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Continuous time martingales

So far the time index we consider is T = {0, 1, 2, ...}. Almost all the results
for discrete time martingales also hold for continuous time martingales. We
will list some of them without proofs. Let X = (Xt, t ≥ 0) be a stochastic
process, i.e., a collection of random variables which describe systems that
evolve randomly in time. Let (Ft, t ≥ 0) be a family of increasing σ-fields,
Fs ⊂ Ft for s ≤ t.

Definition 5.1 X = (Xt, t ≥ 0) is said to be a martingale (supermartingale,
submartingale) with respect to (Ft, t ≥ 0) if

(i) Xt is Ft -measurable (determined),
(ii)Xt is integrable, i.e., E[|Xt|] < ∞,
(iii) for every s ≤ t,

E[Xt|Fs] = Xs (E[Xt|Fs] ≤ Xs, E[Xt|Fs] ≥ Xs)

Next we introduce a popular stochastic process, the so called Brownian mo-
tion, that is widely used in applications, particularly in finance.

Definition 5.2 X = (Xt, t ≥ 0) ia said to be a Brownian motion if
(i) Xt is continuous in t with X0 = 0,
(ii)Xt has independent increments, i.e., for any s1 < t1 < s2 < t2 < ... <

sn < tn,
Xtn −Xsn , Xtn−1 −Xsn−1 , ..., Xt1 −Xs1

are independent random variables
(iii) for every s ≤ t, Xt −Xs ∼ N(0, t− s). In particular, Xt ∼ N(0, t).
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Example 5.3 Show a Brownian motion X = (Xt, t ≥ 0) is a martingale
w.r.t. Ft = σ(Xu, u ≤ t), t ≥ 0.

Proof. We will check the three conditions in the definition of martingales.
The first condition (i) is clear since the σ field Ft is generated by the process
X. As Xt ∼ N(0, t), Xt is integrable. For the condition (iii), let s < t. We
have

E[Xt|Fs] = E[Xt −Xs +Xs|Fs]

= E[Xt −Xs|Fs] + E[Xs|Fs] = Xs + E[Xt −Xs] = Xs

(iii) holds.

Example 5.4 Let X = (Xt, t ≥ 0) be a Brownian motion. Show Mt =
X2

t − t, t ≥ 0 is a martingale w.r.t. Ft = σ(Xu, u ≤ t), t ≥ 0.

Proof. We again need to check the three conditions in the definition of
martingales. The first condition (i) is clear since Mt is a function of Xt. As
Xt ∼ N(0, t), X2

t − t = Mt is integrable. For the condition (iii), let s < t.
We have

E[Mt|Fs] = E[X2
t − t|Fs]

= E[X2
s − s+X2

t −X2
s − t+ s|Fs] = X2

s − s+ E[X2
t −X2

s − t+ s|Fs]

= Ms + E[X2
t − 2XtXs +X2

s − 2X2
s + 2XtXs − t+ s|Fs]

= Ms + E[(Xt −Xs)
2|Fs] + E[−2X2

s + 2XtXs − t+ s|Fs]

= Ms + E[(Xt −Xs)
2]− 2X2

s + 2XsE[Xt|Fs]− (t− s)

= Ms + (t− s)2 − 2X2
s + 2XsXs − (t− s) = Ms

(iii) is proved.

Definition 5.5 N = (Nt, t ≥ 0) ia said to be a Poisson process of rate λ if
(i) Nt is right continuous with left limits in t and N0 = 0,
(ii)Nt has independent increments, i.e., for any s1 < t1 < s2 < t2 < ... <

sn < tn,
Ntn −Nsn , Ntn−1 −Nsn−1 , ..., Nt1 −Ns1

are independent random variables
(iii) for every s ≤ t, Nt −Ns ∼ Poi(λ(t− s)), i.e.,

P (Nt −Ns = k) = e−λ(t−s) (λ(t− s))k

k!
, k = 0, 1, ...,

Example 5.6 Let N = (Nt, t ≥ 0) be a Poisson process of rate λ. Show
Mt = Nt − λt, t ≥ 0 is a martingale w.r.t. Ft = σ(Nu, u ≤ t), t ≥ 0.
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Proof. We again need to check the three conditions in the definition of
martingales. The first condition (i) is clear since Mt is a function of Nt. As
Nt has a Poisson distribution, Mt is integrable. For the condition (iii), let
s < t. We have

E[Mt|Fs] = E[Nt − λt|Fs]

= E[Ms + (Nt −Ns)− λ(t− s)|Fs] = Ms + E[(Nt −Ns)− λ(t− s)|Fs]

= Ms + E[(Nt −Ns)]− λ(t− s)

= Ms + λ(t− s)− λ(t− s) = Ms

(iii) is proved.

Example 5.7 Let N = (Nt, t ≥ 0) be a Poisson process of rate λ. For
θ > 0, show Vt = exp(−θNt + λt(1 − e−θ)), t ≥ 0 is a martingale w.r.t.
Ft = σ(Nu, u ≤ t), t ≥ 0.

