Martingale Theory for Finance

Tusheng Zhang
October 27, 2015

1 Introduction

2 Probability spaces and σ-fields

3 Integration with respect to a probability measure.

4 Conditional expectation.

5 Martingales.

For a family $\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ of random variables, denote by $\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ the smallest σ-field containing the events of the form $\left\{\omega ; a<X_{k}(\omega)<b\right\}, k=$ $1, \ldots, n$ for all choices of $a, b, \sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is called the σ-field generated by $X_{1}, X_{2}, \ldots, X_{n}$. Random variables determined by $\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are functions of $X_{1}, X_{2}, \ldots, X_{n}$. To introduce the notion of martingales we begin with an example. Consider a series of games decided by the tosses of a coin, in which we either win $£ 1$ with probability p or lose $£ 1$ with probability $q=1-p$ in each round. Let X_{i} denote the net gain in the $i-t h$ round. Then $X_{i}, i=1,2, \ldots$ are independent random variables with

$$
P\left(X_{i}=1\right)=p, \quad P\left(X_{i}=-1\right)=q
$$

and so $E\left(X_{i}\right)=p-q$.
Our total net gain (possibly negative) after the $n-t h$ round is given by $S_{0}=0$ and

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n=1,2, \ldots
$$

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ denote the σ-field generated by $X_{1}, X_{2}, \ldots X_{n}$. The $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ and \mathcal{F}_{n} can be regarded as the history of the games up to time n (the n-th round). Let us now compute the average gain after the $n+1$-th round given the history up to time n. We have

$$
\begin{gathered}
E\left[S_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[S_{n}+X_{n+1} \mid \mathcal{F}_{n}\right]
\end{gathered}
$$

$$
\begin{gathered}
=E\left[S_{n} \mid \mathcal{F}_{n}\right]+E\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
=S_{n}+E\left[X_{n+1}\right],
\end{gathered}
$$

where we used the fact that $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ is determined by \mathcal{F}_{n} and X_{n+1} is independent of \mathcal{F}_{n}. Thus,

$$
\begin{gathered}
E\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+p-q \\
= \begin{cases}S_{n} & \text { if the game is fair, i.e. } p=q=\frac{1}{2} \\
>S_{n}, & \text { if } p>q, \\
<S_{n}, & \text { if } p<q .\end{cases}
\end{gathered}
$$

In the first case, the game is fair, $\left\{S_{n}, n \geq 0\right\}$ is called a martingale. It is called a submartingale in the second case and a supermartingale in the third case.

Definition 5.1 A sequence of random variables $Z_{0}, Z_{1}, Z_{2}, \ldots Z_{n}, \ldots$ is said to be a martingale (submartingale, or supermartingale) with respect to an increasing sequence $\mathcal{F}_{0} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \cdots$ of σ-fields if
(i) Z_{n} is determined by \mathcal{F}_{n},
(ii) Z_{n} is integrable, i.e., $E\left[\left|Z_{n}\right|\right]<\infty$,
(iii) $E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n} .\left(E\left[Z_{n+1} \mid \mathcal{F}_{n}\right] \geq Z_{n}, E\left[Z_{n+1} \mid \mathcal{F}_{n}\right] \leq Z_{n}\right)$

Remarks. 1. The notion of martingales is a mathematical formulation for fair games.
2.The typical choice of \mathcal{F}_{n} is $\mathcal{F}_{n}=\sigma\left(Z_{1}, Z_{2}, \ldots Z_{n}\right)$, the σ-field generated by $Z_{1}, Z_{2}, \ldots, Z_{n}$.
3. If $Z_{n}, n \geq 0$ is a martingale, then

$$
E\left[Z_{n}\right]=E\left[E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]\right]=E\left[Z_{n+1}\right]
$$

The expectation remains constant for all $n \geq 1$.
4. If $Z_{n}, n \geq 0$ is a martingale, then we have

$$
\begin{gathered}
E\left[Z_{n+2} \mid \mathcal{F}_{n}\right]=E\left[E\left[Z_{n+2} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_{n}\right] \\
=\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n}
\end{gathered}
$$

More generally, it holds that for any $m>n, E\left[Z_{m} \mid \mathcal{F}_{n}\right]=Z_{n}$.

Examples.

(1). If $X_{0}, X_{1}, X_{2}, \ldots X_{n}, \ldots$ are independent, integrable random variables with $E\left[X_{i}\right]=0$ for all i, then $S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1, S_{0}=0$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots X_{n}\right)$

Since S_{n} is a function of $X_{0}, X_{1}, X_{2}, \ldots X_{n}$, it is \mathcal{F}_{n}-determined. We are left to check the third condition (iii). In fact,

$$
E\left[S_{n+1} \mid \mathcal{F}_{n}\right]
$$

$$
\begin{gathered}
=E\left[S_{n}+X_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[S_{n} \mid \mathcal{F}_{n}\right]+E\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
=S_{n}+E\left[X_{n+1}\right]=S_{n}
\end{gathered}
$$

