Martingale Theory for Finance

Tusheng Zhang
October 27, 2015

1 Introduction

2 Probability spaces and σ-fields

3 Integration with respect to a probability measure.

4 Conditional expectation.

5 Martingales.

Continuous time martingales

So far the time index we consider is $T=\{0,1,2, \ldots\}$. Almost all the results for discrete time martingales also hold for continuous time martingales. We will list some of them without proofs. Let $X=\left(X_{t}, t \geq 0\right)$ be a stochastic process, i.e., a collection of random variables which describe systems that evolve randomly in time. Let $\left(\mathcal{F}_{t}, t \geq 0\right)$ be a family of increasing σ-fields, $\mathcal{F}_{s} \subset \mathcal{F}_{t}$ for $s \leq t$.
Definition 5.1 $X=\left(X_{t}, t \geq 0\right)$ is said to be a martingale (supermartingale, submartingale) with respect to $\left(\mathcal{F}_{t}, t \geq 0\right)$ if
(i) X_{t} is \mathcal{F}_{t}-measurable (determined),
(ii) X_{t} is integrable, i.e., $E\left[\left|X_{t}\right|\right]<\infty$,
(iii) for every $s \leq t$,

$$
E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s} \quad\left(E\left[X_{t} \mid \mathcal{F}_{s}\right] \leq X_{s}, \quad E\left[X_{t} \mid \mathcal{F}_{s}\right] \geq X_{s}\right)
$$

Next we introduce a popular stochastic process, the so called Brownian motion, that is widely used in applications, particularly in finance.

Definition 5.2 $X=\left(X_{t}, t \geq 0\right)$ ia said to be a Brownian motion if
(i) X_{t} is continuous in t with $X_{0}=0$,
(ii) X_{t} has independent increments, i.e., for any $s_{1}<t_{1}<s_{2}<t_{2}<\ldots<$ $s_{n}<t_{n}$,

$$
X_{t_{n}}-X_{s_{n}}, X_{t_{n-1}}-X_{s_{n-1}}, \ldots, X_{t_{1}}-X_{s_{1}}
$$

are independent random variables
(iii) for every $s \leq t, X_{t}-X_{s} \sim N(0, t-s)$. In particular, $X_{t} \sim N(0, t)$.

Example 5.3 Show a Brownian motion $X=\left(X_{t}, t \geq 0\right)$ is a martingale w.r.t. $\mathcal{F}_{t}=\sigma\left(X_{u}, u \leq t\right), t \geq 0$.

Proof. We will check the three conditions in the definition of martingales. The first condition (i) is clear since the σ field \mathcal{F}_{t} is generated by the process X. As $X_{t} \sim N(0, t), X_{t}$ is integrable. For the condition (iii), let $s<t$. We have

$$
\begin{gathered}
E\left[X_{t} \mid \mathcal{F}_{s}\right]=E\left[X_{t}-X_{s}+X_{s} \mid \mathcal{F}_{s}\right] \\
=E\left[X_{t}-X_{s} \mid \mathcal{F}_{s}\right]+E\left[X_{s} \mid \mathcal{F}_{s}\right]=X_{s}+E\left[X_{t}-X_{s}\right]=X_{s}
\end{gathered}
$$

(iii) holds.

Example 5.4 Let $X=\left(X_{t}, t \geq 0\right)$ be a Brownian motion. Show $M_{t}=$ $X_{t}^{2}-t, t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}=\sigma\left(X_{u}, u \leq t\right), t \geq 0$.

Proof. We again need to check the three conditions in the definition of martingales. The first condition (i) is clear since M_{t} is a function of X_{t}. As $X_{t} \sim N(0, t), X_{t}^{2}-t=M_{t}$ is integrable. For the condition (iii), let $s<t$. We have