Proof. We again need to check the three conditions in the definition of
martingales. The first condition (i) is clear since Vt is a function of Nt. As
Nt has a Poisson distribution, Vt is integrable. For the condition (iii), let
s < t. We have

E[Vt|Fs] = E[Vs · exp(−θ(Nt −Ns) + λ(t− s)(1− e−θ))|Fs]

= VsE[exp(−θ(Nt −Ns) + λ(t− s)(1− e−θ))|Fs]

= VsE[exp(−θ(Nt −Ns) + λ(t− s)(1− e−θ))]

= VsE[exp(−θ(Nt −Ns))]exp(λ(t− s)(1− e−θ))

Note that

E[exp(−θ(Nt −Ns))] =
∞∑
k=0

exp(−θk)P (Nt −Ns = k)

=
∞∑
k=0

exp(−θk)e−λ(t−s) (λ(t− s))k

k!

= e−λ(t−s)

∞∑
k=0

(exp(−θ))k
(λ(t− s))k

k!

= e−λ(t−s)exp(λ(t− s)exp(−θ))

Substitute this back to the above equation to get

E[Vt|Fs] = Vs

The proof is complete.
To state the Doob’s optional stopping theorem, we introduce stopping

times. A non-negative random variable σ is a stopping time with respect to
Ft, t ≥ 0 if for any t ≥ 0, {σ ≤ t} ∈ Ft.
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Theorem 5.8 (Doob’s optional stopping theorem). Let X = (Xt)t≥0 be a
martingale and σ an almost surely finite stopping time. In each of the fol-
lowing two cases, we have E[Xσ] = E[X0].

Case (i). σ is bounded, i.e., there is a constant T such that σ ≤ T .
Case (ii). The sequence Xσ∧t, t ≥ 0 is bounded by some integrable random

variable Y i.e.,
|Xσ∧t| ≤ Y

for all t ≥ 0.

Doob’s maximum inequality and martingale convergence theo-
rem

Theorem 5.9 Let X = (Xt, t ≥ 0) be a martingale such that E[|Xt|p] < ∞,
for some p ≥ 1. Then for every T > 0,

P (max0≤t≤T |Xt| ≥ λ) ≤ E[|XT |p]
λp

and if p > 1

E[max0≤t≤T |Xt|p] ≤ (
p

p− 1
)pE[|XT |p]

Theorem 5.10 Let X = (Xt, t ≥ 0) be a martingale such that supt E[|Xt|p] <
∞, n = 0 for some p ≥ 1. Then

X(ω) = lim
t→∞

Xt(ω)

almost surely.

Example 5.11 Let X = (Xt, t ≥ 0) be a Brownian motion with X0 = 0.
Find the probability that the Brownian motion X leaves the interval [−a, b]
at the point b, where a, b are two positive numbers.

Solution. We already knew that X is a martingale. Define

σ = inf{t ≥ 0;Xt = −a or Xt = b}

σ is the first time at which X hits −a or b. The σ is a stopping time with
respect to Ft = σ(Xu, u ≤ t), t ≥ 0. Since Xσ = −a or Xσ = b, we have

(1).P (Xσ = −a) + P (Xσ = b) = 1

Since |Xσ∧t| ≤ a + b for all t ≥ 0, it follows from the Doob’s theorem that
E[Xσ] = E[X0] = 0, which is

(2).E[Xσ] = (−a)P (Xσ = −a) + bP (Xσ = b) = 0

Solve (1), (2) together to get

P (Xσ = −a) =
b

a+ b
, P (Xσ = −a) =

a

a+ b

In this lecture notes, all the processes considered are assumed to be right
continuous with left limits.
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Definition 5.12 X = (Xt, t ≥ 0) is said to be a local martingale if there
exists an increasing sequence {τn, n ≥ 1} of stopping times such that

(i) τn → ∞ almost surely as n → ∞,
(ii) for every n, the stopped process {Xt∧τn , t ≥ 0} is a martingale.

Let f(t) be a real-valued function on [0,∞).

Definition 5.13 We say that f is of bounded variation on the interval [0, T ]
if

sup
τn

kn−1∑
i=0

|f(tni+1)− f(tni )| < ∞,

where the sup is taken over all the possible partitions τn = {tn0 = 0 < tn1 <
tn2 < · · · < tnkn = T} of the interval [0, T ].

Example 5.14 If f is differentiable, say f(t) =
∫ t

0
g(s)ds, then f is of

bounded variation on any finite interval [0, T ].

Solution. Let τn = {tn0 = 0 < tn1 < tn2 < · · · < tnkn = T} be any partition of
the interval [0, T ]. We have

kn−1∑
i=0

|f(tni+1)− f(tni )|

=
kn−1∑
i=0

|
∫ tni+1

0

g(s)ds−
∫ tni

0

g(s)ds| =
kn−1∑
i=0

|
∫ tni+1

tni

g(s)ds|

≤
kn−1∑
i=0

∫ tni+1

tni

|g(s)|ds =
∫ T

0

|g(s)|ds, (5.1)

which implies that

sup
τn

kn−1∑
i=0

|f(tni+1)− f(tni )| ≤
∫ T

0

|g(s)|ds < ∞.