So (iii) is true and $S_{n}, n \geq 0$ is a martingale.
(2). Let Y be an integrable r.v. and $\left\{\mathcal{F}_{n}, n \geq 1\right\}$ be a sequence of increasing σ-fields. Define $Z_{n}=E\left[Y \mid \mathcal{F}_{n}\right], n \geq 1$. Then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$. We need to show that $\left\{Z_{n}, n \geq 1\right\}$ satisfies the definition of a martingale. By the definition of the conditional expectation, Z_{n} is \mathcal{F}_{n}-determined. For (ii), we notice that

$$
\left|Z_{n}\right| \leq E\left[|Y| \mid \mathcal{F}_{n}\right]
$$

Hence $E\left[\left|Z_{n}\right|\right] \leq E[|Y|]$. Let us now check (iii). By the property of the conditional expectation,

$$
\left.E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[E\left[Y \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_{n}\right]\right]=E\left[Y \mid \mathcal{F}_{n}\right]=Z_{n}
$$

This proves (iii).
(3). If $Y_{1}, Y_{2}, \ldots Y_{n}, \ldots$ are independent, integrable r.v.'s with $a_{i}=E\left(Y_{i}\right) \neq$ 0 for all i, then

$$
Z_{n}=\frac{Y_{1} Y_{2} \ldots Y_{n}}{a_{1} a_{2} \ldots a_{n}}, \quad n=1,2, \ldots
$$

is a martingale w.r.t. $\mathcal{F}_{n}=\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right), n \geq 1$
Since Z_{n} is a function of $Y_{1}, Y_{2}, \ldots, Y_{n}, Z_{n}$ is determined by $\mathcal{F}_{n} . Z_{n}$ is integrable because Y_{i} are integrable and independent. We now check (iii). We have

$$
\begin{gathered}
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\left.\frac{Y_{1} Y_{2} \ldots Y_{n} Y_{n+1}}{a_{1} a_{2} \ldots a_{n} a_{n+1}} \right\rvert\, \mathcal{F}_{n}\right] \\
=\frac{Y_{1} Y_{2} \ldots Y_{n}}{a_{1} a_{2} \ldots a_{n}} E\left[\left.\frac{Y_{n+1}}{a_{n+1}} \right\rvert\, \mathcal{F}_{n}\right] \\
=\frac{Y_{1} Y_{2} \ldots Y_{n}}{a_{1} a_{2} \ldots a_{n}} E\left[\frac{Y_{n+1}}{a_{n+1}}\right]=\frac{Y_{1} Y_{2} \ldots Y_{n}}{a_{1} a_{2} \ldots a_{n}}=Z_{n}
\end{gathered}
$$

Example 5.2 Let $\left\{S_{n}\right\}_{n \geq 0}$ be the net gain process in a series of fair games. Then $S_{0}=0, S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1$, and $P\left(X_{i}=1\right)=\frac{1}{2}$, $P\left(X_{i}=-1\right)=\frac{1}{2}$. We already know that $\left\{S_{n}\right\}_{n \geq 0}$ is a martingale w.r.t. $\mathcal{F}_{n}=\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right), n \geq 1$. Prove that $\left\{Y_{n}=\bar{S}_{n}^{2}-n, n \geq 0\right\}$ is also a martingale w.r.t. $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$.

Proof. Since Y_{n} is a function of $X_{1}, X_{2}, \ldots, X_{n}, Y_{n}$ is \mathcal{F}_{n}-measurable. As $\left|Y_{n}\right| \leq n+n^{2}, Y_{n}$ is integrable. It remains to show that $E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n}$. To this end, writing

$$
Y_{n+1}=S_{n+1}^{2}-(n+1)=\left(S_{n}+X_{n+1}\right)^{2}-(n+1)
$$

$$
\begin{aligned}
& =S_{n}^{2}-n+2 S_{n} X_{n+1}+X_{n+1}^{2}-1 \\
& =Y_{n}+2 S_{n} X_{n+1}+X_{n+1}^{2}-1,
\end{aligned}
$$

we have

$$
\begin{gathered}
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[Y_{n} \mid \mathcal{F}_{n}\right]+E\left[2 S_{n} X_{n+1} \mid \mathcal{F}_{n}\right] \\
\quad+E\left[X_{n+1}^{2} \mid \mathcal{F}_{n}\right]-1 \\
=Y_{n}+2 S_{n} E\left[X_{n+1} \mid \mathcal{F}_{n}\right]+E\left[X_{n+1}^{2}\right]-1 \\
=Y_{n}+2 S_{n} E\left[X_{n+1}\right]+E\left[X_{n+1}^{2}\right]-1=Y_{n}+0+1-1=Y_{n} .
\end{gathered}
$$

