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For a family {X1, X2, ...Xn} of random variables, denote by σ(X1, X2, ..., Xn)
the smallest σ-field containing the events of the form {ω; a < Xk(ω) < b}, k =
1, ..., n for all choices of a, b. σ(X1, X2, ..., Xn) is called the σ-field generated
by X1, X2, ..., Xn. Random variables determined by σ(X1, X2, ..., Xn) are
functions of X1, X2, ..., Xn. To introduce the notion of martingales we begin
with an example. Consider a series of games decided by the tosses of a coin,
in which we either win £1 with probability p or lose £1 with probability
q = 1 − p in each round. Let Xi denote the net gain in the i − th round.
Then Xi, i = 1, 2, ... are independent random variables with

P (Xi = 1) = p, P (Xi = −1) = q

and so E(Xi) = p− q.

Our total net gain (possibly negative) after the n− th round is given by
S0 = 0 and

Sn = X1 +X2 + ...+Xn, n = 1, 2, ...

Let Fn = σ(X1, X2, ..., Xn) denote the σ-field generated by X1, X2, ...Xn.
The Fn ⊂ Fn+1 and Fn can be regarded as the history of the games up to
time n (the n-th round). Let us now compute the average gain after the
n+ 1-th round given the history up to time n. We have

E[Sn+1|Fn]

= E[Sn +Xn+1|Fn]
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= E[Sn|Fn] + E[Xn+1|Fn]

= Sn + E[Xn+1],

where we used the fact that Sn = X1 + X2 + ... + Xn is determined by Fn

and Xn+1 is independent of Fn. Thus,

E[Sn+1|Fn] = Sn + p− q

=


Sn if the game is fair, i.e. p = q = 1

2

> Sn, if p > q,
< Sn, if p < q.

In the first case, the game is fair, {Sn, n ≥ 0} is called a martingale. It is
called a submartingale in the second case and a supermartingale in the third
case.

Definition 5.1 A sequence of random variables Z0, Z1, Z2, ...Zn, ... is said
to be a martingale (submartingale, or supermartingale) with respect to an
increasing sequence F0 ⊂ F2 ⊂ F3 ⊂ · · · of σ-fields if

(i) Zn is determined by Fn,
(ii) Zn is integrable, i.e., E[|Zn|] < ∞,
(iii) E[Zn+1|Fn] = Zn. (E[Zn+1|Fn] ≥ Zn, E[Zn+1|Fn] ≤ Zn )

Remarks. 1. The notion of martingales is a mathematical formulation for
fair games.

2.The typical choice of Fn is Fn = σ(Z1, Z2, ...Zn), the σ-field generated
by Z1, Z2, ..., Zn.

3. If Zn, n ≥ 0 is a martingale, then

E[Zn] = E[E[Zn+1|Fn]] = E[Zn+1]

The expectation remains constant for all n ≥ 1.
4. If Zn, n ≥ 0 is a martingale, then we have

E[Zn+2|Fn] = E[E[Zn+2|Fn+1]|Fn]

= [Zn+1|Fn] = Zn

More generally, it holds that for any m > n, E[Zm|Fn] = Zn.

Examples.

(1). If X0, X1, X2, ...Xn, ... are independent, integrable random variables
with E[Xi] = 0 for all i, then Sn = X1 + X2 + ... + Xn, n ≥ 1, S0 = 0 is a
martingale with respect to Fn = σ(X1, X2, ...Xn)

Since Sn is a function of X0, X1, X2, ...Xn, it is Fn-determined. We are
left to check the third condition (iii). In fact,

E[Sn+1|Fn]
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= E[Sn +Xn+1|Fn]

= E[Sn|Fn] + E[Xn+1|Fn]

= Sn + E[Xn+1] = Sn

So (iii) is true and Sn, n ≥ 0 is a martingale.

(2). Let Y be an integrable r.v. and {Fn, n ≥ 1} be a sequence of
increasing σ-fields. Define Zn = E[Y |Fn], n ≥ 1. Then {Zn, n ≥ 1} is a
martingale w.r.t. {Fn, n ≥ 1}. We need to show that {Zn, n ≥ 1} satisfies the
definition of a martingale. By the definition of the conditional expectation,
Zn is Fn-determined. For (ii), we notice that

|Zn| ≤ E[|Y ||Fn]

Hence E[|Zn|] ≤ E[|Y |]. Let us now check (iii). By the property of the
conditional expectation,

E[Zn+1|Fn] = E[E[Y |Fn+1]|Fn]] = E[Y |Fn] = Zn

This proves (iii).

