
Solutions for MATH20101 Real & Complex Analysis, Complex Analysis feedback, January 2019

Question Learning Outcome Solution

B5 Prove the Cauchy-Riemann The-
orem and its converse and use them
to decide whether a given func-
tion is holomorphic.

Assessed at: low level (i), medium
level (ii), high level (iii).

(i) is bookwork, (ii) is similar to
example sheets, (iii) is similar to
example sheets

(i) The Cauchy-Riemann Theorem: Let f : D → C be differenitable at z0 = x0 + iy0 ∈ D. Write f(x+ iy) = u(x, y)+
iv(x, y), u, v : D → R. Then ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y exist at (x0, y0) and ∂u/∂x(x0, y0) = ∂v/∂y(x0, y0),
∂u/∂y(x0, y0) = −∂v/∂x(x0, y0).

Proof. Let h ∈ R and consider z = z0 + h = x0 + h+ iy0. Then z → z0 as h→ 0. Hence

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

= lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

Let k ∈ R and consider z = z0 + ik = x0 + i(y0 + k). Then z → z0 as k → 0. Hence

f ′(z0) = lim
k→0

f(z0 + ik)− f(z0)

ik

= lim
k→0

u(x0, y0 + k)− u(x0, y0)

ik
+ i

v(x0, y0 + k)− v(x0, y0)

k

=
∂v

∂y
(x0, y0)− i∂u

∂y
(x0, y0).

Hence the partial derivatives all exist. Comparing the real and imaginary parts gives the Cauchy-Riemann equa-
tions.

Feedback. Almost everybody knew the Cauchy-Riemann equations. A significant number of people
didn’t attempt the proof.

[8 marks]

(ii) Let g(x+ iy) = (x+ iy)2. Then

g(x+ iy) = (x+ iy)(x+ iy) = x2 − y2 + 2ixy = x2 − y2 − 2ixy.

Hence u(x, y) = x2 − y2, v(x, y) = −2xy. Also

∂u

∂x
= 2x,

∂v

∂y
= −2x

∂u

∂y
= −2y, −∂v

∂x
= 2y.

Hence if (x0, y0) 6= (0, 0) then then Cauchy-Riemann equations do not hold at (x0, y0). Hence g is not differentiable
at z0 6= 0.
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Feedback. Almost everybody who attempted this got this correct.

[6 marks]

(iii) Suppose that f : D → C, f(x+ iy) = u(x, y) + iv(x, y). Suppose z0 ∈ D and that

(i) the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y exist at (x0, y0),

(ii) the Cauchy-Riemann equations hold at (x0, y0),

(iii) the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y are continuous at (x0, y0).

Then f is differentiable at z0.

From (ii) we know that the partial derivatives exist at (0, 0). They are polynomial functions and so are continuous.
Moreover,

∂u

∂x
(0, 0) = 0 =

∂v

∂y
(0, 0),

∂u

∂y
(0, 0) = 0 = −∂v

∂x
(0, 0).

Hence by the partial converse to the Cauchy-Riemann Theorem, g is differentiable at the origin.

Feedback. There were many mis-statements of the Partial Converse to the Cauchy-Riemann Theorem;
usually the hypothesis that the partial derivatives are assumed to be continuous was omitted. The second
part of this question (’is g differentiable at the origin?’) was not well answered. You just need to check
that the g satisfies the hypotheses of the Partial Converse to the Cauchy-Riemann Theorem. Many people
tried to do this from first principles (specifically: attempting to show that limz→z0 g(z)− g(z0)/(z− z0)
exists at z0 = 0). This approach does work but involves slightly more work and care with taking limits.

[6 marks]

Question Learning Outcome Solution

B6 Define the complex integral and
use a variety of methods (the Fun-
damental Theorem of Contour In-
tegration, Cauchy’s Theorem, the
Generalised Cauchy Theorem and
the Cauchy Residue Theorem) to
calculate the complex integral of
a given function.

Assessed at: low level (i), (iii),
medium level (ii), high level (iv).

(i) is bookwork, (ii) is from the
exercises, (iii) is bookwork, (iv)
is unseen/similar to exercises.

(i) ∫
γ

f :=

∫ b

a

f(γ(t))γ′(t) dt.

Feedback. This is a standard definition from the course, and one which we’ve used many times in the
course.

[2 marks]
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(ii) By the chain rule, (−γ)′(t) = −(γ′(a+ b− t)). Hence∫
−γ

f =

∫ b

a

f(−γ(t))(−γ)′(t) dt

= −
∫ b

a

f(γ(a+ b− t))γ′(a+ b− t) dt

=

∫ a

b

f(γ(u))γ′(u) du (substituting u = a+ b− t)

= −
∫ b

a

f(γ(t))γ′(t) dt

= −
∫
γ

f.

Feedback. This proved to be tricky, given that in the proof you need to change the sign three times to
get the result. Most students didn’t get it right. Note that it was one of the exercises in the course.

[6 marks]

(iii) The Generalised Cauchy Theorem: Let D be a domain and let f : D → C be holomorphic. Let γ1, . . . , γn be
closed contours in D such that

w(γ1, z) + · · ·+ w(γn, z) = 0 for all z 6∈ D.

