Introduction to self-similar growth-fragmentations

Quan Shi

CIMAT, 11-15 December, 2017

Lecture notes available at my personal webpage: https://sites.google.com/site/qshimath
Overview

1. Background: fragmentation processes
Overview

1. Background: fragmentation processes
2. Construction of growth-fragmentation processes
Overview

1. Background: fragmentation processes
2. Construction of growth-fragmentation processes
3. Properties of self-similar growth-fragmentations
Overview

1. Background: fragmentation processes
2. Construction of growth-fragmentation processes
3. Properties of self-similar growth-fragmentations
4. Martingales in self-similar growth-fragmentations
1. Background: fragmentation processes
Background

- **Fragmentation**: “the process or state of breaking or being broken into fragments”.

Fragmentation phenomena can be observed widely in nature: biology and population genetics, aerosols, droplets, mining industry, etc.

The first studies of fragmentation from a probabilistic point of view are due to Kolmogorov [1941] and Filippov [1961].

The general framework of the theory of stochastic fragmentation processes was built mainly by Bertoin [2001, 2002]. See Bertoin [2006] for a comprehensive monograph.

Fragmentations are relevant to other areas of probability theory, such as branching processes, coalescent processes, multiplicative cascades and random trees.
Background

- **Fragmentation**: “the process or state of breaking or being broken into fragments”.
- Fragmentation phenomena can be observed widely in nature: biology and population genetics, aerosols, droplets, mining industry, etc.
Background

- **Fragmentation**: “the process or state of breaking or being broken into fragments”.

- Fragmentation phenomena can be observed widely in nature: biology and population genetics, aerosols, droplets, mining industry, etc.

- The first studies of fragmentation from a **probabilistic** point of view are due to Kolmogorov [1941] and Filippov [1961].
Background

- **Fragmentation**: “the process or state of breaking or being broken into fragments”.

- Fragmentation phenomena can be observed widely in nature: biology and population genetics, aerosols, droplets, mining industry, etc.

- The first studies of fragmentation from a **probabilistic** point of view are due to Kolmogorov [1941] and Filippov [1961].

- The general framework of the theory of stochastic fragmentation processes was built mainly by Bertoin [2001, 2002]. See Bertoin [2006] for a comprehensive monograph.
Background

- **Fragmentation**: “the process or state of breaking or being broken into fragments”.
- Fragmentation phenomena can be observed widely in nature: biology and population genetics, aerosols, droplets, mining industry, etc.
- The first studies of fragmentation from a probabilistic point of view are due to Kolmogorov [1941] and Filippov [1961].
- The general framework of the theory of stochastic fragmentation processes was built mainly by Bertoin [2001, 2002]. See Bertoin [2006] for a comprehensive monograph.
- Fragmentations are relevant to other areas of probability theory, such as branching processes, coalescent processes, multiplicative cascades and random trees.
Model: Self-similar fragmentation processes [Bertoin 2002]

- **Index of self-similarity:** $\alpha \in \mathbb{R}$.
- **Dislocation measure:** ν sigma-finite measure on $[1/2, 1)$, such that
 \[
 \int_{[1/2, 1)} (1 - y) \nu(dy) < \infty.
 \]
- For every $y \in [1/2, 1)$, a fragment of size $x > 0$ splits into two fragments of size xy, $x(1 - y)$ at rate $x^\alpha \nu(dy)$.

\[\begin{tikzpicture}
 \node[shape=circle,fill=blue!50] (A) at (0,0) {}; \node[shape=circle,fill=blue!50] (B) at (1,0) {}; \node[shape=circle,fill=blue!50] (C) at (2,0) {}; \node[shape=circle,fill=blue!50] (D) at (3,0) {};
 \draw[dashed] (A) -- (B) -- (C) -- (D);
\end{tikzpicture}\]
Model: Self-similar fragmentation processes [Bertoin 2002]

- Index of self-similarity: $\alpha \in \mathbb{R}$.
- Dislocation measure: ν sigma-finite measure on $[1/2, 1)$, such that
 \[\int_{[1/2, 1)} (1 - y) \nu(dy) < \infty. \]
- For every $y \in [1/2, 1)$, a fragment of size $x > 0$ splits into two fragments of size $xy, x(1 - y)$ at rate $x^\alpha \nu(dy)$.
- Record the sizes of the fragments at time $t \geq 0$ by a measure on \mathbb{R}_+
 \[X(t) = \sum_{i \geq 1} \delta X_i(t). \]

The process X is a self-similar fragmentation (without erosion) with characteristics (α, ν).
Examples:

- **Splitting intervals** [BrennanDurrett1986]:
 - U_i: i.i.d. uniform random variables on $(0, 1)$, arrive one after another at rate 1.
 - At time t, $(0, 1)$ is separated into intervals $I_1(t), I_2(t), \ldots$
 - $F(t) := \sum_{i \geq 1} \delta_{I_i(t)}$ is a self-similar fragmentation with characteristics $(1, \nu)$, where $\nu(dx) = 2dx, \quad x \in \left[\frac{1}{2}, 1\right)$.
Examples:

- **Splitting intervals** [BrennanDurrett1986]:
 - \(U_i \): i.i.d. uniform random variables on \((0, 1)\), arrive one after another at rate 1.
 - At time \(t \), \((0, 1)\) is separated into intervals \(l_1(t), l_2(t), \ldots \).
 - \(F(t) := \sum_{i \geq 1} \delta_{l_i(t)} \) is a self-similar fragmentation with characteristics \((1, \nu)\), where \(\nu(dx) = 2dx, \quad x \in [\frac{1}{2}, 1) \).

- **The Brownian fragmentation**
 - Normalized Brownian excursion: \(B : [0, 1] \to \mathbb{R}_+ \).
 - \(O(t) := \{ x \in (0, 1) : B(x) > t \} \).
 - \(F(t) := \sum_{I: \text{component of } O(t)} \delta_{|I|} \)
 - \(F \) is a self-similar fragmentation with characteristics \((-\frac{1}{2}, \nu_B)\), where \(\nu_B(dx) = \frac{2}{\sqrt{2\pi x^3(1-x)^3}}dx, \quad x \in [\frac{1}{2}, 1) \).
2. Construction of growth-fragmentation processes
Growth-fragmentation processes

- (Markovian) growth-fragmentation processes [Bertoin 2017] describe the evolution of the sizes of a family of particles, which can grow larger or smaller with time, and occasionally split in a conservative manner.
Growth-fragmentation processes

- (Markovian) growth-fragmentation processes [Bertoin 2017] describe the evolution of the sizes of a family of particles, which can grow larger or smaller with time, and occasionally split in a conservative manner.