(3). If Y1, Y2, ...Yn, ... are independent, integrable r.v.’s with ai = E(Yi) ̸=
0 for all i, then

Zn =
Y1Y2...Yn

a1a2...an
, n = 1, 2, ...

is a martingale w.r.t. Fn = σ(Y1, Y2, ..., Yn), n ≥ 1

Since Zn is a function of Y1, Y2, ..., Yn, Zn is determined by Fn. Zn is
integrable because Yi are integrable and independent. We now check (iii).
We have

E[Zn+1|Fn] = E[
Y1Y2...YnYn+1

a1a2...anan+1

|Fn]

=
Y1Y2...Yn

a1a2...an
E[

Yn+1

an+1

|Fn]

=
Y1Y2...Yn

a1a2...an
E[

Yn+1

an+1

] =
Y1Y2...Yn

a1a2...an
= Zn

Example 5.2 Let {Sn}n≥0 be the net gain process in a series of fair games.
Then S0 = 0, Sn = X1 + X2 + ... + Xn, n ≥ 1, and P (Xi = 1) = 1

2
,

P (Xi = −1) = 1
2
. We already know that {Sn}n≥0 is a martingale w.r.t.

Fn = σ(Y1, Y2, ..., Yn), n ≥ 1. Prove that {Yn = S2
n − n, n ≥ 0} is also a

martingale w.r.t. Fn = σ(X1, X2, ..., Xn), n ≥ 1.

Proof. Since Yn is a function of X1, X2, ..., Xn, Yn is Fn-measurable. As
|Yn| ≤ n+n2, Yn is integrable. It remains to show that E[Yn+1|Fn] = Yn. To
this end, writing

Yn+1 = S2
n+1 − (n+ 1) = (Sn +Xn+1)

2 − (n+ 1)
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= S2
n − n+ 2SnXn+1 +X2

n+1 − 1

= Yn + 2SnXn+1 +X2
n+1 − 1,

we have
E[Yn+1|Fn] = E[Yn|Fn] + E[2SnXn+1|Fn]

+E[X2
n+1|Fn]− 1

= Yn + 2SnE[Xn+1|Fn] + E[X2
n+1]− 1

= Yn + 2SnE[Xn+1] + E[X2
n+1]− 1 = Yn + 0 + 1− 1 = Yn.

Example 5.3 Let X1, X2, ..., Xn, n ≥ 1 be a sequence of independent random
variables with P (Xi = 1) = p, P (Xi = −1) = q. Set Sn = X1+X2+ ...+Xn

and define

Zn =

(
q

p

)Sn

, n ≥ 1.

Show {Zn, n ≥ 1} is a martingale w.r.t. Fn = σ(X1, X2, ..., Xn), n ≥ 1.

Proof. Since Zn is a function of X1, X2, ..., Xn, Zn is Fn-measurable. Since

|Zn| ≤
(

q
p

)n

+

(
p
q

)n

, Zn is integrable. Let us check (iii)

E[Zn+1|Fn] = E[

(
q

p

)Sn+1

|Fn]

= E[

(
q

p

)Sn
(
q

p

)Xn+1

|Fn]

=

(
q

p

)Sn

E[

(
q

p

)Xn+1

|Fn]

= ZnE[

(
q

p

)Xn+1

]

= Zn{
(
q

p

)
P (Xn+1 = 1) +

(
q

p

)−1

P (Xn+1 = −1)}

= Zn{
(
q

p

)
p+

(
q

p

)−1

q} = Zn(p+ q) = Zn.

