3. Shifts of finite type

3.1 Shifts of finite type

Let \(S = \{1, 2, \ldots, k\} \) be a finite set of symbols. We will be interested in sets consisting of sequences of these symbols, subject to certain conditions. We will impose the following conditions: we assume that for each symbol \(i \) we allow certain symbols (depending only on \(i \)) to follow \(i \) and disallow all other symbols.

This information is best recorded in a \(k \times k \) matrix \(A \) with entries in \(\{0, 1\} \). That is, we allow the symbol \(j \) to follow the symbol \(i \) if and only if the corresponding \((i, j)\)th entry of the matrix \(A \) (denoted by \(A_{i,j} \)) is equal to 1.

Definition. Let \(A \) be a \(k \times k \) matrix with entries in \(\{0, 1\} \). Let

\[
\Sigma_A^+ = \{(x_j)_{j=0}^{\infty} \mid A_{x_i,x_{i+1}} = 1, \text{ for } j \in \mathbb{N}\}
\]

denote the set of all infinite sequences of symbols \((x_j)\) where symbol \(j \) can follow symbol \(i \) precisely when \(A_{i,j} = 1 \). We call \(\Sigma_A^+ \) a *(one-sided)* shift of finite type.

Let

\[
\Sigma_A = \{(x_j)_{j=-\infty}^{\infty} \mid A_{x_j,x_{j+1}} = 1, \text{ for } j \in \mathbb{Z}\}
\]

denote the set of all bi-infinite sequences of symbols subject to the same conditions. We call \(\Sigma_A \) a *(two-sided)* shift of finite type.

Sometimes for brevity we refer to \(\Sigma_A^+ \) or \(\Sigma_A \) as a *shift space*.

An alternative description of \(\Sigma_A^+ \) and \(\Sigma_A \) can be given as follows. Consider a graph with vertex set \(\{1, 2, \ldots, k\} \) and with a directed edge from vertex \(i \) to vertex \(j \) precisely when \(A_{i,j} = 1 \). Then \(\Sigma_A^+ \) and \(\Sigma_A \) correspond to the set of all infinite (respectively, bi-infinite) paths in this graph.

Define

\[
\sigma^+ : \Sigma_A^+ \to \Sigma_A^+
\]

by

\[
(\sigma^+(x))_j = x_{j+1}.
\]

Then \(\sigma^+ \) takes a sequence in \(\Sigma_A^+ \) and shifts it one place to the left (deleting the first term), We call \(\sigma^+ \) the *(one-sided, left)* shift map.

There is a corresponding shift map on the two-sided shift space. Define

\[
\sigma : \Sigma_A \to \Sigma_A
\]
by

$$(\sigma(x))_j = x_{j+1},$$

so that σ shifts sequences one place to the left. Notice that in this case, we do not need to delete any terms in the sequence. We call σ the (two-sided, left) shift map.

Notice that σ is invertible but σ^+ is not.

Examples.

1. Take A to be the $k \times k$ matrix with each entry equal to 1. Then any symbol can follow any other symbol. Hence Σ^+_A is the space of all sequences of symbols $\{1, 2, \ldots, k\}$. In this case we write Σ^+_k for Σ^+_A and refer to it as the full one-sided k-shift. Similarly, we can define the full two-sided k-shift.

2. Take A to be the matrix

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then Σ^+_A consists of all sequences of 1s and 2s subject to the condition that each 2 must be followed by a 1.

The following two exercises show that, for certain A, Σ^+_A (or Σ_A) can be rather uninteresting.

Exercise 3.1

Let

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Show that Σ^+_A is empty.

Exercise 3.2

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Calculate Σ^+_A.

The following conditions on A guarantee that Σ^+_A (or Σ_A) is more interesting than the examples in exercises 3.1 and 3.2.