- Applications of the model: Random planar maps [Bertoin&Curien&Kortchemski, 2015+; Bertoin&Budd&Curien&Kortchemski, 2016+]
Growth-fragmentation processes

- (Markovian) growth-fragmentation processes [Bertoin 2017] describe the evolution of the sizes of a family of particles, which can grow larger or smaller with time, and occasionally split in a conservative manner.

- Applications of the model: Random planar maps [Bertoin&Curien&Kortchemski, 2015+; Bertoin&Budd&Curien&Kortchemski, 2016+]

- Simulation by I. Kortchemski & N. Curien: https://www.normalesup.org/ kortchem/images/tribord.gif
Construction of growth-fragmentations [Bertoin 2017]

- Starfishes:

 - Growth: The size of the ancestor evolves according to a positive self-similar Markov process (pssMp) X, with only negative jumps.

 - Regeneration: At each jump time $t \geq 0$ with $-y := X(t) - X(t-)$ < 0, a daughter is born with initial size y. The size evolution of the daughter has the same distribution as X (but started at y), and is independent of other daughters.

 - Granddaughters are born at the jumps of each daughter, and so on.
Construction of growth-fragmentations [Bertoin 2017]

- Asexual reproduction of starfishes:

 - Growth: The size of the ancestor evolves according to a positive self-similar Markov process \(\text{pssMp} X \), with only negative jumps.

 - Regeneration: At each jump time \(t \geq 0 \) with \(-y := X(t) - X(t-\)\), a daughter is born with initial size \(y \). The size evolution of the daughter has the same distribution as \(X \) (but started at \(y \)), and is independent of other daughters.

 - Granddaughters are born at the jumps of each daughter, and so on.
Construction of growth-fragmentations [Bertoin 2017]

- Asexual reproduction of starfishes:

- **Growth**: The size of the ancestor evolves according to a positive self-similar Markov process (pssMp) X, with only negative jumps.
Construction of growth-fragmentations [Bertoin 2017]

- Asexual reproduction of starfishes:

- **Growth**: The size of the ancestor evolves according to a positive self-similar Markov process (pssMp) X, with only negative jumps.

- **Regeneration**: At each jump time $t \geq 0$ with $-y := X(t) - X(t-) < 0$, a daughter is born with initial size y. The size evolution of the daughter has the same distribution as X (but started at y), and is independent of other daughters.

- Granddaughters are born at the jumps of each daughter, and so on.
Asexual reproduction of starfishes:

- **Growth**: The size of the ancestor evolves according to a positive self-similar Markov process (pssMp) \(X \), with only negative jumps.

- **Regeneration**: At each jump time \(t \geq 0 \) with \(-y := X(t) - X(t-) < 0 \), a daughter is born with initial size \(y \). The size evolution of the daughter has the same distribution as \(X \) (but started at \(y \)), and is independent of other daughters.

Granddaughters are born at the jumps of each daughter, and so on.
Asexual reproduction of starfishes:

- **Growth**: The size of the ancestor evolves according to a positive self-similar Markov process (pssMp) X, with only negative jumps.
- **Regeneration**: At each jump time $t \geq 0$ with $-y := X(t) - X(t-) < 0$, a daughter is born with initial size y. The size evolution of the daughter has the same distribution as X (but started at y), and is independent of other daughters.
- Granddaughters are born at the jumps of each daughter, and so on.
\mathcal{X}: a pssMp with negative jumps

Simulation by B. Dadoun
\mathcal{X}: a pssMp with negative jumps

Simulation by B. Dadoun
\(X \): a pssMp with negative jumps

Simulation by B. Dadoun
\mathcal{X}: a pssMp with negative jumps
\mathcal{X}: a pssMp with negative jumps

Simulation by B. Dadoun
\mathcal{X}: a pssMp with negative jumps
\mathcal{X}: a pssMp with negative jumps

Simulation by B. Dadoun
\mathcal{X}: a pssMp with negative jumps

Simulation by B. Dadoun
Record the sizes of all individuals at time $t \geq 0$ by a point measure on \mathbb{R}_+:

$$X(t) := \sum_{u \in \mathcal{U}} \delta \chi_u(t-b_u) 1\{b_u \leq t, \chi_u(t-b_u) > 0\}, \quad t \geq 0.$$
Self-similar growth-fragmentations

- The population is indexed by the Ulam-Harris tree: \(U = \bigcup_{i=0}^{\infty} \mathbb{N}^i \). By convention \(\mathbb{N}^0 = \{\emptyset\} \).
 An element \(u = (n_1, \ldots, n_i) \in \mathbb{N}^i \), then \(uk := (n_1, \ldots, n_i, k) \) for \(k \in \mathbb{N} \).
Self-similar growth-fragmentations

- The population is indexed by the **Ulam-Harris tree**: $\mathcal{U} = \bigcup_{i=0}^{\infty} \mathbb{N}^i$. By convention $\mathbb{N}^0 = \{\emptyset\}$. An element $u = (n_1, \ldots, n_i) \in \mathbb{N}^i$, then $u_k := (n_1, \ldots, n_i, k)$ for $k \in \mathbb{N}$.

- Construct a **cell system**, that is a family

$$\left(\mathcal{X}_u, b_u \right), \quad u \in \mathcal{U}.$$

\mathcal{X}_u: evolution of the size of u as time grows.

b_u: birth time of u.
Self-similar growth-fragmentations

- The population is indexed by the Ulam-Harris tree: $\mathbb{U} = \bigcup_{i=0}^{\infty} \mathbb{N}^i$. By convention $\mathbb{N}^0 = \{\emptyset\}$.
- An element $u = (n_1, \ldots, n_i) \in \mathbb{N}^i$, then $u_k := (n_1, \ldots, n_i, k)$ for $k \in \mathbb{N}$.

- Construct a cell system, that is a family (\mathcal{X}_u, b_u), $u \in \mathbb{U}$.

