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The growth-fragmentation equation

61“(”“ f)
= <Mta axf’(x)

3 {f xy) + f(x(1—y)) — f(x) + (1 — y)xf'(x }K(dy>
mackR
m Require only [(1 — y)? K(dy) < co.

m ‘Solutions’ (x) are measures on (0, 00) and vaguely
continuous in time
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The growth-fragmentation equation

at<ﬂta f)
= <Mta axf’(x)

{f xy) + f(x(1—y)) — f(x) + (1 — y)xf'(x }K(dy>

[27
aelR

Require only [(1 — y)? K(dy) < oo.

‘Solutions’ (p¢) are measures on (0,00) and vaguely
continuous in time

Probabilistic approach: Haas, Banasiak
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The growth-fragmentation equation

at<ﬂta f)
= <Mta axf’(x)

{f xy) + f(x(1—y)) — f(x) + (1 — y)xf'(x)} K(dy) >,

[27
aeR
Require only [(1 — y)? K(dy) < oo.

‘Solutions’ (p¢) are measures on (0,00) and vaguely
continuous in time

Probabilistic approach: Haas, Banasiak

Analytic/applied approaches: Doumic, Escobedo, Gabriel, . ..
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Questions

Existence and representation

[
m Uniqueness
m Asymptotics
[

Non-existence
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Fragmentation processes (K < o0)

Suppose that K[1/2,1) = A < cc.
m Start with a single ‘fragment’ of size x

m After an Exp()\) clock rings, it dies and produces offspring

m With probability K(dy)/\, create new fragments, of size xy
and x(1 —y)

m They evolve independently
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Fragmentation processes (K < o0)

Suppose that K[1/2,1) = A < cc.

m Start with a single ‘fragment’ of size x
m After an Exp()\) clock rings, it dies and produces offspring

m With probability K(dy)/\, create new fragments, of size xy
and x(1 —y)

m They evolve independently

See this as a point process:

Y(t) = Z 6size(u)]l{u alive at time t}-

u fragments
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Point process perspective

y(t) = Z 5size(u)ﬂ{u alive at time t}

u fragments

Z(t) = y(t) © log_l = Z 5Iog(size(u))]l{u alive at time t}

u fragments

0+ logy Exp())
| +-
T E(y) { ! |
0 +log(1 - y) ‘%:
® 1
|
|
|
———
|
|
[ S

Alex Watson Growth-fragmentation models



Point process perspective

y(t) = Z 5size(u)ﬂ{u alive at time t}

u fragments

Z(t) = y(t) © log_l = Z 5Iog(size(u))]l{u alive at time t}

u fragments
is a compound Poisson process with immigration
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Compensated fragmentation processes, [(1—y)?K(dy) < oo

m Generalise Z

m Create a Lévy process whose Lévy measure is the image of
K olog™t

m It will have no positive jumps but it will not be decreasing

m Again, at every jump of size log y, immigrate a new particle at
relative position log(1 — y)

m Define ) = Zoexp™!
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Compensated fragmentation processes, [(1—y)?K(dy) < oo

Generalise Z

Create a Lévy process whose Lévy measure is the image of

K olog™!

It will have no positive jumps but it will not be decreasing
Again, at every jump of size log y, immigrate a new particle at
relative position log(1 — y)
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Compensated fragmentation processes, [(1—y)?K(dy) < oo

m Generalise Z
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Compensated fragmentation processes, [(1—y)?K(dy) < o

m Generalise Z

m Create a Lévy process whose Lévy measure is the image of
K olog™t

m It will have no positive jumps but it will not be decreasing

m Again, at every jump of size log y, immigrate a new particle at
relative position log(1 — y)

m Define ) = Zoexp™!

Z

If [(1—y)K(dy) < oo, it is an ‘exchangeable fragmentation’ with
growth /erosion.
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Spines and solutions

We pick out a single trajectory from the fragmentation process .
m Cut the process at time t and examine the particles
m Pick a particle u with probability oc V,(t)* = exp{wZ,(t)}
(with any w > 2)
m Trace its trajectory back
m It forms an exponential Lévy process; call it &

Z
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Spines and solutions

We pick out a single trajectory from the fragmentation process ).

m Cut the process at time t and examine the particles

m Pick a particle u with probability oc V,(t)* = exp{wZ,(t)}
(with any w > 2)

m Trace its trajectory back

m It forms an exponential Lévy process; call it £
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Spines and solutions
O¢ (e, f) = <,ut,axf'(x)
[ T ) =015 () K() )

m fragmentation process )

m ‘spine’ £ (with weighting w)
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Spines and solutions
O(pe, f) = <ut,axf'(x)
[ T ) =015 () K() )

m fragmentation process )

m ‘spine’ £ (with weighting w)

Theorem
Let

(10 1) = Bay | - FQ(0)] = e*Bale() “F(e(0))]

This is the unique solution of the above equation with g = 61 and
domain f € C°(0, 00).
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Self-similarity

A generalisation:

O{pe, ) = <,ut,x”' [axf’(x)
+ [, O )~ F )1y (0} Kl ).

moacR

m Things get more interesting!
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Self-similar spines

m The role of the spine is played by a positive, self-similar
Markov process with index —a