Definition. Let A be a $k \times k$ matrix with entries in $\{0, 1\}$. We say that A is irreducible if for each $i, j \in \{1, 2, \ldots, k\}$ there exists $n = n(i, j) > 0$ such that $(A^n)_{i,j} > 0$. (Here, $(A^n)_{i,j}$ denotes the (i,j)th entry of the nth power of A.)
Definition. Let A be a $k \times k$ matrix with entries in $\{0, 1\}$. We say that A is aperiodic if there exists $n > 0$ such that for all $i, j \in \{1, 2, \ldots, k\}$ we have $(A^n)_{i,j} > 0$.

In graph-theoretic terms, the matrix A is irreducible if there exists a path along edges from any vertex to any other vertex. The matrix A is aperiodic if this path can be chosen to have the same length (i.e. consist of the same number of edges), irrespective of the two vertices chosen.

Exercise 3.3
(i) Consider the matrix

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}.
\]

Draw the corresponding graph. Is this matrix irreducible? Is it aperiodic?

(ii) Consider the matrix

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}.
\]

Draw the corresponding graph. Is this matrix irreducible? Is it aperiodic?

Remark. These shift spaces may seem very strange at first sight—it takes a long time to get used to them. However (as we shall see) they are particularly tractable examples of chaotic dynamical systems. Moreover, a wide class of dynamical systems (notably hyperbolic dynamical systems) can be modeled in terms of shifts of finite type. We have already seen a particularly simple example of this: the doubling map can be modeled by the full one-sided 2-shift.

§3.2 Periodic points

A sequence $x = (x_j)_{j=0}^\infty \in \Sigma_A^+$ is periodic for the shift σ^+ if there exists $n > 0$ such that $\sigma^n x = x$.

One can easily check that this means that

\[x_j = x_{j+n} \text{ for all } j \in \mathbb{N}. \]

That is, the sequence x is determined by a finite block of symbols x_0, \ldots, x_{n-1} and

\[x = (x_0, x_1, \ldots, x_{n-1}, x_0, x_1, \ldots, x_{n-1}, \ldots). \]

Exercise 3.4
Consider the full one-sided k-shift. How many periodic points of period n are there?
§3.3 Cylinders

In future lectures we will need a particularly tractable class of subsets of shift spaces. These are the cylinder sets and are formed by fixing a finite set of co-ordinates. More precisely, in Σ_A we define

$$[y_{-m}, \ldots, y_{-1}, y_0, y_1, \ldots, y_n]_{-m,n} = \{x \in \Sigma_A \mid x_j = y_j, -m \leq j \leq n\},$$

and in Σ_A^+ we define

$$[y_0, y_1, \ldots, y_n]_{0,n} = \{x \in \Sigma_A^+ \mid x_j = y_j, 0 \leq j \leq n\}.$$

§3.4 A metric on Σ_A^+

What does it mean for two sequences in Σ_A^+ to be ‘close’? Heuristically we will say that two sequences $(x_j)_{j=0}^\infty$ and $(y_j)_{j=0}^\infty$ are close if they agree for a large number of initial places.

More formally, for two sequences $x = (x_j)_{j=0}^\infty, y = (y_j)_{j=0}^\infty \in \Sigma_A^+$ we define $n(x, y)$ by setting $n(x, y) = n$ if $x_j = y_j$ for $j = 0, \ldots, n - 1$ but $x_n \neq y_n$. Thus $n(x, y)$ is the first place in which the sequences x and y disagree. (We set $n(x, y) = \infty$ if $x = y$.)

We define a metric d on Σ_A^+ by

$$d((x_j)_{j=0}^\infty, (y_j)_{j=0}^\infty) = \left(\frac{1}{2}\right)^{n(x, y)}$$

if $x \neq y$,

and $d((x_j)_{j=0}^\infty, (y_j)_{j=0}^\infty) = 0$ if $x = y$.

Exercise 3.5

Show that this is a metric.