\mathcal{X}_u: evolution of the size of u as time grows.

b_u: birth time of u.

1. Initialization: $b_\emptyset := 0$, $\mathcal{X}_\emptyset \overset{d}{=} P_x$ (the law of the pssMp X started from x).
2. Induction: enumerate the jump times of \mathcal{X}_u by $(t_k, k \in \mathbb{N})$ and let $y_k := -\Delta \mathcal{X}_u(t_k) > 0$. Then

$$b_{u_k} = b_u + t_k, \quad \mathcal{X}_{u_k} \overset{d}{=} P_{y_k}, \quad k \in \mathbb{N}.$$

The daughters $(\mathcal{X}_{u_k}, k \in \mathbb{N})$ are independent.
Self-similar growth-fragmentations

The population is indexed by the **Ulam-Harris tree**: \(U = \bigcup_{i=0}^{\infty} \mathbb{N}^i \). By convention \(\mathbb{N}^0 = \{\emptyset\} \).

An element \(u = (n_1, \ldots, n_i) \in \mathbb{N}^i \), then \(u_k := (n_1, \ldots, n_i, k) \) for \(k \in \mathbb{N} \).

Construct a **cell system**, that is a family

\[(\mathcal{X}_u, b_u), \quad u \in U. \]

\(\mathcal{X}_u \): evolution of the size of \(u \) as time grows.

\(b_u \): birth time of \(u \).

1. **Initialization**: \(b_{\emptyset} := 0 \), \(\mathcal{X}_{\emptyset} \overset{d}{=} P_x \) (the law of the pssMp \(X \) started from \(x \)).
2. **Induction**: enumerate the jump times of \(\mathcal{X}_u \) by \((t_k, k \in \mathbb{N}) \) and let \(y_k := -\Delta \mathcal{X}_u(t_k) > 0 \). Then

\[b_{uk} = b_u + t_k, \quad \mathcal{X}_{uk} \overset{d}{=} P_{y_k}, \quad k \in \mathbb{N}. \]

The daughters \((\mathcal{X}_{uk}, k \in \mathbb{N}) \) are independent.

\((\mathcal{X}_u, u \in U)\) is a **Crump-Mode-Jagers branching process** [Jagers, 1983].

The law of \((\mathcal{X}_u, u \in U)\) is determined by the pssMp \(X \).
Record the sizes of all individuals alive at time $t \geq 0$ by a point measure on \mathbb{R}_+:

$$X(t) := \sum_{u \in U} \delta_{X_u(t-b_u)}1\{b_u \leq t, X_u(t-b_u) > 0\}, \quad t \geq 0,$$

where δ denotes the Dirac measure. The process X is called a **self-similar growth-fragmentation** associated with X.

X does not contain any information of the genealogy. The law of the pssMp X determines the law of X.

Question

Is $X(t)$ a Radon measure on \mathbb{R}_+?
Self-similar growth-fragmentation processes

- Record the sizes of all individuals alive at time $t \geq 0$ by a point measure on \mathbb{R}_+:

$$X(t) := \sum_{u \in U} \delta \chi_u(t-b_u) 1\{b_u \leq t, \chi_u(t-b_u) > 0\}, \quad t \geq 0,$$

where δ denotes the Dirac measure. The process X is called a self-similar growth-fragmentation associated with X.

- X does not contain any information of the genealogy.

- The law of the pssMp X determines the law of X.

Quan Shi
Growth-Fragmentations
CIMAT, 11-15 December, 2017
Self-similar growth-fragmentation processes

- Record the sizes of all individuals alive at time $t \geq 0$ by a point measure on \mathbb{R}_+:
 \[X(t) := \sum_{u \in \mathbb{U}} \delta_{X_u(t-b_u)} 1_{\{b_u \leq t, X_u(t-b_u) > 0\}}, \quad t \geq 0, \]
 where δ denotes the Dirac measure. The process X is called a self-similar growth-fragmentation associated with X.
- X does not contain any information of the genealogy.
- The law of the pssMp X determines the law of X.

Question

- Is $X(t)$ a Radon measure on \mathbb{R}_+?
Positive self-similar Markov processes

Let X be a positive self-similar Markov process (pssMp) with no positive jumps, and P_x be the law of X starting from $X(0) = x$.

- $\alpha \in \mathbb{R}$ is the index of self-similarity: if $X(0) = x$, then for every $r > 0$

 $$(rX(r^{\alpha}t), t \geq 0)$$

 have the law of P_{rx} and P_x.

\[\]
Positive self-similar Markov processes

Let X be a positive self-similar Markov process (pssMp) with no positive jumps, and P_x be the law of X starting from $X(0) = x$.

- $\alpha \in \mathbb{R}$ is the index of self-similarity: if $X(0) = x$, then for every $r > 0$
 \[(rX(r^\alpha t), t \geq 0)\] have the law of P_{rx} and P_x.

- For the homogeneous case $\alpha = 0$: there exists a Lévy process ξ such that $X^{(0)}(t) = \exp(\xi_t)$, $t \geq 0$.

Quan Shi
Growth-Fragmentations
CIMAT, 11-15 December, 2017 14 / 34
Positive self-similar Markov processes

Let X be a positive self-similar Markov process (pssMp) with no positive jumps, and P_x be the law of X starting from $X(0) = x$.

- $\alpha \in \mathbb{R}$ is the index of self-similarity: if $X(0) = x$, then for every $r > 0$

$$(rX(r^\alpha t), t \geq 0)$$

have the law of P_{rx} and P_x.

- For the homogeneous case $\alpha = 0$: there exists a Lévy process ξ such that $X^{(0)}(t) = \exp(\xi_t), \quad t \geq 0$.