Stopping times

Suppose we play a series of games by tossing a fair coin. As we know,
the net gain at time n Sn, n ≥ 1 is a martingale. If we quit at a fixed time
n, then E(Sn) = 0. It is not very exciting. However, we can stop playing as
soon as our net gain reaches 100. This amounts to saying that we will stop
at the random time

T = min{n;Sn = 100}
Such random times are called stopping times. Here is the definition.
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Definition 5.4 Let {Fn, n ≥ 1} be an increasing sequence of σ-fields. A
random variable T (ω) taking values in the set {0, 1, 2, 3, ...∞} is called a
stopping time ( or optional time) w.r.t. {Fn, n ≥ 1} if for every n, {T ≤
n} ∈ Fn.

Example 5.5 Let Sn = X1 +X2 + ...+Xn, n ≥ 1 be the net gain process in
a series of games. Set Fn = σ(X1, X2, ..., Xn), n ≥ 1. Define

T = min{n;Sn = 100}

Then T is a stopping time w.r.t. {Fn, n ≥ 1}.

In fact, for every n,

{T ≤ n} = ∪n
k=1{Sk = 100} ∈ Fn.

Stopped processes

Let T be a stopping time. Let Zn, n ≥ 1 be a sequence of random vari-
ables. Set T ∧ n = min(T, n)). Define

Ẑn = ZT∧n =

{
Zn if n ≤ T (ω),
ZT (ω) if n > T (ω).

ZT∧n, n ≥ 1 is the stopped process of Z at the stoping time T .

Theorem 5.6 If Z0, Z1, ..., Zn.. is a martingale w.r.t. {Fn, n ≥ 1}, then
the stopped process Yn = ZT∧n is also a martingale w.r.t. {Fn, n ≥ 1}. In
particular, E[ZT∧n] = E[Z0].

Proof. Observe that

Yn+1 = ZT∧(n+1) = ZT∧n + I{T≥n+1}(Zn+1 − Zn)

= Yn + I{T≥n+1}(Zn+1 − Zn)

In fact, if T ≤ n, the left is equal to the right, which is ZT . While if T ≥ n+1,
then the left is also equal to the right, which is Zn+1. Thus we have

E[Yn+1|Fn]

= E[Yn + I{T≥n+1}(Zn+1 − Zn)|Fn]

Since {T ≥ n+ 1} = ({T ≤ n})c ∈ Fn, it follows that

E[Yn + I{T≥n+1}(Zn+1 − Zn)|Fn]

= Yn + I{T≥n+1}E[(Zn+1 − Zn)|Fn]

= Yn + 0
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which completes the proof.

If Zn, n ≥ 0 is a martingale, then we know that E[Zn] = E[Zn−1] =
...E[Z0]. Now the question is what will happen if the deterministic time n
is replaced by a stopping time T . Namely, will E[ZT ] = E[Z0] be still true?
Before answering the question, let us look at one example. Let Sn, n ≥ 0
denote the capital gain in a series of fair games. Define T = min{n;Sn = 10},
for example, the time at which the capital reaches 10. Then E[ST ] = E[10] =
10 ̸= E[S0] = 0. But the following theorem holds.

Theorem 5.7 (Doob’s optional stopping theorem). Let Z0, Z1, ... be a mar-
tingale and T an almost surely finite stopping time. In each of the following
three cases, we have E[ZT ] = E[Z0].

Case (i). T is bounded, i.e., there is an integer m such that T (ω) ≤ m.
Case (ii). The sequence ZT∧n, n ≥ 0 is bounded in the sense that there is

a constant K such that
|ZT∧n| ≤ K

for all n.
Case (iii): E[T ] < ∞ and the step Zn − Zn−1 are bounded, i.e., there is

a constant C such that |Zn − Zn−1| ≤ C for all n.

Proof. The proof is an application of the dominated convergence theorem.
First of all, we note that ZT∧n → ZT as n → ∞. Since the stopped process
ZT∧n is a martingale, we always have

E[ZT∧n] = E[Z0]

Case (i): Since T ≤ m, we have T ∧m = T and so

E[ZT ] = E[ZT∧m] = E[Z0]

Case (ii). Since |ZT∧n| ≤ K is bounded for all n, it follows from the domi-
nated convergence theorem that

E[ZT ] = lim
n→∞

E[ZT∧n] = E[Z0]