$$
\begin{gathered}
E\left[M_{t} \mid \mathcal{F}_{s}\right]=E\left[X_{t}^{2}-t \mid \mathcal{F}_{s}\right] \\
=E\left[X_{s}^{2}-s+X_{t}^{2}-X_{s}^{2}-t+s \mid \mathcal{F}_{s}\right]=X_{s}^{2}-s+E\left[X_{t}^{2}-X_{s}^{2}-t+s \mid \mathcal{F}_{s}\right] \\
=M_{s}+E\left[X_{t}^{2}-2 X_{t} X_{s}+X_{s}^{2}-2 X_{s}^{2}+2 X_{t} X_{s}-t+s \mid \mathcal{F}_{s}\right] \\
=M_{s}+E\left[\left(X_{t}-X_{s}\right)^{2} \mid \mathcal{F}_{s}\right]+E\left[-2 X_{s}^{2}+2 X_{t} X_{s}-t+s \mid \mathcal{F}_{s}\right] \\
=M_{s}+E\left[\left(X_{t}-X_{s}\right)^{2}\right]-2 X_{s}^{2}+2 X_{s} E\left[X_{t} \mid \mathcal{F}_{s}\right]-(t-s) \\
=M_{s}+(t-s)^{2}-2 X_{s}^{2}+2 X_{s} X_{s}-(t-s)=M_{s}
\end{gathered}
$$

(iii) is proved.

Definition 5.5 $N=\left(N_{t}, t \geq 0\right)$ ia said to be a Poisson process of rate λ if
(i) N_{t} is right continuous with left limits in t and $N_{0}=0$,
(ii) N_{t} has independent increments, i.e., for any $s_{1}<t_{1}<s_{2}<t_{2}<\ldots<$ $s_{n}<t_{n}$,

$$
N_{t_{n}}-N_{s_{n}}, N_{t_{n-1}}-N_{s_{n-1}}, \ldots, N_{t_{1}}-N_{s_{1}}
$$

are independent random variables
(iii) for every $s \leq t, N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(t-s))$, i.e.,

$$
P\left(N_{t}-N_{s}=k\right)=e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k}}{k!}, k=0,1, \ldots
$$

Example 5.6 Let $N=\left(N_{t}, t \geq 0\right)$ be a Poisson process of rate λ. Show $M_{t}=N_{t}-\lambda t, t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}=\sigma\left(N_{u}, u \leq t\right), t \geq 0$.

Proof. We again need to check the three conditions in the definition of martingales. The first condition (i) is clear since M_{t} is a function of N_{t}. As N_{t} has a Poisson distribution, M_{t} is integrable. For the condition (iii), let $s<t$. We have

$$
\begin{gathered}
E\left[M_{t} \mid \mathcal{F}_{s}\right]=E\left[N_{t}-\lambda t \mid \mathcal{F}_{s}\right] \\
=E\left[M_{s}+\left(N_{t}-N_{s}\right)-\lambda(t-s) \mid \mathcal{F}_{s}\right]=M_{s}+E\left[\left(N_{t}-N_{s}\right)-\lambda(t-s) \mid \mathcal{F}_{s}\right] \\
=M_{s}+E\left[\left(N_{t}-N_{s}\right)\right]-\lambda(t-s) \\
=M_{s}+\lambda(t-s)-\lambda(t-s)=M_{s}
\end{gathered}
$$

(iii) is proved.

Example 5.7 Let $N=\left(N_{t}, t \geq 0\right)$ be a Poisson process of rate λ. For $\theta>0$, show $V_{t}=\exp \left(-\theta N_{t}+\lambda t\left(1-e^{-\theta}\right)\right), t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}=\sigma\left(N_{u}, u \leq t\right), t \geq 0$.

Proof. We again need to check the three conditions in the definition of martingales. The first condition (i) is clear since V_{t} is a function of N_{t}. As N_{t} has a Poisson distribution, V_{t} is integrable. For the condition (iii), let $s<t$. We have

$$
\begin{gathered}
E\left[V_{t} \mid \mathcal{F}_{s}\right]=E\left[V_{s} \cdot \exp \left(-\theta\left(N_{t}-N_{s}\right)+\lambda(t-s)\left(1-e^{-\theta}\right)\right) \mid \mathcal{F}_{s}\right] \\
=V_{s} E\left[\exp \left(-\theta\left(N_{t}-N_{s}\right)+\lambda(t-s)\left(1-e^{-\theta}\right)\right) \mid \mathcal{F}_{s}\right] \\
=V_{s} E\left[\exp \left(-\theta\left(N_{t}-N_{s}\right)+\lambda(t-s)\left(1-e^{-\theta}\right)\right)\right] \\
=V_{s} E\left[\exp \left(-\theta\left(N_{t}-N_{s}\right)\right)\right] \exp \left(\lambda(t-s)\left(1-e^{-\theta}\right)\right)
\end{gathered}
$$