Take the old spine & and apply the Lamperti transform:
Let

)= | €(u) " du,

and write S for its inverse
m The self-similar spine is the process X(t) = £(5(t))
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Solutions, av < 0
W(@) =g+ [ {y7+ 1=y =1+ (1 - y)a} K(dy)
[3:1)

m Assume there exists w € R with k(w) = 0 and '(w) > 0.

m X is the self-similar spine with weighting w
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Solutions, az < 0
W(@) =g+ [ {y7+ 1=y =1+ (1 - y)a} K(dy)
[3:1)

m Assume there exists w € R with k(w) = 0 and '(w) > 0.

m X is the self-similar spine with weighting w

Theorem (a < 0)

m There exists a solution (p:) to the self-similar growth-
fragmentation equation, such that (u:,x*) =1 and 1o = ;.
It is given by (u, £) = E1[X(t)™“f(X¢)].
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Solutions, az < 0
W(@) =g+ [ {y7+ 1=y =1+ (1 - y)a} K(dy)
[3:1)

m Assume there exists w € R with k(w) = 0 and '(w) > 0.

m X is the self-similar spine with weighting w

Theorem (a < 0)

m There exists a solution (p:) to the self-similar growth-
fragmentation equation, such that (us, x“) =1 and po = d1.
It is given by (u, £) = E1[X(t)™“f(X¢)].

m There exists another solution (v:), such that (v¢, x“) =1 for
t >0 but o = 0. It is given by (¢, f) = Eo[X(t)™“f(X¢)].
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Solutions, a < 0

f(a) = 2a+ [, (v (1-9) ~ 14 (1= y)a} K(oy)

m Assume there exists w € R with k(w) = 0 and '(w) > 0.

m X is the self-similar spine with weighting w

Corollary (to the proof)

If we require the growth-fragmentation equation to hold for all
functions x9, q > w + «, then (u) is the unique solution with
fo = 01.
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Asymptotics, a < 0

For f € Cb(O, OO),

/f ~Ulel ) x i (dx) —>/ x)x“y1(dx), t — 00.
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Asymptotics, a < 0

Suppose there exist p < w such that x(p) = x(w) = 0.

For f € Cp(0,0),

[ (e Ix1N)xP g (dx)
g(t)

—>/fx)vdx) t — oo,
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Asymptotics, a < 0

Suppose there exist p < w such that x(p) = x(w) = 0.

Proposition

For f € Cp(0,0),

[ (e Ix1N)xP g (dx)
g(t)

where g € RV(—0), 0 = (w — p)/|e|, and v is related to
factorisations of the exponential functional; cf. Haas—Rivero.

—>/fx)vdx) t — oo,
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Solutions, a > 0

m Assume that there exist p < w such that k(p) = k(w) = 0.
m X is the self-similar spine with weighting p

Theorem (a > 0)

m There exists a solution (ut) to the self-similar growth-
fragmentation equation, such that (s, x”) =1 and pg = 01.
It is given by (u, f) = E1[X(t)Pf(X¢)].
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Solutions, a > 0

m Assume that there exist p < w such that x(p) = x(w) = 0.
m X is the self-similar spine with weighting p

Theorem (a > 0)

m There exists a solution (ut) to the self-similar growth-
fragmentation equation, such that (s, x”) =1 and pg = 01.
It is given by (u, f) = E1[X(t)Pf(X¢)].

m Suppose r(p —¢) < co. Then there exists another solution
(v¢), such that (¢, xP) =1 for t > 0 but vo = 0. It is given

by (e, F) = Epoo[X(2) 71 (X))
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Theorem (a > 0)

m There exists a solution (ut) to the self-similar growth-
fragmentation equation, such that (s, x”) =1 and pg = 01.
It is given by (u, f) = E1[X(t)Pf(X¢)].

m Suppose r(p — €) < co. Then there exists another solution
(v¢), such that (¢, xP) =1 for t > 0 but 7o = 0. It is given
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‘Explosion’: self-similar fragmentations (a < 0)

What goes wrong when there is no w with x(w) = 0?7
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‘Explosion’: self-similar fragmentations (a < 0)

For a ‘ray’ v,
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‘Explosion’: self-similar fragmentations (a < 0)

For a ‘ray’ v, we define a functional

t
A(t) = / e % (5) gs,
0
and write L, for its inverse. This is a ‘stopping line' time-change.

Z
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‘Explosion’: self-similar fragmentations (a < 0)

For a ‘ray’ v, we define a functional

t
)\V(t):/o e @2u(s) gs,

and write L, for its inverse. This is a ‘stopping line' time-change.

Z

The self-similar fragmentation process is then
V() = Y(L(t)) = Z(L(t)) oexp "



Explosion, o < 0

Even in the simplest case (finite fragmentation), we have:

Proposition

If k = 0 has no solutions* then, for any b > 0, there exists a
random time S such that #{u : L(,a)(S) €[1,1+b]} =
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Open questions

Biased mass functions (a # 0)
Strengthen non-existence result
Minimal solutions

Process variant of 'starting from zero’

Many other questions about compensated fragmentations
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Further reading

[4 J. Bertoin
Compensated fragmentation processes and limits of dilated
fragmentations
hal-00966190v2

[ J. Bertoin, A. R. Watson
Probabilistic aspects of critical growth-fragmentation
equations
arXiv:1506.09187 [math.PR]
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https://hal.archives-ouvertes.fr/hal-00966190v2
http://arxiv.org/abs/1506.09187

Thank you!



