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The fragmentation equation

∂t〈µt , f 〉 =
〈
µt ,
∫
[ 1

2 ,1)

{
f (xy) + f (x(1− y))− f (x)

}
K (dy)

〉
,

f ∈ C∞c (0,∞),

µ0 = δ1

Require
∫
(1− y)K (dy) <∞
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The growth-fragmentation equation

∂t〈µt , f 〉

=

〈
µt ,

axf ′(x)

+

∫
[ 1

2 ,1)

{
f (xy) + f (x(1− y))− f (x)

}
K (dy)

〉
,

a ∈ R
Require only

∫
(1− y)2 K (dy) <∞.

‘Solutions’ (µt) are measures on (0,∞) and vaguely
continuous in time

Probabilistic approach: Haas, Banasiak
Analytic/applied approaches: Doumic, Escobedo, Gabriel, . . .
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Questions

Existence and representation
Uniqueness
Asymptotics
Non-existence
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Fragmentation processes (K <∞)

Suppose that K [1/2, 1) = λ <∞.

Start with a single ‘fragment’ of size x
After an Exp(λ) clock rings, it dies and produces offspring
With probability K (dy)/λ, create new fragments, of size xy
and x(1− y)
They evolve independently

See this as a point process:
Y(t) =

∑
u fragments

δsize(u)1{u alive at time t}.
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Point process perspective
Y(t) =

∑
u fragments

δsize(u)1{u alive at time t}

Z(t) = Y(t) ◦ log−1 =
∑

u fragments
δlog(size(u))1{u alive at time t}

is a compound Poisson process with immigration
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Compensated fragmentation processes, ∫ (1− y)2 K (dy) <∞

Generalise Z
Create a Lévy process whose Lévy measure is the image of
K ◦ log−1

It will have no positive jumps but it will not be decreasing
Again, at every jump of size log y , immigrate a new particle at
relative position log(1− y)
Define Y = Z ◦ exp−1

If
∫
(1− y)K (dy) <∞, it is an ‘exchangeable fragmentation’ with

growth/erosion.
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Spines and solutions
We pick out a single trajectory from the fragmentation process Y.

Cut the process at time t and examine the particles
Pick a particle u with probability ∝ Yu(t)ω = exp{ωZu(t)}
(with any ω ≥ 2)
Trace its trajectory back
It forms an exponential Lévy process; call it ξ
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Spines and solutions

∂t〈µt , f 〉 =
〈
µt , axf ′(x)

+

∫
[ 1

2 ,1)

{
f (xy)+f (x(1−y))−f (x)+(1−y)xf ′(x)

}
K (dy)

〉
.

fragmentation process Y
‘spine’ ξ (with weighting ω)

Theorem
Let

〈µt , f 〉 = Eδ1

[∑
u

f (Yu(t))
]
= ectE1[ξ(t)−ωf (ξ(t))].

This is the unique solution of the above equation with µ0 = δ1 and
domain f ∈ C∞c (0,∞).
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Self-similarity

A generalisation:

∂t〈µt , f 〉 =
〈
µt , xα

[
axf ′(x)

+

∫
[ 1

2 ,1)

{
f (xy)+f (x(1−y))−f (x)+(1−y)xf ′(x)

}
K (dy)

]〉
,

α ∈ R
Things get more interesting!
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Self-similar spines

The role of the spine is played by a positive, self-similar
Markov process with index −α
Take the old spine ξ and apply the Lamperti transform:
Let

T (s) =
∫ s

0
ξ(u)−α du,

and write S for its inverse
The self-similar spine is the process X (t) = ξ(S(t))
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Solutions, α < 0

κ(q) = aq +

∫
[ 1

2 ,1)

{
yq + (1− y)q − 1+ (1− y)q

}
K (dy)

Assume there exists ω ∈ R with κ(ω) = 0 and κ′(ω) > 0.
X is the self-similar spine with weighting ω
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[ 1

2 ,1)
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yq + (1− y)q − 1+ (1− y)q
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K (dy)

Assume there exists ω ∈ R with κ(ω) = 0 and κ′(ω) > 0.
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Theorem (α < 0)

There exists a solution (µt) to the self-similar growth-
fragmentation equation, such that 〈µt , xω〉 ≡ 1 and µ0 = δ1.
It is given by 〈µt , f 〉 = E1[X (t)−ωf (Xt)].

There exists another solution (γt), such that 〈γt , xω〉 ≡ 1 for
t > 0 but γ0 = 0. It is given by 〈γt , f 〉 = E0[X (t)−ωf (Xt)].
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Solutions, α < 0

κ(q) = aq +

∫
[ 1

2 ,1)

{
yq + (1− y)q − 1+ (1− y)q

}
K (dy)

Assume there exists ω ∈ R with κ(ω) = 0 and κ′(ω) > 0.
X is the self-similar spine with weighting ω

Corollary (to the proof)

If we require the growth-fragmentation equation to hold for all
functions xq, q ≥ ω + α, then (µt) is the unique solution with
µ0 = δ1.
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Asymptotics, α < 0

Proposition
For f ∈ Cb(0,∞),∫

f (t−1/|α|x)xωµt(dx)→
∫

f (x)xωγ1(dx), t →∞.
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Asymptotics, α < 0

Suppose there exist ρ < ω such that κ(ρ) = κ(ω) = 0.

Proposition
For f ∈ C0(0,∞),∫

f (t−1x |α|)xρµt(dx)
g(t) →

∫
f (x)υ(dx), t →∞,

where g ∈ RV (−σ), σ = (ω − ρ)/|α|, and υ is related to
factorisations of the exponential functional; cf. Haas–Rivero.
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Solutions, α > 0

Assume that there exist ρ < ω such that κ(ρ) = κ(ω) = 0.
X is the self-similar spine with weighting ρ

Theorem (α > 0)

There exists a solution (µt) to the self-similar growth-
fragmentation equation, such that 〈µt , xρ〉 ≡ 1 and µ0 = δ1.
It is given by 〈µt , f 〉 = E1[X (t)−ρf (Xt)].

Suppose κ(ρ− ε) <∞. Then there exists another solution
(γt), such that 〈γt , xρ〉 ≡ 1 for t > 0 but γ0 = 0. It is given
by 〈γt , f 〉 = E+∞[X (t)−ρf (Xt)].
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‘Explosion’: self-similar fragmentations (α < 0)

What goes wrong when there is no ω with κ(ω) = 0?
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‘Explosion’: self-similar fragmentations (α < 0)
For a ‘ray’ v ,

we define a functional

λv (t) =
∫ t

0
e−αZv (s) ds,

and write Lv for its inverse. This is a ‘stopping line’ time-change.

The self-similar fragmentation process is then
Y(α)(t) = Y(L(t)) = Z(L(t)) ◦ exp−1 .
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Explosion, α < 0

Even in the simplest case (finite fragmentation), we have:

Proposition
If κ = 0 has no solutions* then, for any b > 0, there exists a
random time S such that #{u : Y(α)

u (S) ∈ [1, 1+ b]} =∞
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Open questions

Biased mass functions (α 6= 0)
Strengthen non-existence result
Minimal solutions
Process variant of ‘starting from zero’
Many other questions about compensated fragmentations
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Further reading

J. Bertoin
Compensated fragmentation processes and limits of dilated
fragmentations
hal-00966190v2
J. Bertoin, A. R. Watson
Probabilistic aspects of critical growth-fragmentation
equations
arXiv:1506.09187 [math.PR]
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Thank you!


