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NEURAL NETWORK MODELING OF THE ELECTROCHEMICAL
BEHAVIOR OF STEEL IN CHLORIDE SOLUTIONS OF VARYING pH
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ABSTRACT

In order to provide boundaryconditionsfor the numericalmodelingof cathodicprotection, a
phenomenologicalmodel of the electrochemistryof steel in solutionsor varying pH and pCI has been
developed.Polarizationcurveshavebeenmeasuredfor a rangeof solutions,and the results havebeen
usedto train neuralnetworksto provide a predictorof the currentdensityas a functionof pH, pCI and
appliedpotential.The resultantmodelsproducepredictedpolarizationcurvesthatare reasonablysimilar
to the measuredcurves, although interpolatedcurves tend to have rather unrealistic fluctuations in
currentdensityas afunctionof appliedpotential.
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INTRODUCTION

While cathodic protection is a well-establishedmethod of corrosion control, the detailed
theoreticalbasisis ratherlimited. Mostmodernauthorsexplainthemechanismof cathodicprotectionas
the loweringthe potentialinto the region of immunityon the E-pH diagram,but this fails to takeaccount
of chemicalchangesatthe metal surface,notably the increasein pH and reductionin concentrationof
anionssuchas chloride.Suggestionsby earlyworkers [.1] that the corrosionis limited by passivationin
the alkaline conditionsatthe cathodealsoseemplausible. Currentprotectioncriteria arebasedas much
on practicalexperienceas on theoreticalunderstanding.This is perfectly acceptablein manycases,but it
does lead to problemsin difficult situations.For examplein the protection of high strengthsteel in
concrete,the possibility of hydrogenembrittlementplacesa negative limit on the potential, andit is
difficult to determinethe acceptablerangeof potentialsthat can beapplied. There is thereforeaneedto
developa betterunderstandingof the combinedeffectsof appliedpotentialandchangesin chemistryon
the corrosion behavior of steel. A requirement for the developmentof such an understandingis a
mathematicaldescriptionof the electrochernicalbehaviorof metal-solutioninterfaceas a function of the
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local chemistry. Such a description can be developedfrom atheoreticalmodel based on the underlying
reaction kinetics [2], or it can be basedon a phenomenologicalmodel,wherein many measurementsare
used to map the behavior and interpolation techniques are used to produce an estimate of the
electrochemistry for any required conditions. The present study usesthe secondapproach, with the
polarization behavior of steel being determined as a function of pH and pCi -log [C1]. The
interpolation hasthen beenachievedby meansof a neuralnetwork see[3].

EXPERIMENTAL

SpecimenPreparation
In order to obtain reasonably stable mass transportconditions,andto minimize IR drop, a small

diameter circular working electrode was used’. This was made from a 0.6 mm OD BS1052mild steel
wire, with the compositiongiven in Table 1.

Fe
Table 1 Chem

C
ical Compos

Si
ition of the W

Mn
orking Electrode

S P
bal 0.030 0.038 0.230 0.017 0.013

In order to maintain a stable IR drop, the wire electrodeand a Luggin capillary were embedded
in epoxy resin in a glasstube Figure 1. Before eachexperiment the end faceof the electrodeassembly
was groundto 600grit SiC paper,washedwith ethanolanddistilled water anddried.

Steel wire -11i---- Catheter
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FIGURE 1 The testspecimenfor polarizationexperiment

In order to minimize crevice effects,a two-stage mounting procedurewas used, with the wire
being coated in epoxy resin before being cast into the glass tube. Prior to adopting this procedure,the
polarisationresults werenot reproducible andshoweda relatively high passivecurrent.

Test Solutions
The solutions usedin the experiment were chloride-containing solutions with concentrationof 1,

102, 10’ and 10 M, describedhereafter in terms of pCI, wherepCI -logi0 [Cli, so the above
concentrationstranslateto pCI 0,2,4,and6 respectively.Thesesolutionswere preparedatpH valuesof

‘It is recognisedthat the useof an electrodewith better-controlledmasstransportsuchasthe rotatingdislç, would improve
the measurementHowever,this was not feasiblewith the resourcesavailable to us, andthe simpleapproachdescribedhereis
basedon reducingmasstransporteffrctsas much as possibleby the use of the small electrodediameter,and by stirnng,
with the controlofthe masstransportto permit somecorrectionfor masstransporteffectsbeing asecondaryobjective.

