
Feedback on the Complex Analysis part of MATH20101, January
2018

B5 (i) Suppose ew = z. We want to find the real and imaginary parts of
w. Write w = x+ iy so that z = ex+iy = exeiy. Take the modulus
of both sides to obtain ex = |z|, so that x = ln |z|. Similarly take
the argument of both sides to obtain y = arg z.
The complex logarithm is defined to be log z = ln |z|+ i arg z and
the principal logarithm is defined to be Log z = ln |z| + iArg z
(many of you wrote log z = ln |z| + arg z). Here Arg z is the
principal value of the argument of z.
Log z is not continuous on C \ {0} as the principal value of the
argument (which is the value of the argument of z that lies be-
tween (−π, π]) ‘jumps’ discontinuously from near −π to near π as
z moves across the negative real axis. (The reason that Log z is
not continuous on C\{0} is not because it is not differentiable at
the origin (f(z) = 1/z is an example of a continuous function on
C \ {0} that is not differentiable at the origin). Not is it because
Log z is only differentiable on the cut-plane; whilst this statement
is true, that does not prevent Log z being defined on the (larger)
set C \ {0}.)

(ii) The trick here is to understand how the principal value of the
argument works. Remember that Arg z is the unique value of
the argument that lies in (−π, π]. If you multiply two complex
numbers together, then their arguments add (but we may have
to add/subtract multiples of 2π to obtain the principal value of
the argument of the product).
Take, for example, z1 = z2 = −i. Then Arg z1 = Arg z2 = −π/2.
However, Arg z1z2 = Arg−1 = π. Hence Log z1 = Log z2 =
ln | − i| − iπ/2 = −iπ/2 (as ln | − i| = ln 1 = 0), but Log z1z2 =
ln | − 1|+ iπ = iπ.
Note that if you write down two values of z1, z2 then you do need
to check that they satisfy the required property.

(iii) f is differentiable at z0 ∈ D if

lim
z→z0

f(z)− f(z0)
z − z0

exists.
Proving that Log z is holomorphic on the cut-plane is a proof
from the course (see Proposition 3.4.4 in the notes). The trick is
to rewrite (Log z − Log z0)/(z − z0) in terms of the exponential
function, which we already know how to differentiate. Trying
to prove it by writing, for example, (Log z − Log z0)/(z − z0) =
Log(z/z0)/(z − z0) won’t work.
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(iv) First note that |1 + i| =
√

2 and arg(1 + i) = π/4 + 2nπ, n ∈ Z.
Hence

log(1 + i) = ln
√

2 + i
(π

4
+ 2nπ

)
Log(1 + i) = ln

√
2 + iπ/4.

Hence

(1 + i)i = exp(i log(1 + i)) = exp
(
−
(π

4
+ 2nπ

)
+ i ln

√
2
)

with principal value given by

exp
(
−
(π

4

)
+ i ln

√
2
)

= e−π/4ei ln
√

2

= e−π/4 cos(ln
√

2) + ie−π/4 sin(ln
√

2)

B6 (i) This is a standard definition from the course: if γ(t), a ≤ t ≤ b,
is a parametrisation of γ then∫

γ
f =

∫ b

a
f(γ(t))γ′(t) dt.

(ii) The Fundamental Theorem of Contour Integration is Theorem
4.3.3 in the notes. It says that:

Suppose f : D → C is continuous and suppose that f
has an anti-derivative F on D (so that F ′(z) = f(z) for
all z ∈ D). Let γ be a contour from z0 to z1 in D. Then∫
γ f = F (z1)− F (z0).

Some of you wrote down the wrong theorem (the Residue The-
orem, or algebraic properties of the contour integral such as∫
−γf = −

∫
γ f) as the statement of the FToCI; this isn’t what

the question is asking you.
Very few of you gave the proof of this. The trick is to introduce a
new function W (t) = F (γ(t)) and note that W ′(t) = f(γ(t))γ′(t)
by the chain rule. One can then split W (t) into its real and
imaginary parts and use the Fundamental Theorem of Calculus
to calculate

∫
γ f .

(iii) The point the question is asking for is that: if γ is a closed loop
(so that it starts and ends at the same point, say z0) and if f has
an antiderivative F then, by the FToCI,

∫
γ f = F (z0)−F (z0) = 0.

To calculate the integral, the first thing to do is to write down a
parametrisation of C. One parametrisation that works is C(t) =
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1 + 2eit, 0 ≤ t ≤ 2π. Hence we can calculate∫
C
g =

∫ 2π

0
g(C(t))C ′(t) dt

=
∫ 2π

0

1 + 2eit

2eit
× 2ieit dt

=
∫ 2π

0
i(1 + 2eit) dt

=
∫ 2π

0
i dt+

∫ 2π

0
eit dt

= it+
2
i
eit
∣∣∣∣2π
0

= 2πi 6= 0.

Common mistakes here were the following: (i) writing C(t) = 2eit

(this has the wrong centre), (ii) writing g(z) = 1/(z − 1) not
z/(z − 1), (iii) not evaluating the integral correctly between the
limits. For the latter point, note that when t = 0, we have that
eit = 1 (not 0). (Also note that e2πi = 1 so one can simplify
e2πi − e0 = 0.)
By the FToCI, if g had an anti-derivative then, as C is a closed
loop,

∫
C g would be 0. Hence g does not have an anti-derivative

on any domain that contains C.