- ξ (without positive jumps, not killed) is characterized by its Laplace exponent $\Phi : [0, \infty) \rightarrow \mathbb{R}$,

$$E \left[e^{q\xi(t)} \right] = e^{\Phi(q)t}, \quad \text{for all } t, q \geq 0.$$

- The function Φ is convex, given by the Lévy-Khintchine formula:

$$\Phi(q) = \frac{1}{2} \sigma^2 q^2 + cq + \int_{(-\infty,0)} (e^{qx} - 1 + q(1 - e^x)) \Lambda(dx), \quad q \geq 0,$$

where $\sigma^2 \geq 0$, $c \in \mathbb{R}$, and the Lévy measure Λ is a measure on $(-\infty, 0)$ with

$$\int_{(-\infty,0)} (|x|^2 \wedge 1) \Lambda(dx) < \infty.$$
Positive self-similar Markov processes

- Lamperti’s transform [Lamperti 1972]: when $\alpha \neq 0$:

$$X_t^{(\alpha)} = \exp(\xi_{\tau^{(\alpha)}(t)}), \quad 0 \leq t < \zeta^{(\alpha)},$$

where $(\tau^{(\alpha)}(t), t \geq 0)$ is an explicit time-change that depends on α:

$$\tau^{(\alpha)}(t) := \inf \left\{ s \geq 0 : \int_0^s \exp(-\alpha \xi_r) dr > t \right\}, \quad t \geq 0.$$
Positive self-similar Markov processes

- Lampertí’s transform [Lamperti 1972]: when $\alpha \neq 0$:

$$X_t^{(\alpha)} = \exp(\xi_{\tau^{(\alpha)}(t)}), \quad 0 \leq t < \zeta^{(\alpha)},$$

where $(\tau^{(\alpha)}(t), t \geq 0)$ is an explicit time-change that depends on α:

$$\tau^{(\alpha)}(t) := \inf \left\{ s \geq 0 : \int_0^s \exp(-\alpha \xi_r) dr > t \right\}, \quad t \geq 0.$$

- The lifetime of $X^{(\alpha)}$:

$$\zeta^{(\alpha)} := \int_0^\infty \exp(-\alpha \xi_r) dr \in (0, \infty]$$
Positive self-similar Markov processes

- Lamperti's transform [Lamperti 1972]: when $\alpha \neq 0$:

$$X_t^{(\alpha)} = \exp(\xi_{\tau^{(\alpha)}(t)}) , \quad 0 \leq t < \zeta^{(\alpha)},$$

where $(\tau^{(\alpha)}(t), t \geq 0)$ is an explicit time-change that depends on α:

$$\tau^{(\alpha)}(t) := \inf \left\{ s \geq 0 : \int_0^s \exp(-\alpha \xi_r) dr > t \right\}, \quad t \geq 0.$$

- The lifetime of $X^{(\alpha)}$:

$$\zeta^{(\alpha)} := \int_0^\infty \exp(-\alpha \xi_r) dr \in (0, \infty]$$

- The law of the pssMp X is characterized by (Φ, α).
Lamperti’s time-change

\[X^{(0)}(t) = e^{\xi(t)} \]

[\xi: \text{Lévy process}]

Simulation by B. Dadoun
Lamperti’s time-change

\[
X^{(0)}(t) = e^{\xi(t)} \quad [\xi: \text{Lévy process}]
\]

\[
X^{(\alpha)}(t) = X^{(0)} \left(\int_0^t (X^{(\alpha)}(s))^\alpha \, ds \right)
\]

Simulation by B. Dadoun
A coupling construction

Repeat Lamperti’s time-change for each trajectory from the homogeneous case:

\[\mathcal{X}_u^{(\alpha)}(t) := \mathcal{X}_u^{(0)}(\tau_u^{(\alpha)}(t)) \]

with \(\tau_u^{(\alpha)}(t) := \inf \left\{ r \geq 0 : \int_0^r \mathcal{X}_u^{(0)}(s)^{-\alpha} ds \geq t \right\} \)

\(\alpha = 0 \)

Simulation by B. Dadoun
A coupling construction

Repeat Lamperti’s time-change for each trajectory from the homogeneous case:

\[X^{(\alpha)}_u(t) := X^{(0)}_u(\tau^{(\alpha)}_u(t)) \text{ with } \tau^{(\alpha)}_u(t) := \inf \left\{ r \geq 0 : \int_0^r X^{(0)}_u(s)^{-\alpha} \, ds \geq t \right\} \]

\[\alpha = 0.5 \]

Simulation by B. Dadoun
3. Properties of self-similar growth-fragmentations
Cumulant function for the homogeneous case

- X: a homogeneous growth-fragmentation associated with a pssMp X with characteristics \((\Phi, \alpha = 0)\).
Cumulant function for the homogeneous case

- X: a homogeneous growth-fragmentation associated with a pssMp X with characteristics $(\Phi, \alpha = 0)$.
- Define the cumulant $\kappa: [0, \infty) \to (-\infty, \infty]$ by

$$\kappa(q) := \Phi(q) + \int_{(-\infty, 0)} (1 - e^x)^q \Lambda(dx), \quad q \geq 0.$$
Cumulant function for the homogeneous case

- **X**: a homogeneous growth-fragmentation associated with a pssMp X with characteristics $(\Phi, \alpha = 0)$.
- Define the **cumulant** $\kappa : [0, \infty) \rightarrow (-\infty, \infty]$ by
 \[
 \kappa(q) := \Phi(q) + \int_{(\infty,0)} (1 - e^x)^q \Lambda(dx), \quad q \geq 0.
 \]
- κ is convex and possibly takes value at ∞. But $\kappa(q) < \infty$ for all $q \geq 2$.

Theorem (Bertoin, 2016)

Suppose that $\kappa(q) < \infty$. If $\alpha = 0$, then for every $t \geq 0$,

\[
E[X(t)] = x q \exp(\kappa(q)t).
\]
Cumulant function for the homogeneous case

- \(X \): a homogeneous growth-fragmentation associated with a pssMp \(X \) with characteristics \((\Phi, \alpha = 0)\).
- Define the cumulant \(\kappa: [0, \infty) \rightarrow (-\infty, \infty] \) by

\[
\kappa(q) := \Phi(q) + \int_{(-\infty,0)} (1 - e^x)^q \Lambda(dx), \quad q \geq 0.
\]

Theorem (Bertoin, 2016)

Suppose that \(\kappa(q) < \infty \). If \(\alpha = 0 \), then for every \(t \geq 0 \),

\[
E_x \left[\int_{\mathbb{R}_+} y^q X_t(dy) \right] = x^q \exp(\kappa(q)t).
\]
Non-explosion condition

- X: a self-similar growth-fragmentation associated with a pssMp X with characteristics (Φ, α).
Non-explosion condition

- \(X \): a self-similar growth-fragmentation associated with a pssMp \(X \) with characteristics \((\Phi, \alpha)\).
- \(X \) is called **non-explosive**, if for every \(t \geq 0 \) and \(a > 0 \), \(X(t) \) has **finite** mass on \([a, \infty)\).
Non-explosion condition

- **X**: a self-similar growth-fragmentation associated with a pssMp X with characteristics (Φ, α).