4, 6, 8, 10, 12, and 13. They were preparedusingde-ionizedwater and reagentgradeNaC1, HC1 and
NaOH. Table I showsthe matrix of test solutions for bothaeratedandde-aeratedconditions:
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TABLE 1
pH AND CHLORIDE CONCENTRATIONOF THE TESTSOLUTIONS

pH
ChlorideConcentrationM

1xl0
pCl=6

1x10
pCl=4

1x10
pCl=2

IxlO°
pCi=0

4 .q
6 I I I
8 1 ‘I i I
10 ‘I 1 I T
12 ‘1 / I ‘I
13 I .‘I -1 -1

The ticked cells correspondedto the pH-pCI combinationsthat were tested. The blank cells
correspondedto the pH-pCi combinationsthat werenot tested. For pCI 6 test solutionat pH 4, it would
be impossibleto preparethe solution at this pH-pCl combinationsince pCi cannotbe greaterthan pH
unlessa secondanion,suchas sulfate,is alsoadded.

ExperimentalSetup

A conventional electrochemical configuration was used, with the addition of a platinum
microelectrodethat was usedto determinethe limiting currentdensityfor oxygenreduction,and hence
estimatethe oxygenconcentrationin thecaseofthe deaeratedsolution.Also a platinum electrodewas
connectedin parallel with the referenceelectrodein order to minimizesystemnoise.

A magneticstirrer was placedbelow the specimenso as to give a reproduciblemasstransport.
The position of the stirrer and the distanceof the specimenfrom the stirrer were pre-determinedfrom
studiesof the limiting current for oxygen reduction on a platinum microelectrode.The location was
selectedthatgavethe minimumsensitivityof thelimiting currentdensityto electrodepositionandstirrer
rotationspeed.

For testsin aeratedconditionsair was bubbledthroughthe solution throughoutthe polarization
experiment. The air was passedthrough 1M NaOH to remove CO2. Prior to immersing the steel
specimeninto the test cell, it was groundusing a 600-grit size grinding paper,washedwith ethanolfor
aboutone minute, rinsed with de-ionizedwater, and dried. The specimenwas subjectedto acathodic
potentialof -.800mV SCE for 30 minutesto reducethe air-formedoxide film. Thenthe potentialwas
sweptfrom -1500mV SCEto 1500 mY SCE with asweeprateof I OmV/min.

For testsin deaeratedconditionsthe procedurewas similar, exceptthat the air was replacedby
oxygen-freenitrogen.Theconcentrationof oxygenwas monitoredduring the de-aerationprocess,using
the platinum microelectrodepolarizedat -600 mV SCE for alkaline solution and-400 mV SCE for
acid solution. The test solution was de-aeratedfor at least four hours before the specimenwas
introducedinto thetest cell.

For both aeratedand de-aeratedconditions,the experimentwas repeatedusing freshly-prepared
specimensuntil at leasttwo reproducibleresultswereobtainedfor eachpoint in thetestmatrix.
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NEURAL NETWORK MODELLING
In order to usethe data obtained in the experimentalmeasurementsas inputs into a numerical

model of the cathodicprotectionprocess,it is necessaryto performan interpolationprocess,sothat the
current density canbe derivedas a continuousfunctionofpH, pCI andpotential.The gridof measured
points wasnot completely regular, and becameless regular if the bulk solution pH were corrected to
allow for masstransport effectsduring the measurementofthe polarizationcurves although this hasnot
been done for the data reportedhere. For thesereasons,interpolation methodsrelying on a regular
arrangement of data points such as the inbuilt Matlab2 interpolation functions could not be used. A
neural network was therefore usedto model the electrochemical behavior. 32 The EasyNN3program
was used for this work. This usesconventional multi-layer perceptronnetwork trained by the back-
propagation algorithm.

The original data consistedof 27,267examplesan example is one current density associated
with defined potential, pH andpCI; to reduce the time to iteratethroughthe training, this wasreduced
by random selectionto one quarter 6817examplesfor training.

Of the reduceddata set, 80 percent5,454exampleswereusedas the training setand20 percent
1,363examplesas the validation set

Two neural network architectures, namely 3-50-50-13 input nodes, 50 nodes in the first and
secondhidden layers and I output node, with a total of 2700weightsand3-60-60-I asbefore, but 60
nodesin eachofthe hidden layers, with a total of3840weights,were trained using the polarization data
for the aerated andde-aeratedtest conditions.

The input and output values, namely pH,. pCI, potential andcurrent density, were automatically
normalizedlinearly transformedto values between0 and 1 by the program.However, the inherently
logarithmic character of current densities leads to a domination of the training by the high current
densitiesat the extremesofthe polarization curve. For this reason,the values ofcurrent densitieswere
manually normalized usingthe following sigmoidal function:

trans = 4.5
1 + e

The value0.2 was used to adjustthe valuesof i,, to give areasonablebalancebetweenhigh
and low currents. Figure 2 shows a plot of sigmoidally transformedcurrent values for one test
condition. An ideal transformationfrom the perspectiveof neural network training would lead to a
straight line relationshipbetweenpotential and transformedcurrentdensity.This is clearly not going to
be achieved for all data, but the result in Figure 2 implies that there is a reasonablygood linear
relationshipthesigmoidal function is designedas 4thenextbestthing’ to alogarithmictransfbrm,since
the logarithmictransformationfails asthe currentdensity goesthroughzero.