B7 (i) f has a singularity at z0 if f is not differentiable at z0. (Many
of you said that the definition was that f is not defined at z0; I
repeatedly said in the lectures that, although this is (for us, in
this course) how singularities arise, this is not the definition.)
The point z0 is an isolated singularity if there exists r > 0 such
that f is differentaible on 0 < |z−z0| < r (aside: this means that
there are no other singularities ‘near’ z0).
Suppose f has an isolated singularity at z0. Then, by Laurent’s
Theorem, we can expand f as a Laurent series on the annulus
0 < |z − z0| < r:

∞∑
n=1

bn(z − z0)−n +
∞∑
n=0

an(z − z0)n.

The first part (involving the bns) is the principal part of the Lau-
rent series. If the principal part contains no terms then z0 is
a removable singularity. If the principal part contains infinitely
many terms then z0 is an isolated essential singularity. If the prin-
cipal part contains finitely many terms (and the most negative
power that occurs is m) then z0 is a pole of order m.
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If z0 is a pole of order m then Res(f, z0) = b1, the coefficient of
(z − z0)−1. Several of you wrote down a formula (either Lemma
7.4.1 (which only works for simple poles) or Lemma 7.4.2) for the
residue; note that this is not the definition!

(ii) We know that

1
1− z

= 1 + z + z2 + z3 + · · ·+ zn + · · ·

for |z| < 1 (think geometric progression) and that we can differen-
tiate a power series term-by-term inside the disc of convergence.
Hence, differentiating the above, we have

1
(1− z)2

= 1 + 2z + 3z2 + 4z3 + · · ·+ nzn−1 + · · ·

for |z| < 1.
(iii) Using (ii), for 0 < |z| < 1, we have

1
z(1− z)2

=
1
z

(
1 + 2z + 3z2 + · · ·

)
=

1
z

+ 2 + 3z + · · ·

so that g has a simple pole with residue 1 at z = 0.
Let w = z − 1 so that z = 1 + w. Then (summing a geometric
progression with common ratio −w)

g(z) =
1

(1 + w)w2
=

1
w2(1− (−w))

=
1
w2

(
1− w + w2 − w3 + · · ·

)
=

1
(z − 1)2

− 1
(z − 1)

+ 1− (z − 1) + · · · .

Hence g has a pole of order 2 with residue −1 at z = 1.
(iv) This is similar to Exercise 6.7; very few of you attempted this.

By the Estimation Lemma, we have that for any r < R

|bn| ≤
1

2π
× sup
z∈Cr

|f(z)| × |z|n−1 × 2πr

≤ M

r
× rn−1 × r = Mrn−1.

If n ≥ 2 then this converges to 0 as r → 0. Hence bn = 0 if n ≥ 2.
Hence f has Laurent series

b1
z − z0

+ a0 +
∞∑
n=0

an(z − z0)n
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and so has either a simple pole at z0 (if b1 6= 0) or a removable
singularity at z0 (if b1 = 0).
The two possibilities occur. Take f(z) = 1/z and f(z) = 1. Then
in both cases |f(z)| ≤M/|z| for all z 6= 0.

B8 (i) Let f(z) = 1/(3z2 +10iz−3). Then f has singularities where the
denominator vanishes. Note that 3z2 +10iz−3 = (z+3i)(3z+ i)
(you can either work this out by inspection, or use the quadratic
formula, or use the fact that the question tells you where the
poles are and work backwards). Hence f has simple poles at
z = −3i,−i/3.
Hence, using the formula for the residue that is given in the ques-
tion,

Res(f,−i/3) = lim
z→−i/3

(z + i/3)× 1
(z + 3i)(3z + i)

= lim
z→−i/3

1
3
× (3z + i)× 1

(z + 3i)(3z + i)

= lim
z→−i/3

1
3
× 1

3z + i

=
1
3
× 1(−i

3 + 3i
) =

1
8i
.

(Note that it is very easy to lose a factor of 3 in this.)
Similarly,

Res(f,−3i) = lim
z→−3i

(z + 3i)× 1
(z + 3i)(3z + i)

=
−1
8i
.

(ii) Cauchy’s Residue Theorem is Theorem 7.3.1 in the notes. Note
that the Residue Theorem works functions with poles of any or-
der, not just simple poles.

(iii) Let z = eit. Then dz = ieit dt = iz dt. As t varies from 0 to 2π,
z goes around C1 once anticlockwise. Also remember that

sin t =
eit − e−it

2i
=
z − z−1

2i

(remember that it’s a 2i not a 2 in the denominator).
Hence ∫ 2π

0

1
5 + 3 sin t

dt =
∫
C1

1

5 + 3
(
z−z−1

2i

) dz
iz
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= 2
∫
C1

1
z(10i+ 3z − 3z−1)

dz

= 2
∫
C1

f(z) dz

(be careful with is and minus signs here).
The only pole of f that lies inside C1 is the pole at −i/3. By the
Residue Theorem we have that∫

C1

f(z) dz = 2πiRes(f,−i/3) = 2πi× 1/8i = π/4.

Hence ∫ 2π

0

1
5 + 3 sin t

dt = 2× π

4
=
π

2
.

If we try to use the same method to evaluate
∫ 2π
0 1/(3+3 sin t) dt

then we see that∫ 2π

0

1
3 + 3 sin t

dt =
2
3

∫
C1

dz

z2 + 2iz − 1
=

2
3

∫
C1

dz

(z + i)2
.

This integrand has a singularity at −i, which is on C1. The
Residue Theorem doesn’t apply when there are singularities on
the contour, and so we cannot use this method to calculate

∫ 2π
0 1/(3+

3 sin t) dt. (As an aside, one can prove that
∫ 2π
0 1/(3 + 3 sin t) dt

is infinite.)

Charles Walkden
20th January 2018
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