
Feedback on MATH20101 Real and Complex Analysis (Complex
Analysis part)

Overall comments. I was very pleased by how well many of you did on
the complex analysis part of the exam for MATH20101. If you have any
comments on the course (particularly how I do the tutorial classes and use
Kahoot) then please let me know.

B5 (i) These are standard definitions from the course: ∂g/∂x(x0, y0)
exists if

lim
h→0

g(x0 + h, y0)− g(x0, y0)

h

exists. f is differentiable at z0 ∈ D if limz→z0
f(z)−f(z0)

z−z0 exists. f
is holomorphic on D is f is differentiable at z0 ∈ D for all z0 ∈ D.

(ii) This is part of the proof of the Cauchy-Riemann theorem. The
Cauchy Riemann theorem involves calculating f ′(z0) in two ways,
first by setting z = (x0 + h) + iy0 and then letting h → 0 and
second by setting z = x0+i(y0+k) and letting k → 0; the question
is asking you to the second case. See the proof of Theorem 2.5.1
in the notes and the calculation in equation (2.5.3) in particular
(and note how careful you need to be with minus signs and the
fact that 1/i = −i).

(iii) The Cauchy-Riemann Theorem says that if f is differentiable at
z0 = x + o + iy0 then then partial derivatives of u, v exist at
(x0, y0) and the Cauchy-Riemann equations hold.

The partial converse (and what the question is asking you to write
down) is that if the partial derivatives of u, v exist at (x0, y0), and
the Cauchy-Riemann equations hold, and the partial derivatives
are continuous at (x0, y0) then f is differentiable at z0.

(iv) This is similar to Exercise 2.10. Write f(x + iy) = u(x, y) +
iv(x, y). Suppose v(x, y) = c, a constant. Then ∂v/∂x = 0. As f
is differentiable at x + iy, the Cauchy-Riemann equations hold.
Hence ∂u/∂y = 0. Hence u(x, y) = α(x), for some function α(x)
depending only on x.

Similarly, ∂v/∂y = 0. Hence ∂u/∂y = 0 so that u(x, y) = β(y),
for some function β(y) depending only on y.

Hence u(x, y) = α(x) = β(y) and the only possibility is that
u(x, y) is equal to a constant. Hence f is equal to a constant.

(v) Let f(x+ iy) = (xy2)1/3 so that u(x, y) = (xy2)1/3 and v(x, y) =
0. To calculate the partial derivatives at (0, 0) we need to do it
from first principles (any attempt to do it via the algebraic rules

1



of differentiation is doomed to failure). Note that

∂u

∂x
(0, 0) = lim

h→0

u(h, 0)− u(0, 0)

h
= lim

h→0

0− 0

h
= 0

and similarly ∂u/∂y(0, 0) = 0. As v(x, y) = 0, it’s clear that
∂v/∂x(0, 0) = ∂v/∂y(0, 0) = 0. Hence the Cauchy-Riemann
equations hold at (0, 0).

However, f is not differentiable at 0. Let h be real and consider
z = h+ ih. Then z → 0 as h→ 0 and

lim
h→0

f(h+ ih)− f(0)

h+ ih− 0
= lim

h→0

(hh2)1/3 − 0

h+ ih
= lim

h→0

h

h+ ih
=

1

1 + i
.

However if we let z = h and note that z → 0 as h→ 0 then

lim
h→0

f(h)− f(0)

h− 0
= 0.

If f were differentiable at 0 then these two limits would be the
same; as they are not, then f is not differentiable at 0.

This does not contradict the Cauchy-Riemann Theorem as the
partial derivatives are continuous at the origin.

B6 (i) There are a few ways of doing the algebra here (and it really is
just algebraic manipulations). For example

sin z = sin(x+ iy)

=
1

2i

(
ei(x+iy) − e−i(x+iy)

)
=

1

2i

(
e−yeix − eye−x

)
=

1

2i

(
e−y(cosx+ i sinx)− ey(cosx− i sinx)

)
=

1

2

(
(ey − e−y) sinx

)
+

1

2i

(
(−ey + e−y) cosx

)
= sinx cosh y + i cosx sinh y

(note that you need to be very careful with minus signs here).

(ii) By (i), sin z = 0 if and only if

sinx cosh y = 0 (1)

cosx sinh y = 0 (2).

As cosh y > 0 for all y ∈ R, (1) implies that sinx = 0. We know
that the real zeros of sin occur at the integers, hence x = kπ for
some k ∈ Z. From (2), cos kπ sinh y = (−1)k sinh y = 0. Hence
sinh y = 0. The only real zero of sinh is at 0, hence y = 0.
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(iii) Write z = x + iy and let p be a period for sin. Put z = 0 in
sin(z + p) = sin z to see that sin p = sin 0 = 0. Hence, by (ii),
sin p = kπ for some k ∈ Z. Now

sin(z + nπ) = sin(z + (n− 1)π + π)

= sin(z + (n− 1)π) cosπ + cos(z + (n− 1)π) sinπ

= − sin(z + (n− 1)π).

Inductively, we have sin(z + nπ) = (−1)n sin z. Hence sin(z +
nπ) = sin z if and only if n is even. Hence p = 2kπ, k ∈ Z.
Suppose ez+p = ez for all z ∈ C. Again, putting z = 0 gives
ep = e0 = 1. Let p = x+ iy. Then

ep = exeiy = ex(cos y + i sin y) = 1.

