"?}.

For n < 0 one sees that
Hy(vn) = {z € H| |2 > 2"},
Hence

D) = () Hylw)

yn€l\{1d}

= {z€H|1/V2<|z] <V2}.
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Solution 16.1
Let p =i and let v, (2) = 2"2. There are two sides:

s1 = {z€C||2|=1/v2},
ss = {z€C||z| = V2}.

The side s; is the perpendicular bisector of [p,v_1(p)]. Hence s,, the side-pairing trans-
formation associated to the side sq, is

You(2) = (7-1)7H(2) = 22
and pairs side s1 to side so. Hence s, (2) = 75, (2) = 2/2.

Solution 17.1

(i) This follows by observing that running the algorithm starting at (v, *s) is the same
as running the algorithm for (v, s) backwards.

(ii) Starting the algorithm at (v;,s;) is the same as starting from the i*! stage of the
algorithm started at (v, sg)-

Solution 17.2
Suppose the vertices in the elliptic cycle are labelled so that the elliptic vertex cycle is

Vo —> V2 — + — Up—1
and the side-pairing transformations are labelled so that the elliptic cycle is given by

71)0,30 = TmVYn—1"""71-

Suppose that v, s, has order m > 0.
Now consider the pair (v;, s;). Then the elliptic cycle is given by

Yvi,si = ViVi—1V1UYn " Vitl

= (i ) Voo,s0 (i)

Then

e = (i ) Yoo (Vi) T (e ) Yoo (i) T
(V) Yoosso (Vi)
= (Vi) o (ie )

= (v
= Id.

Hence 7, s, has order m.

Solution 18.1
Let T' = (a,b | a*

= b%2 = (ab)? = ¢). First note that e = a* = a®a and e = b> = bb s0
that a=! = a3 and b~}

=b. Now e = (ab)? = abab and multiplying on the left first by a~!
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and then b~! gives that ab = ba®. (Note that one cannot write (ab)? # a?b%.) From this it
follows that

a’b = a(ab) = a(ba®) = (ab)a® = baa® = ba® = ba*a* = ba®
and similarly
a®b = a(a®b) = a(ba®) = (ab)a® = ba*a® = ba® = ba.
Now let w € I' be a finite word in I'. Then

w = a1yt ... q"kp"k

for suitable integers n;,m;. Using the relations a* = b?> = e we can assume that n; €
{0,1,2,3} and m; € {0,1}. Using the relations we deduced above that ab = ba3, a*b = ba?
and a3b = ba, we can move all of the as to the left and all of the bs to the right to see that
we can write w = a™b™ for suitable integers n,m. Again, as a* = b> = e we can assume
that n € {0,1,2,3} and m € {0,1}. Hence there are exactly 8 elements in I".

Solution 19.1
Label the sides and vertices of the quadrilateral as in Figure 25.7. Then

D C

Figure 25.7: A hyperbolic quadrilateral.

(2) 2 (0)= (%)

53
(L) ()
S92 S3
* (a) ()
— —
S1 S9
= (n)= ()
S4 s1 /)

Hence the elliptic cycle is A - D — C' — B and the corresponding elliptic cycle transfor-
mation is 7{17517172.

If we let ZA denote the internal angle at A, with similar notation for the other vertices,
then the angle sum is sum(A) = LA+ £ZB+ ZC + ZD.

By Poincaré’s Theorem, 71,72 generate a Fuchsian group if and only if

m(LA+ LB+ £C + £D) = 2w
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for some integer m > 1.

Solution 20.1
Label the sides as in Figure 25.8. Then

st

S3 S4
Y2

S1 S92

and

and

Hence there are 3 vertex cycles: —1 — 1, oo and 0. The corresponding parabolic cycles
are: v, Lo, 41 and 79, respectively.

—1 —1 with corresponding parabolic cycle transformation ~; 172,
oo with corresponding parabolic cycle transformation -y,
0 with corresponding parabolic cycle transformation ~s.

Clearly 7, is parabolic (it is a translation and so has a single fixed point at oco). The
map 72 is parabolic; it is normalised and has trace 7(y2) = (1 4+ 1)? = 4. Finally, the map
v 172 is given by:

_ _ z z —3z—2
1 2(z) = ( > .1

2%+1) 2241 ° 2241

which is normalised; hence 7(v; Lyg) = (=3 +1)2 = 4 so that v Ly is parabolic.

By Poincaré’s Theorem, as all parabolic cycle transformations are parabolic (and there
are no elliptic cycles), the group I' generated by 71,72 is a Fuchsian group.

As there are no elliptic cycles, there are no relations. Hence the group is isomorphic to
(a,b) (take a = ~1,b = 72), which is the free group on 2 generators.
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Solution 20.2

(1)

(i)

The side-pairing transformation 7, is a translation that clearly maps the side Re(z) =
—(14-+/2/2) to the side Re(z) = 1++/2/2. Hence 7 is a side-pairing transformation.