Note that

$$
\begin{gathered}
E\left[\exp \left(-\theta\left(N_{t}-N_{s}\right)\right)\right]=\sum_{k=0}^{\infty} \exp (-\theta k) P\left(N_{t}-N_{s}=k\right) \\
=\sum_{k=0}^{\infty} \exp (-\theta k) e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k}}{k!} \\
=e^{-\lambda(t-s)} \sum_{k=0}^{\infty}(\exp (-\theta))^{k} \frac{(\lambda(t-s))^{k}}{k!} \\
=e^{-\lambda(t-s)} \exp (\lambda(t-s) \exp (-\theta))
\end{gathered}
$$

Substitute this back to the above equation to get

$$
E\left[V_{t} \mid \mathcal{F}_{s}\right]=V_{s}
$$

The proof is complete.
To state the Doob's optional stopping theorem, we introduce stopping times. A non-negative random variable σ is a stopping time with respect to $\mathcal{F}_{t}, t \geq 0$ if for any $t \geq 0,\{\sigma \leq t\} \in \mathcal{F}_{t}$.

Theorem 5.8 (Doob's optional stopping theorem). Let $X=\left(X_{t}\right)_{t \geq 0}$ be a martingale and σ an almost surely finite stopping time. In each of the following two cases, we have $E\left[X_{\sigma}\right]=E\left[X_{0}\right]$.

Case (i). σ is bounded, i.e., there is a constant T such that $\sigma \leq T$.
Case (ii). The sequence $X_{\sigma \wedge t}, t \geq 0$ is bounded by some integrable random variable Y i.e.,

$$
\left|X_{\sigma \wedge t}\right| \leq Y
$$

for all $t \geq 0$.
Doob's maximum inequality and martingale convergence theorem

Theorem 5.9 Let $X=\left(X_{t}, t \geq 0\right)$ be a martingale such that $E\left[\left|X_{t}\right|^{p}\right]<\infty$, for some $p \geq 1$. Then for every $T>0$,

$$
P\left(\max _{0 \leq t \leq T}\left|X_{t}\right| \geq \lambda\right) \leq \frac{E\left[\left|X_{T}\right|^{p}\right]}{\lambda^{p}}
$$

and if $p>1$

$$
E\left[\max _{0 \leq t \leq T}\left|X_{t}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} E\left[\left|X_{T}\right|^{p}\right]
$$

Theorem 5.10 Let $X=\left(X_{t}, t \geq 0\right)$ be a martingale such that $\sup _{t} E\left[\left|X_{t}\right|^{p}\right]<$ $\infty, n=0$ for some $p \geq 1$. Then

$$
X(\omega)=\lim _{t \rightarrow \infty} X_{t}(\omega)
$$

almost surely.
Example 5.11 Let $X=\left(X_{t}, t \geq 0\right)$ be a Brownian motion with $X_{0}=0$. Find the probability that the Brownian motion X leaves the interval $[-a, b]$ at the point b, where a, b are two positive numbers.

Solution. We already knew that X is a martingale. Define

$$
\sigma=\inf \left\{t \geq 0 ; X_{t}=-a \quad \text { or } \quad X_{t}=b\right\}
$$

σ is the first time at which X hits $-a$ or b. The σ is a stopping time with respect to $\mathcal{F}_{t}=\sigma\left(X_{u}, u \leq t\right), t \geq 0$. Since $X_{\sigma}=-a$ or $X_{\sigma}=b$, we have

$$
\text { (1). } P\left(X_{\sigma}=-a\right)+P\left(X_{\sigma}=b\right)=1
$$

Since $\left|X_{\sigma \wedge t}\right| \leq a+b$ for all $t \geq 0$, it follows from the Doob's theorem that $E\left[X_{\sigma}\right]=E\left[X_{0}\right]=0$, which is

$$
(2) \cdot E\left[X_{\sigma}\right]=(-a) P\left(X_{\sigma}=-a\right)+b P\left(X_{\sigma}=b\right)=0
$$

Solve (1), (2) together to get

$$
P\left(X_{\sigma}=-a\right)=\frac{b}{a+b}, \quad P\left(X_{\sigma}=-a\right)=\frac{a}{a+b}
$$

In this lecture notes, all the processes considered are assumed to be right continuous with left limits.

Definition $5.12 X=\left(X_{t}, t \geq 0\right)$ is said to be a local martingale if there exists an increasing sequence $\left\{\tau_{n}, n \geq 1\right\}$ of stopping times such that
(i) $\tau_{n} \rightarrow \infty$ almost surely as $n \rightarrow \infty$,
(ii) for every n, the stopped process $\left\{X_{t \wedge \tau_{n}}, t \geq 0\right\}$ is a martingale.

