The principal value of the complex lug,
$$log z$$
, 0
is not continuous (& therefore not differentiable)
on $\mathbb{C} \setminus \{0\}$.
Why? Because $\operatorname{Arg}\{z\}$ is not continuous on $\mathbb{C} \setminus \{0\}$.

 $\operatorname{Arg}\{z\}$ is close to π
 $\operatorname{Arg}\{z\}$ is close to $-\pi$.

 $\operatorname{Arg}(z)$ is continuous on the cut-plane D.

 $\operatorname{Arg}(z)$ is holomorphic on the cut-plane D and

 $\operatorname{Arg}(z) = \frac{1}{z}$.

PR Let $\omega = \operatorname{Leg}(z)$, so $z = \exp(\omega)$. Let $\operatorname{Leg}(z+h) = \omega + h$.

 $\operatorname{Arg}(z) = \lim_{h \to 0} \frac{\operatorname{Leg}(z+h) - \operatorname{Legz}}{(z+h) - z}$.

 $= \lim_{h \to 0} \frac{(\omega+k) - \omega}{\exp(\omega+k) - \exp(\omega)}$.

$$= \lim_{k \ge 0} \left(\frac{\exp((\omega+k) - \exp(\omega)}{k} \right)^{-1}$$

$$= \left(\exp^{r}(\omega) \right)^{-1} = \frac{1}{\exp(\omega)} = \frac{1}{2}$$

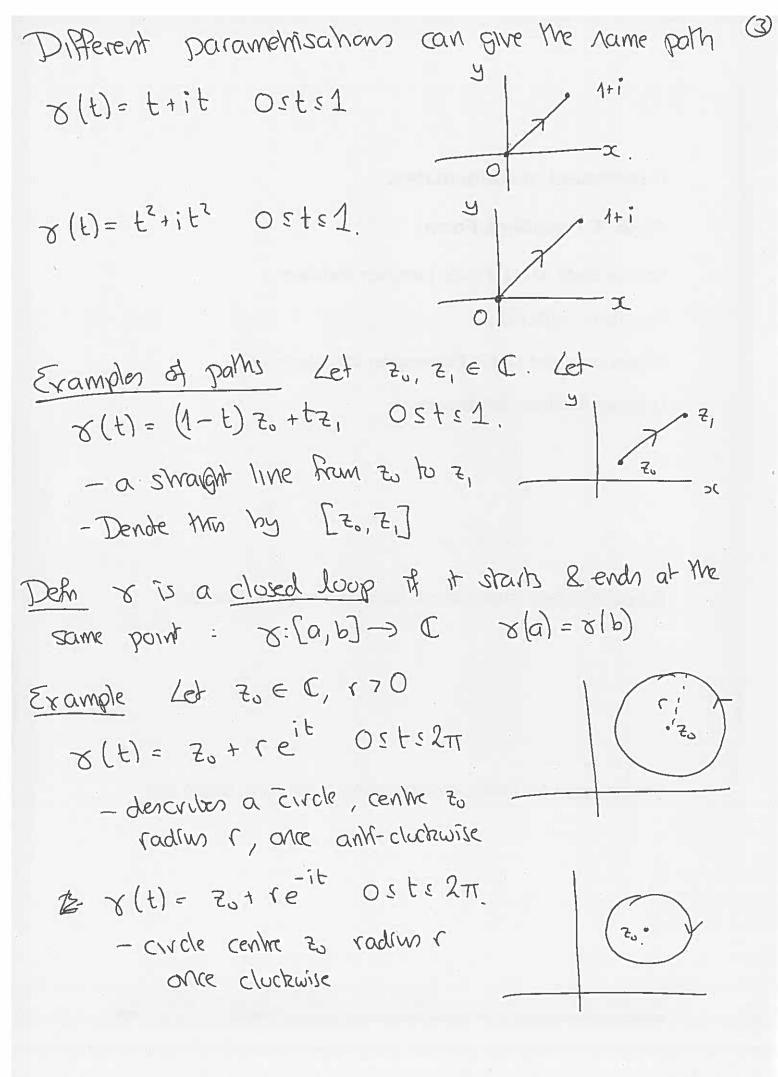
$$= \left(\exp^{r}(\omega) \right)^{-1} = \frac{1}{\exp(\omega)} = \frac{1}{2}$$

$$= \left(\exp^{r}(\omega) \right)^{-1} = \frac{1}{\exp(\omega)} = \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \left(\exp^{r}(\omega) \right)^{-1} = \frac{1}{\exp(\omega)} = \frac{1}{2}$$

$$= \frac{1}{2}$$

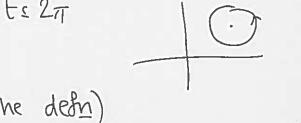


Defn & is smooth if $\sigma(t)$ is differentiable and $\gamma'(t)$ is continuous (means: γ hon no corners).

