Feedback on the Complex Analysis part of MATH20101, January 2018

B5 (i) Suppose $e^{w}=z$. We want to find the real and imaginary parts of w. Write $w=x+i y$ so that $z=e^{x+i y}=e^{x} e^{i y}$. Take the modulus of both sides to obtain $e^{x}=|z|$, so that $x=\ln |z|$. Similarly take the argument of both sides to obtain $y=\arg z$.
The complex \log arithm is defined to be $\log z=\ln |z|+i \arg z$ and the principal $\operatorname{logarithm}$ is defined to be $\log z=\ln |z|+i \operatorname{Arg} z$ (many of you wrote $\log z=\ln |z|+\arg z$). Here $\operatorname{Arg} z$ is the principal value of the argument of z.
$\log z$ is not continuous on $\mathbb{C} \backslash\{0\}$ as the principal value of the argument (which is the value of the argument of z that lies between $(-\pi, \pi])$ 'jumps' discontinuously from near $-\pi$ to near π as z moves across the negative real axis. (The reason that $\log z$ is not continuous on $\mathbb{C} \backslash\{0\}$ is not because it is not differentiable at the origin $(f(z)=1 / z$ is an example of a continuous function on $\mathbb{C} \backslash\{0\}$ that is not differentiable at the origin). Not is it because $\log z$ is only differentiable on the cut-plane; whilst this statement is true, that does not prevent $\log z$ being defined on the (larger) set $\mathbb{C} \backslash\{0\}$.)
(ii) The trick here is to understand how the principal value of the $\operatorname{argument}$ works. Remember that $\operatorname{Arg} z$ is the unique value of the argument that lies in $(-\pi, \pi]$. If you multiply two complex numbers together, then their arguments add (but we may have to add/subtract multiples of 2π to obtain the principal value of the argument of the product).
Take, for example, $z_{1}=z_{2}=-i$. Then $\operatorname{Arg} z_{1}=\operatorname{Arg} z_{2}=-\pi / 2$. However, $\operatorname{Arg} z_{1} z_{2}=\operatorname{Arg}-1=\pi$. Hence $\log z_{1}=\log z_{2}=$ $\ln |-i|-i \pi / 2=-i \pi / 2($ as $\ln |-i|=\ln 1=0)$, but $\log z_{1} z_{2}=$ $\ln |-1|+i \pi=i \pi$.
Note that if you write down two values of z_{1}, z_{2} then you do need to check that they satisfy the required property.
(iii) f is differentiable at $z_{0} \in D$ if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists.
Proving that $\log z$ is holomorphic on the cut-plane is a proof from the course (see Proposition 3.4.4 in the notes). The trick is to rewrite $\left(\log z-\log z_{0}\right) /\left(z-z_{0}\right)$ in terms of the exponential function, which we already know how to differentiate. Trying to prove it by writing, for example, $\left(\log z-\log z_{0}\right) /\left(z-z_{0}\right)=$ $\log \left(z / z_{0}\right) /\left(z-z_{0}\right)$ won't work.
(iv) First note that $|1+i|=\sqrt{2}$ and $\arg (1+i)=\pi / 4+2 n \pi, n \in \mathbb{Z}$. Hence

$$
\begin{aligned}
\log (1+i) & =\ln \sqrt{2}+i\left(\frac{\pi}{4}+2 n \pi\right) \\
\log (1+i) & =\ln \sqrt{2}+i \pi / 4
\end{aligned}
$$

Hence

$$
(1+i)^{i}=\exp (i \log (1+i))=\exp \left(-\left(\frac{\pi}{4}+2 n \pi\right)+i \ln \sqrt{2}\right)
$$

with principal value given by

$$
\begin{aligned}
\exp \left(-\left(\frac{\pi}{4}\right)+i \ln \sqrt{2}\right) & =e^{-\pi / 4} e^{i \ln \sqrt{2}} \\
& =e^{-\pi / 4} \cos (\ln \sqrt{2})+i e^{-\pi / 4} \sin (\ln \sqrt{2})
\end{aligned}
$$

B6 (i) This is a standard definition from the course: if $\gamma(t), a \leq t \leq b$, is a parametrisation of γ then

$$
\int_{\gamma} f=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

(ii) The Fundamental Theorem of Contour Integration is Theorem 4.3.3 in the notes. It says that:

Suppose $f: D \rightarrow \mathbb{C}$ is continuous and suppose that f has an anti-derivative F on D (so that $F^{\prime}(z)=f(z)$ for all $z \in D)$. Let γ be a contour from z_{0} to z_{1} in D. Then $\int_{\gamma} f=F\left(z_{1}\right)-F\left(z_{0}\right)$.
Some of you wrote down the wrong theorem (the Residue Theorem, or algebraic properties of the contour integral such as $\left.\int_{-\gamma f}=-\int_{\gamma} f\right)$ as the statement of the FToCI ; this isn't what the question is asking you.
Very few of you gave the proof of this. The trick is to introduce a new function $W(t)=F(\gamma(t))$ and note that $W^{\prime}(t)=f(\gamma(t)) \gamma^{\prime}(t)$ by the chain rule. One can then split $W(t)$ into its real and imaginary parts and use the Fundamental Theorem of Calculus to calculate $\int_{\gamma} f$.
(iii) The point the question is asking for is that: if γ is a closed loop (so that it starts and ends at the same point, say z_{0}) and if f has an antiderivative F then, by the FToCI, $\int_{\gamma} f=F\left(z_{0}\right)-F\left(z_{0}\right)=0$. To calculate the integral, the first thing to do is to write down a parametrisation of C. One parametrisation that works is $C(t)=$
$1+2 e^{i t}, 0 \leq t \leq 2 \pi$. Hence we can calculate

$$
\begin{aligned}
\int_{C} g & =\int_{0}^{2 \pi} g(C(t)) C^{\prime}(t) d t \\
& =\int_{0}^{2 \pi} \frac{1+2 e^{i t}}{2 e^{i t}} \times 2 i e^{i t} d t \\
& =\int_{0}^{2 \pi} i\left(1+2 e^{i t}\right) d t \\
& =\int_{0}^{2 \pi} i d t+\int_{0}^{2 \pi} e^{i t} d t \\
& =i t+\left.\frac{2}{i} e^{i t}\right|_{0} ^{2 \pi} \\
& =2 \pi i \neq 0 .
\end{aligned}
$$

Common mistakes here were the following: (i) writing $C(t)=2 e^{i t}$ (this has the wrong centre), (ii) writing $g(z)=1 /(z-1)$ not $z /(z-1)$, (iii) not evaluating the integral correctly between the limits. For the latter point, note that when $t=0$, we have that $e^{i t}=1$ (not 0). (Also note that $e^{2 \pi i}=1$ so one can simplify $e^{2 \pi i}-e^{0}=0$.)
By the FToCI, if g had an anti-derivative then, as C is a closed loop, $\int_{C} g$ would be 0 . Hence g does not have an anti-derivative on any domain that contains C.

B7 (i) f has a singularity at z_{0} if f is not differentiable at z_{0}. (Many of you said that the definition was that f is not defined at z_{0}; I repeatedly said in the lectures that, although this is (for us, in this course) how singularities arise, this is not the definition.) The point z_{0} is an isolated singularity if there exists $r>0$ such that f is differentaible on $0<\left|z-z_{0}\right|<r$ (aside: this means that there are no other singularities 'near' z_{0}).
Suppose f has an isolated singularity at z_{0}. Then, by Laurent's Theorem, we can expand f as a Laurent series on the annulus $0<\left|z-z_{0}\right|<r$:

$$
\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The first part (involving the $b_{n} s$) is the principal part of the Laurent series. If the principal part contains no terms then z_{0} is a removable singularity. If the principal part contains infinitely many terms then z_{0} is an isolated essential singularity. If the principal part contains finitely many terms (and the most negative power that occurs is m) then z_{0} is a pole of order m.

If z_{0} is a pole of order m then $\operatorname{Res}\left(f, z_{0}\right)=b_{1}$, the coefficient of $\left(z-z_{0}\right)^{-1}$. Several of you wrote down a formula (either Lemma 7.4.1 (which only works for simple poles) or Lemma 7.4.2) for the residue; note that this is not the definition!
(ii) We know that

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots+z^{n}+\cdots
$$

for $|z|<1$ (think geometric progression) and that we can differentiate a power series term-by-term inside the disc of convergence. Hence, differentiating the above, we have

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+\cdots+n z^{n-1}+\cdots
$$

for $|z|<1$.
(iii) Using (ii), for $0<|z|<1$, we have

$$
\begin{aligned}
\frac{1}{z(1-z)^{2}} & =\frac{1}{z}\left(1+2 z+3 z^{2}+\cdots\right) \\
& =\frac{1}{z}+2+3 z+\cdots
\end{aligned}
$$

so that g has a simple pole with residue 1 at $z=0$.
Let $w=z-1$ so that $z=1+w$. Then (summing a geometric progression with common ratio $-w$)

$$
\begin{aligned}
g(z) & =\frac{1}{(1+w) w^{2}}=\frac{1}{w^{2}(1-(-w))} \\
& =\frac{1}{w^{2}}\left(1-w+w^{2}-w^{3}+\cdots\right) \\
& =\frac{1}{(z-1)^{2}}-\frac{1}{(z-1)}+1-(z-1)+\cdots
\end{aligned}
$$