2Matlabis atradenameofThe MathworksInc.
3EasyNNis atradenameofStevenWostenholme
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FIGURE 2 Sigmoidal transformof currentdensitiesfor a pHlO andpCl =2 test

Network Training
Several trainingrunswere performed sincethe network is initialized with randomweights,each

training producesa different result.The trainednetworkswere assessedon the following criteria, and
the best network selectedfor eachofthe network dimensions:

1. The ability of the networksto curve-fit the original dataat a particularpH and pCI. ThreepH
valuesat a particularpCl wereselected,pH 6 representingactivebehavior,pH 10 representing
pitting, and pH 13 representingpassivebehavior. The predictedpolarization curves were
comparedwith the measuredcurveatpCl 4.

2. The ability of the networksto interpolatethe original polarizationcurvesby pH andpCI. The
interpolatedpH valueswerepH 5, 7, 9, and 11, and the interpolationwas madeat pCi 2. The
interpolatedpCI values were pCI 1, 3, and 5, and the interpolationwas made at pH 10. The
quality of the interpolation was assessedin terms of the ‘reasonableness’ of the predicted
polarization curve i.e. its lack of unexpected peaksand troughs and its fit betweenadjacent
experimentalcurves.

TrainingResults- AeratedTest Conditions
Table 2 gives the final values of the validation percentagethe percentageof examples in the

validation set that lie within a specifieddeviation, in this case 10%, from the predicted value andthe
maximum error the standard deviation of the percentagedifference betweenthe predicted value and the
training value on stopping training as well as the maximum validation percentageachievedduring the
training for the 3-50-50-1 and3-60-60-1neural networks, trained using the aerated test condition data.

-500 0 500 1000
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TABLE 2
NETWORK TRAINING PERFORMANCE- AERATED SOLUTION

Neural Network Maximum Error Validation T Max. Validation

____________________

j Percentape j Percentape

_______________________

______I 75.44 1 77.93
5.83 I 75.59 I 84.82

3-50-50-1
3-60-60-1

Figure4 showsthe fit ofthe two networksto the experimentalcurvesat pH 10 andpCI 4.
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FIGURE4 PerformanceofTrainedNetworkAeratedSolution,pH
Figure5 showsthe fit to the measureddatafor pH 7 and pCi 2.
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FIGURE5 Interpolationof PolarizationCurvesfor pH 7 andpCI 2 for
AeratedTestConditions3-60-60-1network

IE-OS 0.00001 0.0001 0.001 0.01 0.1 1 10

currentdsn.ItyI ,nAlcm’

0.1 10

CurrentdensityI

1000

040636



DeaeratedConditions
Table 3 gives the final valuesof thevalidation percentageand the maximumerror atthe end of

the training as well as the maximum validation percentageachievedduring the training for the de
aerateddata.

TABLE 3
ERRORCHARACTERISTICSFOR TRAIN[NG WITH DEAERATED TEST DATA
Neural Maximum Error Validation
Network % Percentage

Max. Validation
Percentage

3-50-50-i 15.41 81.4 88.88
3-60-60-1 65.92 59 87.78

Figure 6 showsthe match of the predicted and measuredcurvesat pH 10 and pCI 4.
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FIGURE6 Performanceof NetworksDe-aeratedChlorideSolutionat pH 10 andpCI 4

Figure 7 showsanexampleof the interpolationbehaviorfor pH 7 and pCi 2.
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FIGURE 7 Interpolationof PolarizationCurvesatpH 7 andpCi 2 for
De-aeratedConditions3-50-50-1network
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DISCUSSION AND CONCLUSIONS
Overall the results indicate that the 3-60-60-1 network generalizedbetter for the aeratedtest

conditions,while for the de-aeratedtest conditions, the 3-50-50-1 networkgeneralizedbetter.As canbe
seen from the figures presentedhere, the fit to the experimentaldata is reasonable,but not perfect, and
the interpolation resultssimilarly seemmoderately good it should be appreciatedthat there are several
other curves a similar ‘distance’ for the interpolated curve, andthe network may be making the bestof a
difficult job. Bearing in mind that the current density is plottedon a logarithmicscale,the errorsare
often quite large, and more work is neededto improve the quality of the model At presentthe training
data is derived from polarizationcurvesdeterminedin 17 combinationsof pH and pCi. The data in the
potential dimension are very densely packed, but the data are widely spacedin the pH and pCI
dimensions.Thus it is not entirely surprising that the interpolation behavior is relatively poor.

The neural network models that have beenobtained in this work have been converted to Matlab
functions for use as boundary conditions in fmite element modeling. This has proved successful,
although the large numberof weights involved does mean that the computation is very slow, and
improved performancemay be achievedby using the neural network model to compute a denseregular
array of points, andthen use the Matlab interpolation functions within the finite elementcalculations.
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