Let $f(t)$ be a real-valued function on $[0, \infty)$.
Definition 5.13 We say that f is of bounded variation on the interval $[0, T]$ if

$$
\sup _{\tau^{n}} \sum_{i=0}^{k_{n}-1}\left|f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right|<\infty
$$

where the sup is taken over all the possible partitions $\tau^{n}=\left\{t_{0}^{n}=0<t_{1}^{n}<\right.$ $\left.t_{2}^{n}<\cdots<t_{k_{n}}^{n}=T\right\}$ of the interval $[0, T]$.

Example 5.14 If f is differentiable, say $f(t)=\int_{0}^{t} g(s) d s$, then f is of bounded variation on any finite interval $[0, T]$.
Solution. Let $\tau^{n}=\left\{t_{0}^{n}=0<t_{1}^{n}<t_{2}^{n}<\cdots<t_{k_{n}}^{n}=T\right\}$ be any partition of the interval $[0, T]$. We have

$$
\begin{align*}
& \sum_{i=0}^{k_{n}-1}\left|f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right| \\
= & \sum_{i=0}^{k_{n}-1}\left|\int_{0}^{t_{i+1}^{n}} g(s) d s-\int_{0}^{t_{i}^{n}} g(s) d s\right|=\sum_{i=0}^{k_{n}-1}\left|\int_{t_{i}^{n}}^{t_{i+1}^{n}} g(s) d s\right| \\
\leq & \sum_{i=0}^{k_{n}-1} \int_{t_{i}^{n}}^{t_{i+1}^{n}}|g(s)| d s=\int_{0}^{T}|g(s)| d s, \tag{5.1}
\end{align*}
$$

which implies that

$$
\sup _{\tau^{n}} \sum_{i=0}^{k_{n}-1}\left|f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right| \leq \int_{0}^{T}|g(s)| d s<\infty .
$$

Example 5.15 If $f(t)$ is an increasing function, then f is of bounded variation on any finite interval $[0, T]$.
Solution. Let $\tau^{n}=\left\{t_{0}^{n}=0<t_{1}^{n}<t_{2}^{n}<\cdots<t_{k_{n}}^{n}=T\right\}$ be any partition of the interval $[0, T]$. We have

$$
\begin{align*}
& \sum_{i=0}^{k_{n}-1}\left|f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right| \\
= & \sum_{i=0}^{k_{n}-1}\left(f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right)=f(T)-f(0) . \tag{5.2}
\end{align*}
$$

Hence,

$$
\sup _{\tau^{n}} \sum_{i=0}^{k_{n}-1}\left|f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right| \leq f(T)-f(0)<\infty .
$$

Definition 5.16 We say that a process $A=\left(A_{t}\right)_{t \geq 0}$ is a bounded variation process if for almost all ω, the function $t \rightarrow A_{t}(\omega)$ is of bounded variation.

Definition 5.17 A process $X=\left(X_{t}\right)_{t \geq 0}$ is said to be a semimartingale if $X_{t}=X_{0}+M_{t}+A_{t}, t \geq 0$ for some local martingale M and bounded variation process A.

Let X, Y be two semimartingales.
Definition 5.18 Let X, Y be two semimartingales. The quadratic covariation process of X and Y, denoted by $[X, Y]_{t}, t \geq 0$, is defined as

$$
[X, Y]_{t}=\lim _{k \rightarrow \infty} \sum_{i=1}^{n_{k}}\left(X_{t_{i}}-X_{t_{i-1}}\right)\left(Y_{t_{i}}-Y_{t_{i-1}}\right)
$$

where $\left\{0=t_{0}<t_{1}<\ldots<t_{n_{k}-1}<t_{n_{k}}=t\right\}$ is a sequence of partitions of the interval $[0, t]$ such that $\Delta_{k}=\max _{1 \leq n_{k}}\left(t_{i}-t_{i-1}\right) \rightarrow 0$ as $k \rightarrow \infty$.

If $X=Y,[X, X]$ is also called the quadratic variation process of X.
Example 5.19 If A is a continuous process of bounded variation, then $[A, A]=$ 0.