Hence g has a pole of order 2 with residue -1 at $z=1$.
(iv) This is similar to Exercise 6.7; very few of you attempted this. By the Estimation Lemma, we have that for any $r<R$

$$
\begin{aligned}
\left|b_{n}\right| & \leq \frac{1}{2 \pi} \times \sup _{z \in C_{r}}|f(z)| \times|z|^{n-1} \times 2 \pi r \\
& \leq \frac{M}{r} \times r^{n-1} \times r=M r^{n-1} .
\end{aligned}
$$

If $n \geq 2$ then this converges to 0 as $r \rightarrow 0$. Hence $b_{n}=0$ if $n \geq 2$.
Hence f has Laurent series

$$
\frac{b_{1}}{z-z_{0}}+a_{0}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and so has either a simple pole at z_{0} (if $b_{1} \neq 0$) or a removable singularity at z_{0} (if $b_{1}=0$).
The two possibilities occur. Take $f(z)=1 / z$ and $f(z)=1$. Then in both cases $|f(z)| \leq M /|z|$ for all $z \neq 0$.

B8 (i) Let $f(z)=1 /\left(3 z^{2}+10 i z-3\right)$. Then f has singularities where the denominator vanishes. Note that $3 z^{2}+10 i z-3=(z+3 i)(3 z+i)$ (you can either work this out by inspection, or use the quadratic formula, or use the fact that the question tells you where the poles are and work backwards). Hence f has simple poles at $z=-3 i,-i / 3$.
Hence, using the formula for the residue that is given in the question,

$$
\begin{aligned}
\operatorname{Res}(f,-i / 3) & =\lim _{z \rightarrow-i / 3}(z+i / 3) \times \frac{1}{(z+3 i)(3 z+i)} \\
& =\lim _{z \rightarrow-i / 3} \frac{1}{3} \times(3 z+i) \times \frac{1}{(z+3 i)(3 z+i)} \\
& =\lim _{z \rightarrow-i / 3} \frac{1}{3} \times \frac{1}{3 z+i} \\
& =\frac{1}{3} \times \frac{1}{\left(\frac{-i}{3}+3 i\right)}=\frac{1}{8 i} .
\end{aligned}
$$

(Note that it is very easy to lose a factor of 3 in this.)
Similarly,

$$
\begin{aligned}
\operatorname{Res}(f,-3 i) & =\lim _{z \rightarrow-3 i}(z+3 i) \times \frac{1}{(z+3 i)(3 z+i)} \\
& =\frac{-1}{8 i}
\end{aligned}
$$

(ii) Cauchy's Residue Theorem is Theorem 7.3.1 in the notes. Note that the Residue Theorem works functions with poles of any order, not just simple poles.
(iii) Let $z=e^{i t}$. Then $d z=i e^{i t} d t=i z d t$. As t varies from 0 to 2π, z goes around C_{1} once anticlockwise. Also remember that

$$
\sin t=\frac{e^{i t}-e^{-i t}}{2 i}=\frac{z-z^{-1}}{2 i}
$$

(remember that it's a $2 i$ not a 2 in the denominator).
Hence

$$
\int_{0}^{2 \pi} \frac{1}{5+3 \sin t} d t=\int_{C_{1}} \frac{1}{5+3\left(\frac{z-z^{-1}}{2 i}\right)} \frac{d z}{i z}
$$

$$
\begin{aligned}
& =2 \int_{C_{1}} \frac{1}{z\left(10 i+3 z-3 z^{-1}\right)} d z \\
& =2 \int_{C_{1}} f(z) d z
\end{aligned}
$$

(be careful with is and minus signs here).
The only pole of f that lies inside C_{1} is the pole at $-i / 3$. By the Residue Theorem we have that

$$
\int_{C_{1}} f(z) d z=2 \pi i \operatorname{Res}(f,-i / 3)=2 \pi i \times 1 / 8 i=\pi / 4
$$

Hence

$$
\int_{0}^{2 \pi} \frac{1}{5+3 \sin t} d t=2 \times \frac{\pi}{4}=\frac{\pi}{2}
$$

If we try to use the same method to evaluate $\int_{0}^{2 \pi} 1 /(3+3 \sin t) d t$ then we see that

$$
\int_{0}^{2 \pi} \frac{1}{3+3 \sin t} d t=\frac{2}{3} \int_{C_{1}} \frac{d z}{z^{2}+2 i z-1}=\frac{2}{3} \int_{C_{1}} \frac{d z}{(z+i)^{2}} .
$$

This integrand has a singularity at $-i$, which is on C_{1}. The Residue Theorem doesn't apply when there are singularities on the contour, and so we cannot use this method to calculate $\int_{0}^{2 \pi} 1 /(3+$ $3 \sin t$) dt. (As an aside, one can prove that $\int_{0}^{2 \pi} 1 /(3+3 \sin t) d t$ is infinite.)

Charles Walkden
20th January 2018

