### What did we do lost time?

- defined what it meant for F: D > C to be notomorphic
- Stated the <u>Cauchy-Riemann</u> Theorem:

  Suppose f: D > C and write flxtiy) = ulzy tivlzy)

  Let zoeD. Suppose f is diff ble at zo = >6+ iyo.

  Then
  - (1) ga , ga , ga , ga exez ez 1x°, 20)
  - (2) The Cauchy-Triemann equs hold at 1x, yo)  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$   $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$   $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

### What will we do today?

- prove the Couchy-Bremann Thm.
- nee how to use the Cauchy-Biemann Thm (& its partial converse) to decide if a function is differentiable.

Proof of the Cauchy-Riemann Thun

Recall P'(20) := Lim F(2)-f(20)
2-20
2-20

Idea 3

different ways for for z to approach z - we want to get the same limit.

Calculate f'(z) in two ways:

Let hER, Z= Zo+h= (xo+h) + iyo. So z-> zo as h=0.

 $F'(z_0) = \lim_{N \to 0} \frac{\left[u(x_0 + h, y_0) + iv(x_0 + h, y_0)\right] - \left[u(x_0, y_0) + iv(x_0, y_0)\right]}{(x_0 + h + iy_0) - (x_0 + iy_0)}$ 

 $=\lim_{h\to 0}\left[\frac{u|x_0+h,y_0-u|x_0,y_0}{h}+i\left[\frac{v|x_0+h,y_0-w|x_0,y_0}{h}\right]$ 

 $= \frac{\partial y}{\partial x} (x_0, y_0) + i \frac{\partial y}{\partial x} (x_0, y_0)$ 

Let keR, z = Zo + ik = xo + i(yo+k) So z-> zo on k-> 0

 $f'(z_0) = \lim_{k \to 0} \frac{[u|x_0, y_0 + k) + iv(x_0, y_0 + k)] - [u|x_0, y_0) + iv|x_0, y_0]}{(x_0 + i(y_0 + k)) - (x_0 + iy_0)}$ 

 $= \lim_{k\to 0} \left[ \frac{u(x_0, y_0 + k) - u(x_0, y_0)}{ik} \right] + i \left[ \frac{v(x_0, y_0 + k) - v(x_0, y_0)}{-ik} \right]$ 

= Lim [V[xo, yoto] -V[xo,yo]] - i [u[xo, yoto] - u[xo,yo]]

k

=  $\frac{\partial v}{\partial v}$  (30,40) -  $\frac{i}{2}\frac{\partial u}{\partial v}$  (x0,40).

(c) 2020 The University of Manchester

Hence the pathal derivatives of u, v exist at (x, y). (Comparing the real & imag. parts of the two expressions for P'(z) gives:

 $\frac{\partial u}{\partial x}(x^{-1}A^{-1}) = \frac{\partial v}{\partial x}(x^{-1}A^{-1}), \quad \frac{\partial u}{\partial x}(x^{-1}A^{-1}) = -\frac{\partial v}{\partial x}(x^{-1}A^{-1}).$ 

Example Let  $f: C \rightarrow C$ ,  $f(z) = \overline{z}$ . Show that f is not differentiable at any point in C.

Write f(x+iy) = x-iy, u(x,y) = x, v(x,y) = -y

 $\frac{\partial u}{\partial x} = 1 , \quad \frac{\partial u}{\partial y} = 0 , \quad \frac{\partial v}{\partial x} = 0 , \quad \frac{\partial v}{\partial y} = -1 .$ 

There are no point  $x+iy \in \mathbb{C}$  at which  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ .

So there are no point in C at which the C-R equis hold.

So there are no points in C at which I is differentiable

Be very careful with the ligic here!

The C-R Thin says

IF I To diffible THEN - parkal derivs exist at (x, y)

15 the converse true?

IF partial derivs exist ISIT PTS diffible at 7. ?

