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Q1 (i) Determine the radii of convergence of the following power series. You may use
any standard results from the course provided that you state them clearly.
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(ii) Let z € C\ {0}. Suppose that expw = z. Let w = x + iy. Show that
x=Inlz|] andy=arg(z).
(You may not assume the definition of the complex logarithm.) [4 marks|
(iii) Recall that the principal value of the logarithm is defined to be
Logz = In|z| + i Arg(z)
where Arg(z) € (—m, ] is the principal value of the argument of z.
Show that , .
Log(—1+ i) = In(v/2) + %, and Logi = %
Hence give an example to show that, in general,
Log 21 + Log 25 # Log 21 25.
[6 marks|

Q2 Recall that if D is a domain, v : [a,b] — D is a path in D and f : D — C is continuous
then the integral fv f is defined to be
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(i) Let v denote a circular path with centre 3 + i and radius 2, described once
anticlockwise. Write down a parametrisation of .

Hence show that

/# dz = 2mi(3 + i).
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[8 marks|
(ii) State, without proof, the Fundamental Theorem of Contour Integration.
[2 marks|
(iii) Does the function z
f(z) = TG0
defined on the domain D = C\ {3 + i} have an anti-derivative? Give reasons for
your answer. [4 marks|
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