- **X** is called **non-explosive**, if for every $t \geq 0$ and $a > 0$, $X(t)$ has finite mass on $[a, \infty)$.

- **[Bertoin&Stephenson, 2016]**: if $\alpha \neq 0$ and $\kappa(q) > 0$ for all $q \geq 0$, then X explodes in finite time.
Non-explosion condition

- X: a self-similar growth-fragmentation associated with a pssMp X with characteristics (Φ, α).
- X is called non-explosive, if for every $t \geq 0$ and $a > 0$, $X(t)$ has finite mass on $[a, \infty)$.
- [Bertoin&Stephenson, 2016]: if $\alpha \neq 0$ and $\kappa(q) > 0$ for all $q \geq 0$, then X explodes in finite time.

Theorem (Bertoin, 2017)

Suppose that there exists $q > 0$ such that $\kappa(q) \leq 0$. Then for every $t \geq 0$, there is the inequality

$$E_x \left[\int_{\mathbb{R}^+} y^q X_t(dy) \right] \leq x^q.$$
Proof of the theorem

Using Lamperti’s transform, we have

\[E_x \left[X(t)^q + \sum_{0 \leq s \leq t} |\Delta X(s)|^q \right] \leq x^q, \quad \text{for all } t \geq 0. \]
Proof of the theorem

Using Lamperti’s transform, we have

\[E_x \left[X(t)^q + \sum_{0 \leq s \leq t} |\Delta X(s)|^q \right] \leq x^q, \quad \text{for all } t \geq 0. \]

Consequence: fix \(t \geq 0 \), we have a supermartingale:

\[\Sigma_n := \sum_{|u| \leq n-1, b_u \leq t} \mathcal{X}_u(t - b_u)^q + \sum_{|v| = n, b_v \leq s \leq t} |\Delta \mathcal{X}_v(s - b_v)|^q, \quad n \geq 1. \]
Proof of the theorem

- Using Lamperti’s transform, we have

$$E_x\left[X(t)^q + \sum_{0 \leq s \leq t} |\Delta X(s)|^q\right] \leq x^q, \quad \text{for all } t \geq 0.$$

- Consequence: fix $t \geq 0$, we have a supermartingale:

$$\Sigma_n := \sum_{|u| \leq n-1, b_u \leq t} \mathcal{X}_u(t - b_u)^q + \sum_{|v| = n, b_v \leq s \leq t} |\Delta \mathcal{X}_v(s - b_v)|^q, \quad n \geq 1.$$

$$\mathcal{E}_x\left[\sum_{u \in \mathbb{U} : b_u \leq t} \mathcal{X}_u(t - b_u)^q\right] \leq \mathcal{E}_x[\Sigma_\infty]$$

$$\leq \mathcal{E}_x[\Sigma_0] = \mathcal{E}_x\left[\mathcal{X}_0(t)^q + \sum_{0 \leq s \leq t} |\Delta \mathcal{X}_0(s)|^q\right] \leq x^q.$$
Properties of self-similar growth-fragmentations

Let X be a self-similar growth-fragmentation driven by X started from $X(0) = \delta_x$. Suppose that the non-explosion condition holds.

- [The branching property]
 Write $X(s) = \sum_{i \geq 1} \delta_{X_i(s)}$. Conditionally on $\sigma(X(r), r \leq s)$, we have
 \[
 (X(t + s), t \geq 0) \overset{d}{=} \sum_{i \geq 1} X^{(i)}(t),
 \]
 where $(X^{(i)}, i \geq 1)$ are independent self-similar growth-fragmentations driven by X, with $X^{(i)}$ started at $X^{(i)}(0) = \delta_{X_i(s)}$.

- X is self-similar with index α: $X(0) = \delta_x$. For every $\theta > 0$,
 \[
 (\sum_{i \geq 1} \delta_{\theta X_i(\theta^\alpha t)}, t \geq 0) \overset{d}{=} X \text{ started from } \delta_{\theta x}.
 \]
Extinction

Theorem (Bertoin 2017)

Suppose that $\alpha < 0$ and that there exists $q > 0$ such that $\kappa(q) < 0$. Then the extinction time

$$\inf\{t \geq 0 : X^{(\alpha)}(t) = 0\}$$

is P_x-a.s. finite for every $x > 0$.
Theorem (Bertoin 2017)

Suppose that $\alpha < 0$ and that there exists $q > 0$ such that $\kappa(q) < 0$. Then the extinction time

$$\inf\{t \geq 0 : X^{(\alpha)}(t) = 0\}$$

is P_x-a.s. finite for every $x > 0$.

Proof.

$$\inf\{t \geq 0 : X^{(\alpha)}(t) = 0\} = \sup \left\{ b_u^{(\alpha)} + \zeta_u^{(\alpha)} : u \in \mathbb{U} \right\}$$
Theorem (Bertoin 2017)

Suppose that $\alpha < 0$ and that there exists $q > 0$ such that $\kappa(q) < 0$. Then the extinction time

$$\inf\{t \geq 0 : X^{(\alpha)}(t) = 0\}$$

is P_x-a.s. finite for every $x > 0$.

Proof.

- $\inf\{t \geq 0 : X^{(\alpha)}(t) = 0\} = \sup \left\{ b_u^{(\alpha)} + \zeta_u^{(\alpha)} : u \in U \right\}$
- $\mathcal{Y}_u^{(\alpha)}$: the ancestral lineage of u.
- Identity: $b_u^{(\alpha)} + \zeta_u^{(\alpha)} = \int_0^\infty \mathcal{Y}_u^{(0)}(s)^{-\alpha} ds$
Extinction

Theorem (Bertoin 2017)

Suppose that $\alpha < 0$ and that there exists $q > 0$ such that $\kappa(q) < 0$. Then the extinction time

$$\inf \{ t \geq 0 : X^{(\alpha)}(t) = 0 \}$$

is P_x-a.s. finite for every $x > 0$.

Proof.