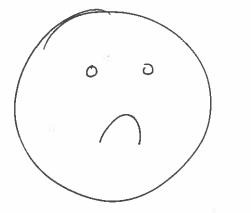
of (a.y.)

(-12 types had

THAT

(c) 2020 The University of Manchester





 $f(x+iy) = \begin{cases} 0 & \text{if } x+iy \in \text{real axis or } \\ 1 & \text{otherwise} \end{cases}$ Example Define

because 1 = f(h+ih) + f(0) = 0 on  $h \to 0$ So f is not diffible at O.

However, write flatig) = ula,y) + ivla,y) Then

$$\frac{\partial u}{\partial x}(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = \lim_{h \to 0} \frac{O - O}{h} = \lim_{h \to 0} O = O$$

Similarly  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial x}$ ,  $\frac{\partial v}{\partial y}$  are all equal to 0 at the origin.

So the partial denus exut at the origin, & the C-R equi had at the argin. But I is not diffible at the origin.

Prop (Pairal converx to the C-R Thm). (4)

Let  $F: D \to C$  be continuous. Write f(x+iy) = u(x,y) + iv(x,y).

Let  $z_0 = x_0 + iy_0 \in D$ .

Suppose: · pairal derivs of u,v exut at (x,y,)

· partial derivs of u, v are continuous at (x, y,)

· C-R equs to hold at (x, yo).

Then: . I to diff ble at zo.

Pf: see notes

# 3. Power sevies & elementary functions

Recall: let  $S_n \in \mathbb{C}$ ,  $S \in \mathbb{C}$ . We say  $S_n \rightarrow S$  an  $n \rightarrow \infty f$ :  $\forall E > 0 \exists N \in \mathbb{N} S^{\perp} \forall n > \mathbb{N} \quad |S_n - S| < E$ .

Let  $z_R \in \mathbb{C}$ . We say that the series  $\sum_{k=0}^{\infty} z_k$  converges

The requerce  $S_n := \sum_{k=0}^n Z_k$  converges.

We call the limit  $\sum_{n=0}^{\infty} z_n$  the sum of the series.

Or sevies that does not converge is called divergent.

#### What did we do last time?

- proved the Couchy-Riemann Thm
- saw how to use the C-R Thm to show a function is not differentiable
- stated the partial converse to the C-R Thin
- defined what Ez means.

### What will we do today?

- state some boosic properties of series
- use the ratio test/root test to decide convergence
- inhoduce power senses: Punchions défined by series.

Rmk Write Zn= xnriyn Then

\$\int\_{n=0}^{\infty} z\_n \text{ converges} \equiv \frac{\infty}{n=0} \text{ \frac{\infty}{n=0}} \text{

We so need a shanger graperly:

Defin [ Z zn is absolutely convergent if [ Z | zn | convergen. n=0

Lemma Suppose  $\sum_{n=0}^{\infty} z_n$  is absolutely convergent. Then  $\sum_{n=0}^{\infty} z_n$  convergen.

Rmk The converse  $\mathbb{Z}$  not true: convert  $\mathbb{Z}$  abs. convolidation  $\mathbb{Z}$  awayle  $\mathbb{Z}_n = \frac{(-1)^n}{n}$ . Then  $\mathbb{Z}$   $\mathbb{Z}_n$  converges, but  $\mathbb{Z}_n = \mathbb{Z}_n$  diverges.

Multiplying sevies together

Suppose we have two series  $\Sigma a_n, \Sigma b_n$ . How do we multiply them of together?

(a0+a1+a2+a3+---) (b0+b1+b2+b3+---)

Do it switeman cally:

 $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + - - -$ 

Molivation:

 $(\alpha_{o} + \alpha_{1} z + \alpha_{2} z^{2} + ---) (\beta_{o} + \beta_{1} z + \beta_{2} z^{2} + ---)$   $= \alpha_{o} \beta_{o} + (\alpha_{o} \beta_{1} + \alpha_{1} \beta_{0}) z + (\alpha_{o} \beta_{2} + \alpha_{1} \beta_{1} + \alpha_{2} \beta_{0}) z^{2} + ---$ 

Prop Let an, bn & C. Suppose Ear, Ebn are absolutely

convergent. Let  $c_n = \sum_{k=0}^n a_k b_{n-k}$ .