Example 5.15 If f(t) is an increasing function, then f is of bounded vari-
ation on any finite interval [0, T ].

Solution. Let τn = {tn0 = 0 < tn1 < tn2 < · · · < tnkn = T} be any partition of
the interval [0, T ]. We have

kn−1∑
i=0

|f(tni+1)− f(tni )|

=
kn−1∑
i=0

(f(tni+1)− f(tni )) = f(T )− f(0). (5.2)

Hence,

sup
τn

kn−1∑
i=0

|f(tni+1)− f(tni )| ≤ f(T )− f(0) < ∞.
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Definition 5.16 We say that a process A = (At)t≥0 is a bounded variation
process if for almost all ω, the function t → At(ω) is of bounded variation.

Definition 5.17 A process X = (Xt)t≥0 is said to be a semimartingale if
Xt = X0+Mt+At, t ≥ 0 for some local martingale M and bounded variation
process A.

Let X, Y be two semimartingales.

Definition 5.18 Let X, Y be two semimartingales. The quadratic covaria-
tion process of X and Y , denoted by [X,Y ]t, t ≥ 0, is defined as

[X,Y ]t = lim
k→∞

nk∑
i=1

(Xti −Xti−1
)(Yti − Yti−1

),

where {0 = t0 < t1 < ... < tnk−1 < tnk
= t} is a sequence of partitions of the

interval [0, t] such that ∆k = max1≤nk
(ti − ti−1) → 0 as k → ∞.

If X = Y , [X,X] is also called the quadratic variation process of X.

Example 5.19 If A is a continuous process of bounded variation, then [A,A] =
0.

Solution. Let {0 = t0 < t1 < ... < tnk−1 < tnk
= t} be a sequence of

partitions of the interval [0, t] such that ∆k = max1≤nk
(ti − ti−1) → 0 as

k → ∞. We have

nk∑
i=1

(Ati − Ati−1
)2 ≤ sup

i
|Ati − Ati−1

| ·
nk∑
i=1

|Ati − Ati−1
|

≤ Ct sup
i

|Ati − Ati−1
|, (5.3)

where Ct is some constant because A is of bounded variation. Since At is
continuous in t and since ∆k = max1≤nk

(ti − ti−1) → 0, it follows that
supi |Ati − Ati−1

| → 0 as k → ∞. Hence we deduce that

[A,A]t = lim
k→∞

nk∑
i=1

(Ati − Ati−1
)2 = 0

Example 5.20 Let B be a standard Brownian motion. Let {0 = t0 < t1 <
... < tnk−1 < tnk

= t} be a sequence of partitions of the interval [0, t] such
that ∆k = max1≤nk

(ti − ti−1) → 0 as k → ∞. Prove

lim
k→∞

E[

(
nk∑
i=1

(Bti −Bti−1
)2 − t

)2

] = 0

Hence, [B,B]t = t.
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Proof. Noting that t =
∑nk

i=1(ti − ti−1), we have

nk∑
i=1

(Bti −Bti−1
)2 − t =

nk∑
i=1

{(Bti −Bti−1
)2 − (ti − ti−1)},

Hence,

E[(

nk∑
i=1

(Bti −Bti−1
)2 − t)2]

=

nk∑
i=1,j=1

E[{(Bti −Bti−1
)2 − (ti − ti−1)}{(Btj −Btj−1

)2 − (tj − tj−1)}]

=

nk∑
i ̸=j

E[{(Bti −Bti−1
)2 − (ti − ti−1)}{(Btj −Btj−1

)2 − (tj − tj−1)}]

+

nk∑
i=1

E[{(Bti −Bti−1
)2 − (ti − ti−1)}2] (5.4)

If i ̸= j, by the independence we have

E[{(Bti −Bti−1
)2 − (ti − ti−1)}{(Btj −Btj−1

)2 − (tj − tj−1)}]
= E[{(Bti −Bti−1

)2 − (ti − ti−1)}]E[{(Btj −Btj−1
)2 − (tj − tj−1)}]

= 0 (5.5)

On the other hand,

E[{(Bti −Bti−1
)2 − (ti − ti−1)}2]

= E[(Bti −Bti−1
)4]− 2E[(Bti −Bti−1

)2](ti − ti−1) + (ti − ti−1)
2

= E[(Bti −Bti−1
)4]− (ti − ti−1)

2

≤ C(ti − ti−1)
2 + (ti − ti−1)

2. (5.6)

Combining the above calculations together, we obtain

E[(

nk∑
i=1

(Bti −Bti−1
)2 − t)2]

≤
nk∑
i=1

(C + 1)(ti − ti−1)
2 ≤ (C + 1)tmax

i
(ti − ti−1)

→ 0 (5.7)

as k → ∞.

Finally we state the Doob-Meyer Decomposition Theorem without proof.

Theorem 5.21 (Doob-Meyer Decomposition Theorem) Let Z be a super-
martingale. Then Z has a decomposition Zt = Z0 + Mt − At, t ≥ 0, where
M is a local martingale and A is a predictable, increasing processes, and
M0 = A0 = 0. Such a decomposition is unique.
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