Case (iii): Write

ZT∧n = ZT∧n − ZT∧n−1 + ZT∧n−1 − ZT∧n−2

· · ·+ Z3 − Z2 + Z2 − Z1 + Z1 − Z0 + Z0

Consequently,

|ZT∧n| ≤ |ZT∧n − ZT∧n−1|+ |ZT∧n−1 − ZT∧n−2|

· · ·+ |Z3 − Z2|+ |Z2 − Z1|+ |Z1 − Z0|+ |Z0|
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≤ C + C + · · ·+ C + |Z0| ≤ (T ∧ n)C + |Z0| ≤ CT + |Z0|.
By virtue of the dominated convergence theorem, we have

E[ZT ] = lim
n→∞

E[ZT∧n] = E[Z0]

Application of Doob’s optimal stopping theorem: Gambler’s
ruin problem

Gambler A and B play a series of games against each other in which
a fair coin is tossed repeatedly. In each game gambler A wins or loses £1
according as the toss results in a head or a tail respectively. The initial
capital of gambler A is £a and that of gambler B is £b and they continue
playing until one of them is ruined. Determine the probability that A will
be ruined and also the expected number of games played.

Let Ŝn be the fortune of gambler A after the n-th game. Then

Ŝn = a+X1 +X2 + · · ·+Xn = a+ Sn,

where Xi, i = 1, 2... are independent r.v.’s with P (Xi = 1) = 1
2
, P (Xi =

−1) = 1
2
. The game will stop at the time the gambler A or B is ruined, i.e.,

the game stop at

T = min{n; Ŝn = 0 or Ŝn = a+ b}

= min{n;Sn = −a or Sn = b}
As discussed before, {Sn, n ≥ 0} forms a martingale. Since ST = −a or
ST = b, we have

(1).P (ST = −a) + P (ST = b) = 1

Note that
{Gambler A is ruined} = {ST = −a}

Since |ST∧n| ≤ a + b for all n ≥ 1, it follows from the Doob’s theorem that
E[ST ] = E[S0] = 0, which is

(2).E[ST ] = (−a)P (ST = −a) + bP (ST = b) = 0

Solve (1), (2) together to get

P (ST = −a) =
b

a+ b
, P (ST = b) =

a

a+ b

Next we will find the expected number of games E(T ). To this end, define
Yn = S2

n − n, n ≥ 0. Then in example 4.2, we have showed (check) that Yn

is a martingale. So the stopped process YT∧n = S2
T∧n − (T ∧ n) is also a

martingale. Thus we have

E[YT∧n] = E[S2
T∧n]− E[(T ∧ n)] = 0
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This yields by dominated convergence theorem that

E[T ] = lim
n→∞

E[T ∧ n] = lim
n→∞

E[S2
T∧n]

= E(S2
T ) = (−a)2P (ST = −a) + b2P (ST = b)

= a2
b

a+ b
+ b2

a

a+ b
= ab

Example 5.8 Consider a simple random walk {Sn, n ≥ 0} with 0 < S0 =
k < N , for which each step is rightwards with probability 0 < p < 1 and
leftwards with probability q = 1 − p, i.e., Sn = S0 + X1 + ... + Xn with
P (Xi = 1) = p, P (Xi = −1) = q. Assume p ̸= q. Use Doob optional
stopping theorem to find the probability that the random walk hits 0 before
hitting N .

Solution. WriteX1, X2, ...Xn, ... for the independent steps of the walk. Then
S0 = k, Sn = k +X1 + ...+Xn with

P (Xi = 1) = p, P (Xi = −1) = q.

Define Zn = ( q
p
)Sn , n ≥ 0. Then as we have seen before {Zn, n ≥ 0} is a

martingale w.r.t. {Fn = σ(X1, X2, ..., Xn), n ≥ 0}. Let T = min{n;Sn =
0 or Sn = N} be the first time at which the r.w. hits 0 or N . Then ST = 0
means that the random walk hits 0 before reaching N and ST = N implies
that the random walk hits N before reaching 0. Since |Zn∧T | = |( q

p
)Sn∧T | ≤

max1≤l≤N(
q
p
)l = M , by the Doob’s optional theorem,

E[ZT ] = E[Z0] = (
q

p
)k

On the other hand,

E(ZT ) = (
q

p
)0P (ST = 0) + (

q

p
)NP (ST = N)

= P (ST = 0) + (
q

p
)N(1− P (ST = 0))