Recall that through any two points of HUJH there exists a unique geodesic. The map
72 maps the point iv/2/2 to itself and the point —(1 4+ v/2/2) to 1 ++/2/2. Hence 7o
maps the arc of geodesic [A4, B] to [C, B]. Hence 72 is a side-pairing transformation.

Let s; denote the side [B, A], s2 denote the side [B, C], s3 denote the side [C, co] and

s4 denote the side [A, oo].
() ()= ()
= — .
51 52 51

Hence we have an elliptic cycle £ = B with elliptic cycle transformation ~9 and
corresponding angle sum sum(€) = ZB = w/2. As 4w/2 = 2m, the elliptic cycle
condition holds with mge = 4.

Now

Now consider the following parabolic cycle:

() (3)=(3)

Hence we have a parabolic cycle P; = oo with parabolic cycle transformation ;. As vy
is a translation, it must be parabolic (recall that all parabolic Mobius transformations
of H are conjugate to a translation). Hence the parabolic cycle condition holds.

Finally, we have the parabolic cycle:
(2) » (5)=(%)
S4 S3 59
> (5)=(5)
= O :
S1 S4

Hence we have a parabolic cycle P, = A — C with parabolic cycle transformation:
Yo 171- Now 75 171 has the matrix

(27 ) (o 707) = (8 3208 )

which is normalised. Hence the trace of v, Ly s

(ﬁ_z_@> s

2 2

Using the fact that a Mdbius transformation is parabolic if and only if it has trace 4,
we see that v, 1+, is parabolic. Hence the parabolic cycle condition holds.

By Poincaré’s Theorem, y; and o generate a Fuchsian group. In terms of generators
and relations, it is given by
(a,b| b* =e).

(Here we take a = 71,b = 2. The relation b* comes from the fact that the elliptic
cycle £ = B has elliptic cycle transformation ¢ = 2 with angle sum 7/2. Hence
mg = 4. The relation v¢'¢ is then b%.)
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Solution 21.1

(i) First note that one side of the polygon is paired with itself. Introduce a new vertex
at the mid-point of this side, introducing two new sides each of which is paired with
the other. Label the polygon as in Figure 25.9.

Figure 25.9: Labelling the hyperbolic polygon, remembering to add an extra vertex to
the side that is paired with itself.

(2)=(2)=(0)

This gives an elliptic cycle & = B with elliptic cycle transformation +; and angle
sum sum(&;) = 7. Hence the elliptic cycle condition holds with m; = 2.

(2)=(2)=(2)

This gives an elliptic cycle & = D with elliptic cycle transformation ~5 and angle
sum sum(&2) = 27/3. Hence the elliptic cycle condition holds with m; = 3.

(F)s(5)=(5)

This gives an elliptic cycle &3 = F with elliptic cycle transformation -3 and angle
sum sum(&3) = 27/7. Hence the elliptic cycle condition holds with m; = 7.

() (£)°(5)
©(2)5(2)
()50
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(iii)

This gives an elliptic cycle & = A — C — FE with elliptic cycle transformation
v372y1- The angle sum is sum(&3) = 01 + 02 + 63 = 2m. Hence the elliptic cycle
condition holds with m4 = 1. Hence &, is an accidental cycle.

By Poincaré’s Theorem, 71, 72, 3 generate a Fuchsian group I'. In terms of generators
and relations we can write

I =(a,b,c|a®=0b%=c" =abc=e).

To calculate the genus of H/I" we use Euler’s formula 2 —2g = V — E+4 F. Recall that
each elliptic cycle on the polygon glues together to give one vertex on a triangulation
of H/T'. As there are 4 elliptic cycles we have V' = 4. Each pair of paired sides in
the polygon glue together to give one edge on a triangulation of H/T'. As there are
6 sides in the polygon, there are £ = 6/2 = 3 edges in the trinagulation of H/T". As
we are only using 1 polygon, there is F' = 1 face of the triangulation of H/T'. Hence
2—-29g=V-FE+F=4—-3+1=2,s0that g=0.

As the orders of the non-accidental elliptic cycles are 2,3,7, we see that sig(I') =
(0;2,3,7).

Solution 21.2
From Exercise 7.3, we know that there exists a regular hyperbolic n-gon with internal angle
0 provided (n — 2)m — 86 > 0. When n = 8, this rearranges to 6 € [0,37/4).

Label the vertices of the octagon as indicated in Figure 25.10.

We have
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() ()
S4 S5
= (m)= ()
S7 S8
()= (3)
S6 ST
v Vg LN Ve
S5 Sg
=)= ()
S8 S1

Thus there is just one elliptic cycle:
E =v1 = v4 > v3 = Vg = V5 —> Vg — U7 —> Vg.
with associated elliptic cycle transformation:

Ve e sy P e m

As the internal angle at each vertex is 0, the angle sum is 89 Hence the elliptic cycle
condition holds whenever there exists an integer m = mg such that 8mf = 27, i.e. whenever
0 = 7/4m for some integer m. When m = 1 this is an accidental cycle.