Solution. Let $\left\{0=t_{0}<t_{1}<\ldots<t_{n_{k}-1}<t_{n_{k}}=t\right\}$ be a sequence of partitions of the interval $[0, t]$ such that $\Delta_{k}=\max _{1 \leq n_{k}}\left(t_{i}-t_{i-1}\right) \rightarrow 0$ as $k \rightarrow \infty$. We have

$$
\begin{align*}
& \sum_{i=1}^{n_{k}}\left(A_{t_{i}}-A_{t_{i-1}}\right)^{2} \leq \sup _{i}\left|A_{t_{i}}-A_{t_{i-1}}\right| \cdot \sum_{i=1}^{n_{k}}\left|A_{t_{i}}-A_{t_{i-1}}\right| \\
\leq & C_{t} \sup _{i}\left|A_{t_{i}}-A_{t_{i-1}}\right| \tag{5.3}
\end{align*}
$$

where C_{t} is some constant because A is of bounded variation. Since A_{t} is continuous in t and since $\Delta_{k}=\max _{1 \leq n_{k}}\left(t_{i}-t_{i-1}\right) \rightarrow 0$, it follows that $\sup _{i}\left|A_{t_{i}}-A_{t_{i-1}}\right| \rightarrow 0$ as $k \rightarrow \infty$. Hence we deduce that

$$
[A, A]_{t}=\lim _{k \rightarrow \infty} \sum_{i=1}^{n_{k}}\left(A_{t_{i}}-A_{t_{i-1}}\right)^{2}=0
$$

Example 5.20 Let B be a standard Brownian motion. Let $\left\{0=t_{0}<t_{1}<\right.$ $\left.\ldots<t_{n_{k}-1}<t_{n_{k}}=t\right\}$ be a sequence of partitions of the interval $[0, t]$ such that $\Delta_{k}=\max _{1 \leq n_{k}}\left(t_{i}-t_{i-1}\right) \rightarrow 0$ as $k \rightarrow \infty$. Prove

$$
\lim _{k \rightarrow \infty} E\left[\left(\sum_{i=1}^{n_{k}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-t\right)^{2}\right]=0
$$

Hence, $[B, B]_{t}=t$.

Proof. Noting that $t=\sum_{i=1}^{n_{k}}\left(t_{i}-t_{i-1}\right)$, we have

$$
\sum_{i=1}^{n_{k}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-t=\sum_{i=1}^{n_{k}}\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}
$$

Hence,

$$
\begin{align*}
& E\left[\left(\sum_{i=1}^{n_{k}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-t\right)^{2}\right] \\
= & \sum_{i=1, j=1}^{n_{k}} E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}\left\{\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right\}\right] \\
= & \sum_{i \neq j}^{n_{k}} E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}\left\{\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right\}\right] \\
& +\sum_{i=1}^{n_{k}} E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}^{2}\right] \tag{5.4}
\end{align*}
$$

If $i \neq j$, by the independence we have

$$
\begin{align*}
& E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}\left\{\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right\}\right] \\
= & E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}\right] E\left[\left\{\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right\}\right] \\
& =0 \tag{5.5}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& E\left[\left\{\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right\}^{2}\right] \\
= & E\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{4}\right]-2 E\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right]\left(t_{i}-t_{i-1}\right)+\left(t_{i}-t_{i-1}\right)^{2} \\
= & E\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{4}\right]-\left(t_{i}-t_{i-1}\right)^{2} \\
\leq & C\left(t_{i}-t_{i-1}\right)^{2}+\left(t_{i}-t_{i-1}\right)^{2} . \tag{5.6}
\end{align*}
$$

Combining the above calculations together, we obtain

$$
\begin{align*}
& E\left[\left(\sum_{i=1}^{n_{k}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-t\right)^{2}\right] \\
\leq & \sum_{i=1}^{n_{k}}(C+1)\left(t_{i}-t_{i-1}\right)^{2} \leq(C+1) t \max _{i}\left(t_{i}-t_{i-1}\right) \\
& \rightarrow 0 \tag{5.7}
\end{align*}
$$

as $k \rightarrow \infty$.
Finally we state the Doob-Meyer Decomposition Theorem without proof.
Theorem 5.21 (Doob-Meyer Decomposition Theorem) Let Z be a supermartingale. Then Z has a decomposition $Z_{t}=Z_{0}+M_{t}-A_{t}, t \geq 0$, where M is a local martingale and A is a predictable, increasing processes, and $M_{0}=A_{0}=0$. Such a decomposition is unique.