- $\inf \{ t \geq 0 : X^{(\alpha)}(t) = 0 \} = \sup \left\{ b_u^{(\alpha)} + \zeta_u^{(\alpha)} : u \in U \right\}$
- $\mathcal{Y}_u^{(\alpha)}$: the ancestral lineage of u.
- Identity: $b_u^{(\alpha)} + \zeta_u^{(\alpha)} = \int_0^\infty \mathcal{Y}_u^{(0)}(s)^{-\alpha} \, ds$
- $\mathcal{Y}_u^{(0)}(t)^q \leq X_1^{(0)}(t)^q \leq e^{\kappa(q)t} \left(e^{-\kappa(q)t} \sum_{i \geq 1} X_i^{(0)}(t)^q \right) \leq Ce^{\kappa(q)t}$
4. Martingales in self-similar growth-fragmentations
Recall that κ is convex, so it has at most two roots.
Recall that κ is convex, so it has at most two roots.

Suppose that the Cramér’s hypothesis holds:

$$\omega_+ > \omega_0 > 0, \text{ s.t. } \kappa(\omega_-) = \kappa(\omega_+) = 0 \text{ and } \kappa'(\omega_-) > -\infty.$$ \[\text{[H]}\]
Recall that κ is convex, so it has at most two roots.

Suppose that the Cramér’s hypothesis holds:

$$\omega_+ > \omega_- > 0, \text{ s.t. } \kappa(\omega_-) = \kappa(\omega_+) = 0 \text{ and } \kappa'(\omega_-) > -\infty.$$ \[H\]

[H] implies the non-explosion condition (there exists $q > 0$ with $\kappa(q) < 0$).
The genealogical martingales

- \((- \log X_u(0), u \in \mathbb{U})\) is a branching random walk.
- If \(\Phi(q) < 0\) and \(\kappa(q) < \infty\), then

\[
m(q) := E_1 \left[\sum_{|u|=1} e^{-q(- \log X_u(0))} \right] = E_1 \left[\sum_{0<s<\zeta} |\Delta X(s)|^q \right] = 1 - \frac{\kappa(q)}{\Phi(q)}.
\]

Lemma

Suppose that [H] holds.

1. \(M^+(n) := x^{-\omega} \sum_{|u|=n} X_u(0)^{\omega+}\)

is a martingale that converges \(\mathcal{P}_x\)-a.s. to 0.

2. For any \(p \in [1, \frac{\omega_+}{\omega_-})\), the martingale

\[
M^-(n) := x^{-\omega} \sum_{|u|=n} X_u(0)^{\omega-}
\]

converges \(\mathcal{P}_x\)-a.s. and in \(L^p(\mathcal{P}_x)\). Its terminal value \(M^-(\infty) > 0\).
Mellin transform of the potential measure

Fact: For a pssMp $X^{(\alpha)}$ with characteristics (Φ, α):

$$E_x \left[\int_0^\infty X^{(\alpha)}(t)^{q+\alpha} \, dt \right] = -\frac{1}{\Phi(q)} x^q. \quad \text{whenever } \Phi(q) < 0.$$
Mellin transform of the potential measure

Fact: For a pssMp $X^{(\alpha)}$ with characteristics (Φ, α):

$$E_x \left[\int_0^\infty X^{(\alpha)}(t)^{q+\alpha} \, dt \right] = -\frac{1}{\Phi(q)} x^q. \quad \text{whenever } \Phi(q) < 0.$$

Proposition (BBCK, 2016+)

For every q with $\kappa(q) < 0$:

$$E_x \left[\int_0^\infty \left(\sum_{i=1}^\infty X_i^{(\alpha)}(t)^{q+\alpha} \right) \, dt \right] = -\frac{1}{\kappa(q)} x^q.$$
Mellin transform of the potential measure

Fact: For a pssMp $X^{(\alpha)}$ with characteristics (Φ, α):

$$E_X \left[\int_0^\infty X^{(\alpha)}(t)^{q+\alpha} \, dt \right] = - \frac{1}{\Phi(q)} x^q. \quad \text{whenever } \Phi(q) < 0.$$

Proposition (BBCK, 2016+)

For every q with $\kappa(q) < 0$:

$$E_X \left[\int_0^\infty \left(\sum_{i=1}^\infty X_i^{(\alpha)}(t)^{q+\alpha} \right) \, dt \right] = - \frac{1}{\kappa(q)} x^q.$$

Remarks: Consider a growth-fragmentation \tilde{X} associated with another pssMp \tilde{X} with characteristics $(\tilde{\Phi}, \tilde{\alpha})$.

- $X \overset{d}{=} \tilde{X} \ (\Phi = \tilde{\Phi} \text{ and } \alpha = \tilde{\alpha}) \Rightarrow X \overset{d}{=} \tilde{X}$; but $X \overset{d}{=} \tilde{X} \not\Rightarrow X \overset{d}{=} \tilde{X}.$
Mellin transform of the potential measure

Fact: For a pssMp $X^{(\alpha)}$ with characteristics (Φ, α):

$$E_X\left[\int_0^{\infty} X^{(\alpha)}(t)^{q+\alpha} \, dt \right] = -\frac{1}{\Phi(q)} x^q. \quad \text{whenever } \Phi(q) < 0.$$

Proposition (BBCK, 2016+)

*For every q with $\kappa(q) < 0$:

$$E_X\left[\int_0^{\infty} \left(\sum_{i=1}^{\infty} X_i^{(\alpha)}(t)^{q+\alpha} \right) \, dt \right] = -\frac{1}{\kappa(q)} x^q.$$

Remarks: Consider a growth-fragmentation $\tilde{\mathbf{X}}$ associated with another pssMp $\tilde{\mathbf{X}}$ with characteristics $(\tilde{\Phi}, \tilde{\alpha})$.