Thus we have

P (ST = 0) + (
q

p
)N(1− P (ST = 0)) = (

q

p
)k

Solve this equation for P (ST = 0) to get

P (ST = 0) =
( q
p
)k − ( q

p
)N

1− ( q
p
)N
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Example 5.9 Let X1, ..., Xn... be independent, integrable non-negative ran-
dom variables with the same mean E(Xi) = µ. Let T be a stopping time
w.r.t. {Fn = σ(X1, X2, ..., Xn), n ≥ 0}such that E[T ] < ∞. Show that

E[
T∑
i=1

Xi] = E[T ]µ

Solution. Let Y0 = 0, Yn =
∑n

i=1Xi − nµ. Then {Yn, n ≥ 0 is a martin-
gale. Indeed,

E[Yn+1|Fn] = E[
n∑

i=1

Xi − nµ+Xn+1 − µ|Fn]

= E[Yn +Xn+1 − µ|Fn] = Yn + E(Xn+1)− µ = Yn

In particular, the stopped process Yn∧T is also a martingale. This yields that

E[Yn∧T ] = E[
n∧T∑
i=1

Xi − (n ∧ T )µ] = 0

By the monotone convergence theorem we arrive at

E[T ]µ = lim
n→∞

E[(n ∧ T )µ] = lim
n→∞

E[
n∧T∑
i=1

Xi]

= E[
T∑
i=1

Xi]

Example 5.10 If Zn, n ≥ 1 is a martingale w.r.t. {Fn, n ≥ 1}, prove that
|Z|pn, n ≥ 1 is a submartingale for all p ≥ 1.

Solution. Since Zn, n ≥ 1 is a martingale, E[Zn+1|Fn] = Zn. It follows that

|Zn|p = |E[Zn+1|Fn]|p ≤ E[|Zn+1|p|Fn]

Therefore |Z|pn, n ≥ 1 is a submartingale.

Doob’s maximum inequality and martingale convergence theo-
rem

Theorem 5.11 Let X = (Xn, n ≥ 0) be a martingale such that E[|Xn|p] <
∞, n = 0, 1, ... for some p ≥ 1. Then for every N ,

P (max0≤n≤N |Xn| ≥ λ) ≤ E[|XN |p]
λp

and if p > 1

E[max0≤n≤N |Xn|p] ≤ (
p

p− 1
)pE[|XN |p]
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Proof. Let
T = inf{n; |Xn| ≥ λ} ∧N

T is a bounded stopping time. Since |Xn|p, n ≥ 1 is a submartingale, we
particularly have E[|XT |p] ≤ E[|XN |p]. Note that

{max0≤n≤N |Xn| ≥ λ} ⊂ {|XT | ≥ λ}

and
{max0≤n≤N |Xn| < λ} ⊂ {T = N}

We have

E[|XN |p] ≥ E[|XT |p] =
∫
{max0≤n≤N |Xn|≥λ}

|XT |pdP+

∫
{max0≤n≤N |Xn|<λ}

|XT |pdP

≥ λpP (max0≤n≤N |Xn| ≥ λ)

This immediately gives

P (max0≤n≤N |Xn| ≥ λ) ≤ E[|XN |p]
λp

For a real-valued (Fn)-adapted process (Xn)n≥0 and an interval [a, b],
define a sequence of stopping times τn as follows

τ1 = min{n;Xn ≤ a},

τ2 = min{n ≥ τ1;Xn ≥ b},

...

τ2k+1 = min{n ≥ τ2k;Xn ≤ a},

τ2k+2 = min{n ≥ τ2k+1;Xn ≥ b},

...

We set
UX
N (a, b)(ω) = max{k; τ2k(ω) ≤ N}.

Then UX
N (a, b) is the number of upcrossings of (Xn)

N
n=0 for the interval [a, b].