Then Ecn to absolutely convergent and

 $\sum_{N=0}^{\infty} C_N = \sum_{N=0}^{\infty} a_N \times \sum_{N=0}^{\infty} b_N.$ 

When does a series converge?

Prop (Raho test). Let zn E C.

Suppose  $\lim_{N\to\infty} \frac{|\vec{z}_{n+1}|}{|\vec{z}_n|} = 0$ 

If l < 1 then  $\tilde{z}_n$  is abs. conugt.

2>1 then  $\overset{\circ}{\sum}$  zn diverges.

l=1 then E zn may be convergent but not n=0 absolutely convergent, may diverge, may converge absolutely - can't tell!

3

If 
$$l < 1$$
. Then  $\sum_{n=0}^{\infty} z_n$  so also convert  $l > 1$ . Then  $\sum_{n=0}^{\infty} z_n$  diverges

Example 
$$\sum_{n=0}^{\infty} \frac{i^n}{3^n}$$
 Here  $z_n = \frac{i^n}{3^n}$ .

$$\frac{\left|\frac{2n+1}{2n}\right|}{\left|\frac{2n+1}{3n}\right|} = \frac{\left|\frac{i}{3}\right|}{\left|\frac{i}{3}\right|} = \frac{1}{3} \Rightarrow \frac{1}{3} < 1.$$

Using the root test:

$$|z_n|^{1/2} = |\frac{i^n}{3^n}|^{1/2} = (\frac{1}{3^n})^{1/2} = \frac{1}{3} \Rightarrow \frac{1}{3} < 1$$

By the root test,  $\sum_{n=0}^{\infty} i^n/3^n$  is abs. congt.

# Power series & the radius of convergence

Let  $a_n \in \mathbb{C}$ ,  $z_n \in \mathbb{C}$ . A series of the form  $\sum_{n=0}^{\infty} a_n (z-z_n)^n$  is called a power series in z.

(ie zn = an (z-z)" in The previous notation).

Think of:  $a_n = \text{coefficients}$   $z_0 = \text{where the power series is centred.}$   $z_0 = \text{variable.}$ 

We can charge coordinates to make this centred at the origin:  $z'=z-z_0$ . Hence It is sufficient to consider power series centred at 0.

 $\sum_{n=0}^{\infty} a_n z^n \qquad (\text{Yere } a_n \in \mathbb{C}) \qquad (*)$ 

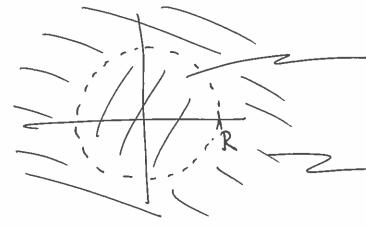
Q: For which values of z does the power series (\*)
converge?

Let  $R := \sup_{n=0}^{\infty} \left\{ r_n 0 \mid \exists z \in \mathbb{C} \text{ s.t. } |z| = r \text{ and } \right\}$ 

- (1) IP 12/ R then Earz converges absolutely.
- (2) If 12/2 R then Earz divergen.

[If Izl= R then we can't say anything]

Defn We call R the radius of convergence



inside thes circle. The power sentes converges absolutely.

outside this circle, the power series diverges.

If  $R = \infty$  then the power series converges (absolutely) for all  $z \in C$ .

Prop Let & anz^ be a power sevier.

- (1) If  $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = xi d = \lim_{n\to\infty} \left| \frac{1}{a_n} \right|$ .
- (2) If him |an| rexult then \frac{1}{R} = \lim |an| \frac{1}{N}.

Rink By convenhon:  $\frac{1}{0} = \infty$ ,  $\frac{1}{N} = 0$ .