In the two-sided case, we can define a metric in a similar way. Let $x = (x_j)_{j=-\infty}^\infty, y = (y_j)_{j=-\infty}^\infty \in \Sigma_A$. Define $n(x, y)$ by setting $n(x, y) = n$ if $x_j = y_j$ for $|j| \leq n - 1$ and either $x_n \neq y_n$ or $x_{-n} \neq y_{-n}$. Thus $n(x, y)$ is the first place, going either forwards or backwards, in which the sequences x,y disagree. (We again set $n(x, y) = \infty$ if $x = y$.)

We define a metric d on Σ_A in the same way:

$$d((x_j)_{j=-\infty}^\infty, (y_j)_{j=-\infty}^\infty) = \left(\frac{1}{2}\right)^{n(x, y)}$$

if $x \neq y$,

and $d((x_j)_{j=-\infty}^\infty, (y_j)_{j=-\infty}^\infty) = 0$ if $x = y$.

Theorem 3.1

Let Σ_A^+ be a shift of finite type.

(i) Σ_A^+ is a compact metric space.
(ii) The shift map σ^+ is continuous.

Remark. The corresponding statements for the two-sided case also hold.

Proof.

(i) If $\Sigma_A^+ = \emptyset$ or if Σ_A^+ finite then trivially it is compact. Thus we may assume that Σ_A^+ is infinite.

Let $x^{(m)} \in \Sigma_A^+$ be a sequence (in reality, a sequence of sequences!). We need to show that $x^{(m)}$ has a convergent subsequence. Since $\Sigma_A^+ = \bigcup_{i=1}^k [i]$ at least one cylinder $[i]$ contains infinitely many elements of the sequence $x^{(m)}$; call this $[y_0]$. Thus there are infinitely many m for which $x^{(m)} \in [y_0]$. Since $[y_0] = \bigcup_{i=1}^k [y_0i]$ we similarly obtain a cylinder of length 2, $[y_0y_1]$ say, containing infinitely many elements of the sequence $x^{(m)}$.

Continue inductively in this way to obtain a nested family of cylinders $[y_0, \ldots, y_n]$, $n \geq 0$, each containing infinitely many elements of the sequence $x^{(m)}$.

Set $y = (y_n)_{n=0}^\infty \in X_A^+$. Then for each $n \geq 0$, there exist infinitely many m for which $d(y, x^{(m)}) \leq (1/2)^m$. Thus y is the limit of some subsequence of $x^{(m)}$.

(ii) We want to show the following: $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $d(x, y) < \delta \Rightarrow d(\sigma(x), \sigma(y)) < \varepsilon$.

Let $\varepsilon > 0$. Choose n such that $1/2^n < \varepsilon$. Let $\delta = 1/2^{n+1}$. Suppose that $d(x, y) < \delta$. Then $n(x, y) > n+1$, so that x and y agree in the first $n+1$ places. Hence $\sigma(x)$ and $\sigma(y)$ agree in the first n places, so that $n(\sigma(x), \sigma(y)) > n$. Hence $d(\sigma(x), \sigma(y)) = 1/2^{n(\sigma(x), \sigma(y))} < 1/2^n < \varepsilon$. \hfill \square

Exercise 3.6

Let A be an irreducible $k \times k$ matrix with entries in $\{0, 1\}$. Show that the set of all periodic points for σ^+ is dense in Σ_A^+. (Recall that a subset Y of a set X is said to be dense if: for all $x \in X$ and for all $\varepsilon > 0$ there exists $y \in Y$ such that $d(x, y) < \varepsilon$, i.e. any point of X can be arbitrarily well approximated by a point of Y.)

Exercise 3.7

Let A be an irreducible $k \times k$ matrix with entries in $\{0, 1\}$. Show that there exists a point $x \in \Sigma_A^+$ with a dense orbit. (Hint: first show that if the orbit of a point visits each cylinder then it is dense. To construct such a point, mimic the argument used for the doubling map in Lecture 2. Use irreducibility to show that one can concatenate cylinders together by inserting finite strings of symbols between them.)