- $X \overset{d}{=} \tilde{\mathbf{X}}$ $(\Phi = \tilde{\Phi}$ and $\alpha = \tilde{\alpha}) \Rightarrow X \overset{d}{=} \tilde{\mathbf{X}}$; but $X \overset{d}{=} \tilde{\mathbf{X}} \nRightarrow X \overset{d}{=} \tilde{\mathbf{X}}$.
- If $X \overset{d}{=} \tilde{\mathbf{X}}$, then $\kappa = \tilde{\kappa}$ and $\alpha = \tilde{\alpha}$.
Mellin transform of the potential measure

Fact: For a pssMp $X^{(\alpha)}$ with characteristics (Φ, α):

$$E_x \left[\int_0^\infty X^{(\alpha)}(t)^{q+\alpha} \, dt \right] = -\frac{1}{\Phi(q)} x^q, \quad \text{whenever } \Phi(q) < 0.$$

Proposition (BBCK, 2016+)

For every q with $\kappa(q) < 0$:

$$E_x \left[\int_0^\infty \left(\sum_{i=1}^\infty X_i^{(\alpha)}(t)^{q+\alpha} \right) \, dt \right] = -\frac{1}{\kappa(q)} x^q.$$

Remarks: Consider a growth-fragmentation \tilde{X} associated with another pssMp \tilde{X} with characteristics $(\tilde{\Phi}, \tilde{\alpha})$.

- $X \overset{d}{=} \tilde{X}$ (if $\Phi = \tilde{\Phi}$ and $\alpha = \tilde{\alpha}$) $\Rightarrow X \overset{d}{=} \tilde{X}$; but $X \overset{d}{=} \tilde{X} \not\Rightarrow X \overset{d}{=} \tilde{X}.$
- If $X \overset{d}{=} \tilde{X}$, then $\kappa = \tilde{\kappa}$ and $\alpha = \tilde{\alpha}$.
- Conversely, if $\kappa = \tilde{\kappa}$ and $\alpha = \tilde{\alpha}$, then $X \overset{d}{=} \tilde{X}$. [Pitman&Winkel, 2015; S. 2017]
Many-to-one formula

- Define the intensity measure μ^x_t of $X(t)$ on \mathbb{R}_+ such that for all $f \in C_c^\infty(\mathbb{R}_+)$:

$$\langle \mu^x_t, f \rangle := \int_{\mathbb{R}_+} f(y) \mu^x_t(dy) = \mathbb{E}_x \left[\sum_{i=1}^{\infty} f(X_i(t)) \right].$$
Many-to-one formula

- Define the intensity measure μ^x_t of $X(t)$ on \mathbb{R}_+ such that for all $f \in C_c^\infty(\mathbb{R}_+)$:

$$\langle \mu^x_t, f \rangle := \int_{\mathbb{R}_+} f(y)\mu^x_t(dy) = E_x\left[\sum_{i=1}^\infty f(X_i(t))\right].$$

- $(\Phi^-(q) := \kappa(q + \omega_-), q \geq 0)$ is the Laplace exponent of a Lévy process η^-, and η^- drifts to $-\infty$.

Theorem (BBCK, 2016+)

$$\mu^x_t(dy) = \left(\frac{x}{y}\right)^{\omega_-} \rho^-_t(x, dy), \quad y > 0,$$

where $\rho^-_t(x, \cdot)$ be the transition kernel of a pssMp $Y^-(t)$ with characteristics (Φ^-, α) starting from $x > 0$.

Quan Shi
Growth-Fragmentations
CIMAT, 11-15 December, 2017 28 / 34
Many-to-one formula

- Define the intensity measure μ^x_t of $X(t)$ on \mathbb{R}_+ such that for all $f \in C^\infty_c(\mathbb{R}_+)$:

$$\langle \mu^x_t, f \rangle := \int_{\mathbb{R}_+} f(y) \mu^x_t(dy) = E_x \left[\sum_{i=1}^{\infty} f(X_i(t)) \right].$$

- $(\Phi^-(q) := \kappa(q + \omega_-), q \geq 0)$ is the Laplace exponent of a Lévy process η^-, and η^- drifts to $-\infty$.

Theorem (BBCK, 2016+)

$$\mu^x_t(dy) = \left(\frac{x}{y} \right)^{\omega_-} \rho^-_t(x, dy), \quad y > 0,$$

where $\rho^-_t(x, \cdot)$ be the transition kernel of a pssMp $Y^-(t)$ with characteristics (Φ^-, α) starting from $x > 0$.

That is:

$$E_x \left[\sum_{i=1}^{\infty} f(X_i(t)) \right] = E_x \left[f(Y^-(t)) \left(\frac{x}{Y^-(t)} \right)^{\omega_-} 1_{\{Y^-(t) \in (0, \infty)\}} \right].$$
Proof of many-to-one formula

- For θ such that $\kappa(\theta) < 0$: $\kappa(\cdot + \theta)$ is the Laplace exponent of a Lévy process (with killing rate $-\kappa(\theta)$).
Proof of many-to-one formula

- For θ such that $\kappa(\theta) < 0$: $\kappa(\cdot + \theta)$ is the Laplace exponent of a Lévy process (with killing rate $-\kappa(\theta)$).

- Define

\[
\langle \tilde{\rho}_t(x, \cdot), f \rangle := x^{-\theta} E_x \left[\sum_{i=1}^{\infty} f(X_i(t)) X_i(t)^{\theta} \right].
\]
Proof of many-to-one formula

- For θ such that $\kappa(\theta) < 0$: $\kappa(\cdot + \theta)$ is the Laplace exponent of a Lévy process (with killing rate $-\kappa(\theta)$).
- Define
 \[
 \langle \tilde{\rho}_t(x, \cdot), f \rangle := x^{-\theta} E_x \left[\sum_{i=1}^{\infty} f(X_i(t)) X_i(t)^\theta \right].
 \]
- \[
 \mu^x_t(dy) = \left(\frac{x}{y} \right)^\theta \tilde{\rho}_t(x, dy), \quad y > 0.
 \]
- $\tilde{\rho}_t$ is the transition kernel of a pssMp \tilde{Y} with characteristics $(\kappa(\cdot + \theta), \alpha)$:
Proof of many-to-one formula

- For θ such that $\kappa(\theta) < 0$: $\kappa(\cdot + \theta)$ is the Laplace exponent of a Lévy process (with killing rate $-\kappa(\theta)$).