Hence

ex cos y = 1 (3)

ex sin y = 0 (4)

As ex > 0 for all x ∈ R we have sin y = 0, i.e. y = nπ, n ∈ Z.
Hence ex cosnπ = ex(−1)n = 1. This has no real solutions when
n is odd. When n is even, we have ex = 1, hence x = 0. Hence
the periods of exp are 2kπi, k ∈ Z.

(iv) From the calculations in (iii) we have that ew = 1 if and only if
w = 2kπi, k ∈ Z. Now ez = eiz iff ez−iz = 1 iff z − iz = 2kπi
(k ∈ Z) iff z = 2kπi/(1− i) (k ∈ Z).

B7 (i) If z ∈ A,B,C,D then w(γ, z) = 1, 2, 3, 0, respectively.

(ii) This is a standard definition from the course:
∫
γ f =

∫ b
a f(γ(t))γ′(t) dt.

(iii) A parametrisation of γ1 is given by

γ1(t) = 2 + 3i+ 2eit, 0 ≤ t ≤ 2π.

(There are other possible answers, for example 2 + 3i + 2e2πit,
0 ≤ t ≤ 1. Many of you forgot that the circle has radius 2 and
wrote something like 2+3i+eit.) To calculate the winding number
explicitly, just put this parametrisation into the definition in (ii):

w(γ1, 2 + 3i) =
1

2πi

∫
γ1

dz

z − (2 + 3i)

=
1

2πi

∫ 2π

0

1

(2 + 3i) + 2eit − (2 + 3i)
× 2ieit dt

=
1

2πi

∫ 2π

0
i dt = 1

(as γ′1(t) = 2ieit).
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(iv) The first part is bookwork: stating the Generalised Cauchy The-
orem. (Be careful about the fact that the hypotheses involve
points not in D.) For the second part, note that the only point
not in D is 2 + 3i. Clearly w(−γ2, 2 + 3i) = −2. Hence

w(γ1, z) + w(γ1, z) + w(−γ2, z) = 1 + 1− 2 = 0

for all points z 6∈ D. So by the GCT∫
γ1

f +

∫
γ1

f +

∫
−γ2

f = 0.

Rearranging this gives that∫
γ2

f = 2

∫
γ1

f = 2 + 2i.

B8 (i) We discussed an example of this in the course. Take f(x) = x.
Then

lim
R→∞

∫ R

−R
f(x) dx = lim

R→∞

∫ R

−R
x dx = lim

R→∞

1

2
(R2 −R2) = 0

but

lim
A,B→∞

∫ B

−A
f(x) dx = lim

A,B→∞

∫ B

−A

1

2
(B2 −A2)

doesn’t exist. The criterion for both limits to exist and to have
the same value is: there exists K > 0, C > 0, r > 1 such that
|f(x)| < C/|x|r for |x| > K. (As an aside: the criterion doesn’t
work if one only assumes r ≥ 1 but we didn’t discuss this in the
lectures.)

(ii) As the function isn’t defined, and so isn’t differentiable, when the
denominator vanishes (but is differentiable everywhere else), we
see that f has poles at ±2i,±3i. As these are simple zeros of the
denominator, these are simple poles of f .It’s straightforward from
the formula Res(f, z0) = limz→z0(z − z0)f(z) (when z0 is a sim-
ple pole) to see that Res(f, 2i) = −1/5i and Res(f, 3i) = 3/10i
(be careful with minus signs!). If R > 3 then it follows from
the Residue Theorem that

∫
ΓR
f = 2πi(Res(f, 2i) + Res(f, 3i)) =

π/5. The argument then follows that which we saw in the lec-
tures/support classes. First there’s an Estimation Lemma argu-
ment. Let z ∈ SR. Then |z| = R. By the reverse triangle ineq
we have

|z2 + 4| = |z2 − (−4)| ≥ |z|2 − 4 = R2 − 4, if R > 2,
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so that
1

|z2 + 4|
≤ 1

R2 − 4
.

(Many of you tried to argue that |z2 + 4| ≤ |z2|+ 4 ≤ R2 + 4 so
that 1

|z2+4| ≤
1

R2+4
, which doesn’t work). Similarly,

1

|z2 + 4|
≤ 1

R2 − 9

if R > 3. Hence if R > 3 then

|f(z)| ≤ R2

(R2 − 4)(R2 − 9)
.

Note that the length of SR is πR (not 2πR). By the Estimation
lemma, ∣∣∣∣∫

SR

f

∣∣∣∣ ≤ R2

(R2 − 4)(R2 − 9)
× πR→ 0

as R → ∞. Also note that |f(x)| ≤ x2/(x2 − 4)(x2 − 9) ≤ 1/x2

so the technical hypothesis holds and the infinite integral exists
and equals the principle value of the integral. Hence

π

5
= lim

R→∞

∫ R

−R
f(x) dx+ lim

R→∞

∫
SR

f =

∫ ∞
−∞

f(x) dx.

(iii) There were some very creative and ingeneous attempts to work
out this integral, some of which worked. The observation I in-
tended you to make was that f(x) = x/(x2 + 4)(x2 + 9) is an odd
function, so f(−x) = −f(x). Hence∫ R

−R
f(x) dx = 0

and letting R→∞ shows that
∫∞
−∞ f(x) dx = 0.
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