Theorem 5.12 Let (Xn) be a supermartingale. We have

P (UX
N (a, b) > j) ≤ 1

b− a

∫
{UX

N (a,b)=j}
(XN − a)−dP, (5.1)

E[UX
N (a, b)] ≤ 1

b− a
E[(XN − a)−]. (5.2)
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Proof. We can assume that the process is stopped at N and also a = 0.
Otherwise consider the process (Xn∧N − a). Set

S = τ2j+1 ∧ (N + 1), T = τ2(j+1) ∧ (N + 1)

Then {S ≤ N} = {τ2j+1 ≤ N}, and XS = Xτ2j+1
≤ 0 on {S ≤ N}. Note

that {τ2j+2 ≤ N} is the event that that the process (Xn)
N
n=0 has at least j+1

upcrossings for the interval [a, b]. Hence, we have

{UX
N (0, b) > j} = {τ2j+2 ≤ N} = {S < N,XT ≥ b}

{S < N,XT < b} = {S < N, T = N + 1} ⊂ {UX
N (0, b) = j}

Thus,

bP (UX
N (0, b) > j) =

∫
{UX

N (0,b)>j}
bdP =

∫
{S<N,XT≥b}

bdP

≤
∫
{S<N,XT≥b}

XTdP =

∫
{S<N}

XTdP −
∫
{S<N,XT<b}

XTdP

≤
∫
{S<N}

XSdP−
∫
{S<N,T=N+1}

XTdP ≤ 0−
∫
{S<N,T=N+1}

XN+1dP = −
∫
{S<N,T=N+1}

XNdP

≤
∫
{S<N,T=N+1}

X−
NdP ≤

∫
{UX

N (0,b)=j}
X−

NdP

Adding the above inequality from j = 0 to ∞ we obtain

E[UX
N (0, b)] ≤ 1

b
E[(XN)

−]. (5.3)

Theorem 5.13 Let X = (Xn, n ≥ 0) be a martingale such that supn E[|Xn|p] <
∞, n = 0, 1, ... for some p ≥ 1. Then

X(ω) = lim
n→∞

Xn(ω)

almost surely.

Proof. For a < b, set

UX(a, b) = lim
N→∞

UX
N (a, b).

UX(a, b) is the number of upcrossings of the process (Xn)n≥0. By Theorem,
we have

E[UX(a, b)] ≤ lim
N→∞

E[UX
N (a, b)] ≤ sup

N
E[(XN − a)−] < ∞

This yields that P (Wa,b) = 0, where Wa,b = {UX(a, b) = ∞}. Set

Va,b = {lim inf
n→∞

Xn < a, lim sup
n→∞

Xn > b}

11



Then Va,b ⊂ Wa,b, and hence P (Va,b) = 0. Since

{lim inf
n→∞

Xn < lim sup
n→∞

Xn} = ∪a<b,a,b∈QVa,b,

where Q denotes the set of rational numbers, we deduce that

P ({lim inf
n→∞

Xn < lim sup
n→∞

Xn}) = 0

Hence
P ({ lim

n→∞
Xn exists }) = 1.

Example 5.14 Let {Fn, n ≥ 0} be a sequence of increasing σ-fields. Let Z
be an integrable random variable. Set Xn = E[Z|Fn], n ≥ 0. Explain why the
limit

X = lim
n→∞

Xn

exists.

Solution. We knew from previous examples that Xn, n ≥ 0 is a martingale.
Moreover, we have

sup
n

E[|Xn|] ≤ sup
n

E[E[|Z||Fn]] = E[|Z|] < ∞

By Theorem 4.11, X = limn→∞ Xn exists.

Example 5.15 Let X1, X2, ..., Xn, ... be independent random variables with
E[Xi] = µi, V ar(Xi) = σ2

i . If
∑∞

i=1 µi < ∞ and
∑∞

i=1 σ
2
i < ∞, show∑∞

i=1Xi(ω) converges almost surely.

Solution. Set Yn =
∑n

i=1(Xi − µi), Fn = σ(X1, X2, ..., Xn). It is easy to
verify that Yn, n ≥ 1 is a martingale. Furthermore,

sup
n

E[Y 2
n ] = sup

n

n∑
i=1

E[(Xi − µi)
2] =

∞∑
i=1

σ2
i < ∞

It follows from the martingale convergence theorem that

lim
n→∞

Yn = lim
n→∞

n∑
i=1

(Xi − µi)

exists. Since by assumption,

lim
n→∞

n∑
i=1

µi

exists, we conclude that

∞∑
i=1

Xi(ω) = lim
n→∞

n∑
i=1

Xi

exists.
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