- Define
 \[
 \langle \tilde{\rho}_t(x, \cdot), f \rangle := x^{-\theta} \mathbb{E}_x \left[\sum_{i=1}^{\infty} f(X_i(t)) X_i(t)^{\theta} \right].
 \]

- $\mu_t^x(dy) = \left(\frac{x}{y} \right)^{\theta} \tilde{\rho}_t(x, dy), \quad y > 0.$

- $\tilde{\rho}_t$ is the transition kernel of a pssMp \tilde{Y} with characteristics $(\kappa(\cdot + \theta), \alpha)$:
 - $\langle \tilde{\rho}_{t+s}(x, \cdot), f \rangle = \int_{(0, \infty)} \langle \tilde{\rho}_t(y, \cdot), f \rangle \tilde{\rho}_s(x, dy)$ Chapman-Kolmogorov equation
 - $\langle \tilde{\rho}_t(x, \cdot), f \rangle = \langle \tilde{\rho}_{x^{\alpha}t}(1, \cdot), f(x \cdot) \rangle$ the self-similarity.
 - For every q with $\kappa(q + \theta) < 0$:
 \[
 \int_0^\infty dt \int_{(0, \infty)} y^{q+\alpha} \tilde{\rho}_t(1, dy) = x^{-\theta} \mathbb{E}_x \left[\int_0^\infty \left(\sum_{i=1}^{\infty} X_i(t)^{\theta+q+\alpha} \right) dt \right] = -\frac{1}{\kappa(\theta + q)}.
 \]
Growth-fragmentation equations

The intensity measure μ^x_t of $X(t)$: for all $f \in C_c^\infty(\mathbb{R}_+)$,

$$\langle \mu^x_t, f \rangle := \int_{\mathbb{R}_+} f(y) \mu^x_t(dy) = \mathbb{E}_x \left[\sum_{i=1}^{\infty} f(X_i(t)) \right].$$

Proposition (Bertoin&Watson, 2016; BBCK, 2016+)

Suppose that $[H]$ holds. Then

$$\langle \mu^x_t, f \rangle = f(x) + \int_0^t \langle \mu^x_s, Gf \rangle \, ds,$$

where

$$Gf(y) := y^\alpha \left(\frac{1}{2} \sigma^2 f''(y) y^2 + \frac{c+1}{2} \sigma^2 f'(y) y + \int_{(-\infty,0)} (f(y e^z) + f(y(1-e^z)) - f(y)) \, \Lambda(\,dz) \right).$$

Proof: Use the many-to-one formula and the infinitesimal generator of the pssMp.
Growth-fragmentation equations

The intensity measure \(\mu^x_t \) of \(X(t) \): for all \(f \in C_c^\infty(\mathbb{R}_+) \),

\[
\langle \mu^x_t, f \rangle := \int_{\mathbb{R}_+} f(y) \mu^x_t(dy) = E \left[\sum_{i=1}^\infty f(X_i(t)) \right].
\]

Proposition (Bertoin\&Watson, 2016; BBCK, 2016+)

Suppose that \([H]\) holds. Then

\[
\langle \mu^x_t, f \rangle = f(x) + \int_0^t \langle \mu^x_s, Gf \rangle ds,
\]

where

\[
Gf(y) := y^\alpha \left(\frac{1}{2} \sigma^2 f''(y)y^2 + (c + \frac{1}{2} \sigma^2)f'(y)y
ight.
\]

\[
+ \int_{(-\infty,0)} \left(f(ye^z) + f(y(1 - e^z)) - f(y) + y(1 - e^z)f'(y) \right) \Lambda(dz) \right).
\]
Growth-fragmentation equations

The intensity measure μ_t^x of $X(t)$: for all $f \in C_c^\infty(\mathbb{R}_+)$,

$$\langle \mu_t^x, f \rangle := \int_{\mathbb{R}_+} f(y)\mu_t^x(dy) = \mathbb{E}_x \left[\sum_{i=1}^{\infty} f(X_i(t)) \right].$$

Proposition (Bertoin&Watson, 2016; BBCK, 2016+)

Suppose that $[H]$ holds. Then

$$\langle \mu_t^x, f \rangle = f(x) + \int_0^t \langle \mu_s^x, Gf \rangle ds,$$

where

$$Gf(y) := y^\alpha \left(\frac{1}{2} \sigma^2 f''(y)y^2 + (c + \frac{1}{2} \sigma^2)f'(y)y \right.$$

$$+ \int_{(-\infty,0)} \left(f(ye^z) + f(y(1-e^z)) - f(y) + y(1-e^z)f'(y) \right) \Lambda(dz) \right).$$

Proof: Use the many-to-one formula and the infinitesimal generator of the pssMp Y^-.
Temporal martingales

- Suppose that $[\mathcal{H}]$ holds. For the smaller root ω_- of κ, define

$$M^-(t) := \sum_{i=1}^{\infty} X_i(t)^{\omega_-}, \quad t \geq 0.$$

Theorem (BBCK, 2016+)

- When $\alpha \geq 0$, M^- is a uniformly integrable P_x-martingale;
- When $\alpha < 0$, M^- is a P_x-supermartingale which converges to 0 in $L^1(P_x)$.

Proof:

- By many-to-one formula: $E_x[M^-(t)] = x^{\omega_-} P(Y^-(t) \in (0, \infty))$;
- If $\alpha \geq 0$, then $P(Y^-(t) \in (0, \infty)) \equiv 1$;
- If $\alpha < 0$, then $\lim_{t \to \infty} P(Y^-(t) \in (0, \infty)) = 0$;
- We conclude by the branching property of X.
Temporal martingales

Suppose that \([H]\) holds. For the larger root \(\omega_+\) of \(\kappa\), define

\[
M^+(t) := \sum_{i=1}^{\infty} X_i(t)^{\omega_+}, \quad t \geq 0.
\]

Theorem (BBCK, 2016+)

- When \(\alpha > 0\), \(M^+\) is a \(P_x\)-supermartingale which converges to 0 in \(L^1(P_x)\);
- When \(\alpha \leq 0\), \(M^+\) is a \(P_x\)-martingale.
Summary

- $\text{pssMp } X \Rightarrow \text{ cell system } (\mathcal{X}_u, u \in \mathbb{U}) \Rightarrow \text{ growth-fragmentation } X$
- The law of X is characterized by the cumulant κ and the index of self-similarity α
- Non-explosion condition: there exists $\kappa(q) \leq 0$.
- X satisfies the branching property and the self-similarity.
- The many-to-one formula
- The intensity measure of X solves a (deterministic) growth-fragmentation equation
- If $\kappa(\omega^-) = \kappa(\omega^+) = 0$: two martingales M^- and M^+
Thank you!