Then ∫
γ1

f + · · ·+
∫
γn

f = 0.

Feedback. Most of you got this right, although many people stated that f only needs to be continuous;
this isn’t sufficient, one needs f to be holomorphic for the GCT to hold.

[2 marks]

(iv)
w(γ,−1 + i) = 1, w(γ, 1) = 2, w(γ,−1− i) = −1.

Note that w(γ1,−1 + i) = w(γ2, 1) = w(γ3,−1− i) = 1 but w(γj , z) = 0 for other points z 6∈ D.

Apply the Generalised Cauchy Theorem to: γ,−γ1,−γ2,−γ2, γ3. Then

w(γ, z) + w(−γ1, z) + w(−γ2, z) + w(−γ2, z) + w(γ3, z) =

 1− 1 + 0 + 0 + 0 = 0 z = −1 + i
2− 0− 1− 1 + 0 = 0 z = 1
−1 + 0 + 0 + 0 + 1 = 0 z = −1− i.

Hence ∫
γ

f +

∫
−γ1

f +

∫
−γ2

f +

∫
−γ2

f +

∫
γ3

f = 0.

Hence ∫
γ

f =

∫
γ1

f + 2

∫
γ2

f −
∫
γ3

f = (2 + 2i) + 2(3 + 3i)− (4 + 4i) = 4 + 4i.
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Feedback. Most people demonstrated that they knew the method and idea, but there were many slips
in the details.

[10 marks]

Question Learning Outcome Solution

B7 Use Taylor’s Theorem and Lau-
rent’s Theorem to expand a holo-
morphic function in terms of power
series on a disc and Laurent series
on an annulus, respectively.

Assessed at medium level (i), (ii).

Identify the location and nature
of a singularity of a function and,
in the case of poles, calculate the
order and the residue.

Assessed at medium level (iii), high
level (iv).

(i) is bookwork, (ii) is bookwork,
(iii) is similar to example sheets,
(iv) is similar to example sheets.

(i) Note that if z ∈ Cr. then |f(z)/(z − z0)n+1| ≤M/rn+1.

By the Estimation Lemma and Taylor’s Theorem,

|f (n)(z0)| ≤ n!

2π
× (bound on integrand)× length(Cr)

≤ n!

2π
× M

rn+1
× 2πr

=
Mn!

rn
.

Feedback. This is a standard piece of bookwork and an easy application of the Estimation Lemma.
Several students tried to apply the Estimation Lemma to parts of the integrand separately, which led to
mistakes.

[4 marks]

(ii) Choose M > 0 such that |f(z)| ≤M for all z ∈ C. Let z0 ∈ C. Since f is holomorphic on C it is holomorphic on
{z ∈ C | |z − z0| < R} for any R ≥ 0. Let 0 ≤ r ≤ R. By (i) we have |f ′(z0)| ≤M/r.

By taking R as large as we please, we can take r as large as we please. Hence by letting r → ∞, we have
|f ′(z0)| = 0.

As z0 is arbitrary, we have f ′(z) = 0 for all z ∈ C. Hence f is constant.

Feedback. This is a proof that we did in the lectures. Most students who attempted it got it right,
albeit some with significant gaps in the middle.

[6 marks]

(iii) By Laurent’s Theorem, f has a Laurent series on {z ∈ C | 0 < |z − z0| < r} of the form

∞∑
n=1

bn(z − z0)−n +
∑
n=0

an(z − z0)n.

z0 is a pole of order m if bn = 0 for all n > m and bm 6= 0.

z0 is an isolated singularity if bn 6= 0 for infinitely many n.
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1

z3(1− z)
=

1

z3
(1 + z + z2 + · · ·+ zn + · · · ) if |z| < 1

=
1

z3
+

1

z2
+

1

z
+ 1 + z + · · ·+ zn + · · · .

Hence there is a pole of order 3 at the origin.

z3 sin 1/z = z3

[
1

z
− 1

3!z3
+

1

5!z5
− · · ·+ (−1)n

(2n+ 1)!z2n+1
+ · · ·

]
.

There are infinitely many terms in the principal part, so 0 is an isolated essential singularity.

Feedback. The definitions of pole of order m and isolated essential singularity have proved to be tricky.
Many students were too verbose instead of writing a clear formula. The rest of the question went
reasonably well. Remember that, in mathematics, if you are asked for a definition then you need to state
the precise and accurate definition, and not discuss what it means in general, more hand-wavey, terms.

[6 marks]

(iv) As f has a pole of order 2 at z0 it has a Laurent series

f(z) =
b2

(z − z0)2
+

b1
(z − z0)

+

∞∑
n=0

an(z − z0)n, b2 6= 0.

Hence F (z) := (z − z0)2f(z) is holomorphic on a neighbourhood of z0 and F (z0) 6= 0.

Similarly, G(z) := (z − z0)3g(z) is holomorphic on a neighbourhood of z0 and G(z0) 6= 0.