Defo Let $\gamma: [a,b] \rightarrow C$ be a smooth path. Then length $(\gamma) := \int_{a}^{b} |\gamma'(t)| dt$

Examples: (1) length $[z_0, z_1] = |z_1 - z_0|$

(2) γ(t) = zotreit Osts 27 length (x) = 2πr. (easy checks from the defn).

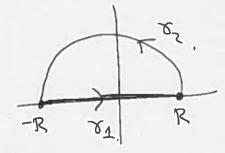


 (\mathbf{q})

p 71

Defin a contour & is a collection of smooth paths 81, -78n s.t. the end point of 8r is the start point of 81,11 (Essentially: a contour to a smooth path, except we allow finitely many corners.)

Write $\gamma = \gamma_4 + \gamma_2 + \dots + \gamma_n$. Example $\gamma_4(t) = t - RstsR$ $\gamma_2(t) = Re^{it}$ OstsT



J= JA+JZ is a D-shaped contour. Defin J is a clused contour if it starts & ends at (c) 2020 The University of Manchester ame point.

What did we do last time? - we proved that Log z is holomorphic on the cut plane and d Logz = 1 dz dz = 7 - we defined paths closed loops contours. What will we do today. - define the reversed path - define the complex integral S.F - State & prove the fundamental This of Contour Integration.

6

Reversed paths (et
$$\gamma: [a,b] \rightarrow C$$
 be a path. ()
The reversed path is $-\gamma: [a,b] \rightarrow C$ is defined
to be $-\gamma(t):=\gamma(a+b-t)$
 $\gamma(b)=z_1$
 $\gamma(t)=\gamma(0+\pi-t)=2e^{i(\pi-t)}=-2e^{-it}$ Osts π
 $-\gamma(t)=\gamma(0+\pi-t)=2e^{i(\pi-t)}=-2e^{-it}$ Osts π
 $\gamma:[a,b]\rightarrow C$ be a function,
 $\gamma:[a,b]\rightarrow C$ be a smooth path in D.
We define: $\int_{\gamma} f = \int_{\gamma} f(z)dz := \int_{\gamma}^{b} f(\gamma(t))\gamma'(t) dt$
 $\frac{\xi cample}{\gamma} (z+z+z)^2 = t^4 + 2it^5 - t^6$

$$\int_{Y} F = \int_{1}^{n} f(x(t)) x'(t) dt = \int_{1}^{r} (t^{+} + 2; t^{r} - t^{s})(2t + 3; t^{s}) dt$$

$$= \int_{1}^{2} - 8t^{2} + 2t^{s} dt + i \int_{1}^{2} 7t^{s} - 3t^{s} dt$$

$$= -239 - \frac{150}{3}$$

$$\frac{Dehn}{r} \quad Lot \quad x = \partial_{1} + \partial_{2}t - t \quad \nabla_{n} \text{ be a contrur. Then}$$

$$\int_{Y} f := \int_{X_{4}} f + \cdots + \int_{Y} f.$$

$$\frac{Prop}{r} \quad Contrur integration is independent of the choice of parametrischicn.''}$$

$$Lot \quad x: [a,b] \rightarrow C \quad be a smooth path$$

$$\varphi: [c,d] \rightarrow [a,b] \quad rightarrow an increasing smooth further in the parametrischicn.''}$$

$$Then \quad \int_{Y} f = \int_{Y} f.$$

$$\frac{F}{r_{0}} = \int_{Y} f.$$

Then (i)
$$\int f = \int f + \int f$$

 $\delta_{11} \tau_{k}$ δ_{1} δ_{2}
(2) $\int_{\sigma} f + g = \int f + \int g$
(3) $\int cf = c \int f$
(4) $\int f = -\int f$
 $-\tau$ δ
(5) $\int cf = c \int f$
(6) $\int f = -\int f$
 $-\tau$ δ
(7) $\int f = -\int f$
 $-\tau$ δ
(8) $\int f f = -\int f$
 δ
(9) $\int f f = -\int f$
 δ
(10) $\int f f = \delta$
(11) $\int f f = \delta$
(12) $\int f f = \delta$
(13) $\int f f = \delta$
(14) $\int f f = \delta$
(15) $\int f f = \delta$
(15) $\int f f = \delta$
(15) $\int f f = \delta$
(16) $\int f f = \delta$
(17) $\int f f = \delta$
(17) $\int f f = \delta$
(18) $\int f f = \delta$
(19) $\int f f = \delta$
(10) $\int f f = \delta$
(10)

Calculate
$$\int_{X} f$$

Let $F(z) = \frac{1}{5} z^{5}$ Then $F'(z) = f(z)$ $\forall z \in C$.
By the Fund. Thus of Contrur Integration
 $\int_{X} f = F(1+i) - F(0) = \frac{(1+i)^{5}}{5} - 0 = -\frac{4-4i}{5}$

Rink Suppose & To a closed contour (ie starts & ends . at the same point) & I han an anti-derivative on a domain that contains &.

Then
$$\int f = 0$$
.
 σ
Twhy? IP $F'(z) = f(z)$ then $\int f = f(z_1) - f(z_0) = 0$
 σ
 $f = z_1 = z_2$.