Let 6 be such that § = 7/4m for some integer m. Then by Poincaré’s Theorem, the
group I'; /4, generated by the side-pairing transformations 71, ..., 74 generate a Fuchsian
group. Moreover, we can write this group in terms of generators and relations as follows:

F7r/4m = (71,72, 73,74 | (721W§174737§171’17271)m =e).

The quotient space H/T'; 4y, is a torus of genus 2. When m = 1, sig(I';/4) = (2, —) and
H/I' /4 has no marked points. When m > 2 then sig(I';/4) = (2,m) and H/T'; /4, has one
marked point of order m.

Solution 21.3

(i) Consider the Dirichlet polygon and side-pairing transformations for the modular
group that we constructed in Lecture 15. See Figure 25.11. The sides s; and so
are paired. This gives one cusp at the point oo.

There are two elliptic cycles: A — B (which has an angle sum of 27/3), and ¢ (which
has an angle sum of 7). Hence when we glue together the vertices A and B we get a
marked point of order 3, and the vertex ¢ gives a marked point of order 2.

We do not get any ‘holes’ when we glue together the sides. Hence we have genus 0.
Thus the modular group has signature (0;2,3;1).

(ii) By Proposition 13.2.1 it is sufficient to prove that the formula holds for a Dirichlet
polygon D. Suppose that D has n vertices (hence n sides).

We use the Gauss-Bonnet Theorem (Theorem 7.2.1). By Proposition 17.3.1, the angle
sum along the j** non-accidental elliptic cycle &jis
27

sum(&;) = —
j
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52

S3 S4

Figure 25.11: A fundamental domain and side-pairing transformations for the modular
group.

Hence the sum of the interior angles of vertices on non-accidental elliptic cycles is

Suppose that there are s accidental cycles. (Recall that a cycle is said to be accidental
if the corresponding elliptic cycle transformation is the identity, and in particular has
order 1.) By Proposition 17.3.1, the internal angle sum along an accidental cycle is
2. Hence the internal angle sum along all accidental cycles is 2ms.

Suppose that there are ¢ parabolic cycles. The angle sum along a parabolic cycle must
be zero (the vertices must be on the boundary, and the angle between two geodesics
that intersect on the boundary must be zero).

As each vertex belongs to either a non-accidental elliptic cycle, to an accidental cycle
or to a parabolic cycle, the sum of all the internal angles of D is given by

T

2 Zmij—{—s

j=1
By the Gauss-Bonnet Theorem, we have

T

1
A D) = —2)r —2 — . 25.5
reagg (D) = (n )T T JZ:; m; +s ( )

Consider now the space H/I'. This is formed by taking D and glueing together paired
sides. The vertices along each elliptic cycle, accidental cycle and parabolic cycle are
glued together to form a vertex in H/T". Hence the number of vertices in H/T" is equal
to the number of cycles (elliptic, accidental and parabolic); hence D corresponds to a
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triangulation of H/T' with V' = r + s + ¢ vertices. As paired sides are glued together,
there are £ = n/2 edges. Finally, as we only need the single polygon D, there is only
F =1 face. Hence

2 —2g = x(H/T) =r+s+c—g+1

which rearranges to give

n—2=2((r+s+c)—(2—2g)). (25.6)

Substituting (25.6) into (25.5) we see that

T

1
Areag(D) = 2« r+s+c—(2—29)—z—_s
"
j=1""
d 1
= o | (292 1_ &
T | (29 )‘f‘;( mj)—i—c

(iii) We must show that
. 1 1
2g —2 1—— > —. 25.7
-2+ 3 (1= ) ez g (257

We assume that ¢ > 1.

If g > 1 then 2g — 2+ ¢ >1 > 1/6, so that (25.7) holds. So it remains to check the
cases when g = 0.

Ifg=0and ¢ > 2then 29 —2+c¢ > 0. As1—1/m; > 1/2, it follows that the
left-hand side of (25.7) is at least 1/2. Hence (25.7) holds. So it remains to check the
cases when g =0 and ¢ = 1.

If g=0and ¢ =1 then 29 —2+c = —1. As m; > 2, we see that 1 —1/m; > 1/2.
Hence if r > 3 then the left-hand side of (25.7) is at least 1/2. Hence (25.7) holds. It
remains to check that case when ¢ =0, c =1 and r = 2.

In this case, it remains to check that

1 1_1
k) =1—>—->=
s(h:1) E 176
(letting & = my,l = mg). We may assume that k¥ < [. Now s(3,3) = 1/3 > 1/6
and s(3,1) > 1/3 for [ > 3. Hence we may assume that k& = 2. Then s(2,2) = 0,
s(2,3) =1/6 and s(2,1) > 1/6. Hence the minimum is achieved for k = 2,1 = 3.

Hence the minimum is achieved for a Fuchsian group with signature (0;2,3;1). By
part (i), this is the signature of the modular group.
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