Hence (z − z0)2f(z)(z − z0)3g(z) = F (z)G(z) =: H(z) is holomorphic on a neighbourhood of z0 and H(z0) 6= 0.
Hence

(z − z0)5f(z)g(z) =

∞∑
n=0

cn(z − z0)n, c0 6= 0

h(z) =
c0

(z − z0)5
+ · · · .

So h(z) has a pole of order 5 at z0.

Feedback. I was pleased at how well those who attempted the question did on it. Some of the expla-
nations were a bit too brief and it was hard to follow exactly what you were doing.

[4 marks]

Question Learning Outcome Solution
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B8 Define the complex integral and
use a variety of methods (the Fun-
damental Theorem of Contour In-
tegration, Cauchy’s Theorem, the
Generalised Cauchy Theorem and
the Cauchy Residue Theorem) to
calculate the complex integral of
a given function;

Assessed at low level (i), medium
level (ii).

Identify the location and nature
of a singularity of a function and,
in the case of poles, calculate the
order and the residue.

Assessed at medium level (iv).

Apply techniques from complex
analysis to deduce results in other
areas of mathematics, including
proving the Fundamental Theo-
rem of Algebra and calculating in-
finite real integrals, trigonometric
integrals, and the summation of
series.

Assessed at low level (iii), medium
level (iv).

(i) is bookwork, (ii) is unseen but
similar to example sheets, (iii) is
bookwork, (iv) is similar to exam-
ple sheets.

(i) Cauchy’s Residue Theorem: Let D be a domain containing a simple closed loop γ and the points inside γ. Suppose
that f is meromorphic on D with finitely many poles at z1, . . . , zn inside γ. Then∫

γ

f = 2πi

n∑
j=1

Res(f, zj).

Feedback. This is an important result in the course. Many of you just wrote down that
∫
γ
f =

2πi
∑n
j=1 Res(f, zj) without stating any hypotheses of f or γ, or did not explain what the zj are. A

theorem has hypotheses and conclusions—you need to state both.

[2 marks]

(ii) ∫
γ1

g = 2πiRes(g, 0) = 2πi× 2

i
= 4π.∫

γ1

g = 2πi(Res(g, 1 + i) + Res(g, 2 + 2i)) = 2πi×
(

3

i
+

5

i

)
= 16π.

Feedback. Most people answered this well.

[4 marks]

(iii) There exists C > 0, K > 0, r > 1 such that |f(x)| ≤ C/|x|r if |x| ≥ K.

Feedback. Most people gave the correct criterion.

[2 marks]

(iv) Let h(x) = 1/(x2 + 8). Then |h(x)| ≤ 1/x2; so h satisfies the criterion in (iii).

h(z) is differentiable except when the denominator vanishes. Note that z2 + 8 has simple zeros at ±2i
√

2. Hence
h has simple poles at ±2i

√
2.

If z0 is a simple pole of h then Res(h, z0) = limz→z0(z − z0)h(z).

Hence

Res(h, 2i
√

2) = lim
z→2i

√
2
(z − 2i

√
2)× 1

(z − 2i
√

2)(z + 2i
√

2)
=

1

4i
√

2
.

Res(h,−2i
√

2) = lim
z→−2i

√
2
(z + 2i

√
2)× 1

(z − 2i
√

2)(z + 2i
√

2)
=

1

−4i
√

2
.

Let ΓR = [−R,R] +SR denote the D-shaped contour where SR is the positive semi-circle with centre 0 and radius
R.

If R > 2
√

2 then 2i
√

2 is inside ΓR. By the residue theorem,∫
ΓR

h = 2πiRes(h, 2i
√

2) = 2πi× 1

4i
√

2
=

π

2
√

2
.
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If z ∈ SR then |z2 + 8| ≥ |z|2 − 8 = R2 − 8. Hence∣∣∣∣∫
SR

h

∣∣∣∣ ≤ πR

R2 − 8
→ 0

as R→∞.

Hence

lim
R→∞

∫ R

−R
h(x) dx+ lim

R→∞

∫
SR

h(z) dz = lim
R→∞

∫
ΓR

h(z) dz =
π

2
√

2

so that
∫∞
−∞ h(x) dx = π/2

√
2.

Feedback. Most students answered this well. Common mistakes included:

• Not calculating Res(h,−2i
√

2). Whilst calculating
∫∞
−∞ h(x) dx = π/2

√
2 doesn’t need you to find

Res(h,−2i
√

2), the question does ask you to work it out.

• Not showing that
∫
SR
h(z) dz → 0 as R → ∞ or not using the reverse triangle inequality correctly.

Many of you wrote that |z2 + 8| ≥ |z2| = R2 if z ∈ SR. This isn’t correct (example: take z = 8i ∈ S8,
then |z2 + 8| = | − 64 + 8| = 56 < 64). You need to use the reverse triangle inequality to say that
|z2 + 8| ≥ |z|2 − 8 = R2 − 8 if z ∈ SR.

[12 marks]

Final comments. Overall, the complex analysis part of MATH20101 went well and I was pleased by the overall performance of the class. I hope you enjoyed
the course and felt that you have learned something from it.

Charles Walkden
28th January 2019
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