Example 5.3 Let $X_{1}, X_{2}, \ldots, X_{n}, n \geq 1$ be a sequence of independent random variables with $P\left(X_{i}=1\right)=p, P\left(X_{i}=-1\right)=q$. Set $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ and define

$$
Z_{n}=\left(\frac{q}{p}\right)^{S_{n}}, n \geq 1
$$

Show $\left\{Z_{n}, n \geq 1\right\}$ is a martingale w.r.t. $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$.
Proof. Since Z_{n} is a function of $X_{1}, X_{2}, \ldots, X_{n}, Z_{n}$ is \mathcal{F}_{n}-measurable. Since $\left|Z_{n}\right| \leq\left(\frac{q}{p}\right)^{n}+\left(\frac{p}{q}\right)^{n}, Z_{n}$ is integrable. Let us check (iii)

$$
\begin{gathered}
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\left.\left(\frac{q}{p}\right)^{S_{n+1}} \right\rvert\, \mathcal{F}_{n}\right] \\
=E\left[\left.\left(\frac{q}{p}\right)^{S_{n}}\left(\frac{q}{p}\right)^{X_{n+1}} \right\rvert\, \mathcal{F}_{n}\right] \\
=\left(\frac{q}{p}\right)^{S_{n}} E\left[\left.\left(\frac{q}{p}\right)^{X_{n+1}} \right\rvert\, \mathcal{F}_{n}\right] \\
=Z_{n} E\left[\left(\frac{q}{p}\right)^{X_{n+1}}\right] \\
=Z_{n}\left\{\left(\frac{q}{p}\right) P\left(X_{n+1}=1\right)+\left(\frac{q}{p}\right)^{-1} P\left(X_{n+1}=-1\right)\right\} \\
=Z_{n}\left\{\left(\frac{q}{p}\right) p+\left(\frac{q}{p}\right)^{-1} q\right\}=Z_{n}(p+q)=Z_{n} .
\end{gathered}
$$

Stopping times

Suppose we play a series of games by tossing a fair coin. As we know, the net gain at time $n S_{n}, n \geq 1$ is a martingale. If we quit at a fixed time n, then $E\left(S_{n}\right)=0$. It is not very exciting. However, we can stop playing as soon as our net gain reaches 100 . This amounts to saying that we will stop at the random time

$$
T=\min \left\{n ; S_{n}=100\right\}
$$

Such random times are called stopping times. Here is the definition.

Definition 5.4 Let $\left\{\mathcal{F}_{n}, n \geq 1\right\}$ be an increasing sequence of σ-fields. A random variable $T(\omega)$ taking values in the set $\{0,1,2,3, \ldots \infty\}$ is called a stopping time (or optional time) w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$ if for every n, $\{T \leq$ $n\} \in \mathcal{F}_{n}$.

Example 5.5 Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1$ be the net gain process in a series of games. Set $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$. Define

$$
T=\min \left\{n ; S_{n}=100\right\}
$$

Then T is a stopping time w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$.
In fact, for every n,

$$
\{T \leq n\}=\cup_{k=1}^{n}\left\{S_{k}=100\right\} \in \mathcal{F}_{n}
$$

Stopped processes

Let T be a stopping time. Let $Z_{n}, n \geq 1$ be a sequence of random variables. Set $T \wedge n=\min (T, n))$. Define

$$
\hat{Z}_{n}=Z_{T \wedge n}= \begin{cases}Z_{n} & \text { if } n \leq T(\omega), \\ Z_{T(\omega)} & \text { if } n>T(\omega) .\end{cases}
$$

$Z_{T \wedge n}, n \geq 1$ is the stopped process of Z at the stoping time T.
Theorem 5.6 If $Z_{0}, Z_{1}, \ldots, Z_{n}$.. is a martingale w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$, then the stopped process $Y_{n}=Z_{T \wedge n}$ is also a martingale w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$. In particular, $E\left[Z_{T \wedge n}\right]=E\left[Z_{0}\right]$.

Proof. Observe that

$$
\begin{gathered}
Y_{n+1}=Z_{T \wedge(n+1)}=Z_{T \wedge n}+I_{\{T \geq n+1\}}\left(Z_{n+1}-Z_{n}\right) \\
=Y_{n}+I_{\{T \geq n+1\}}\left(Z_{n+1}-Z_{n}\right)
\end{gathered}
$$

In fact, if $T \leq n$, the left is equal to the right, which is Z_{T}. While if $T \geq n+1$, then the left is also equal to the right, which is Z_{n+1}. Thus we have

$$
\begin{gathered}
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[Y_{n}+I_{\{T \geq n+1\}}\left(Z_{n+1}-Z_{n}\right) \mid \mathcal{F}_{n}\right]
\end{gathered}
$$

Since $\{T \geq n+1\}=(\{T \leq n\})^{c} \in \mathcal{F}_{n}$, it follows that

$$
\begin{gathered}
E\left[Y_{n}+I_{\{T \geq n+1\}}\left(Z_{n+1}-Z_{n}\right) \mid \mathcal{F}_{n}\right] \\
=Y_{n}+I_{\{T \geq n+1\}} E\left[\left(Z_{n+1}-Z_{n}\right) \mid \mathcal{F}_{n}\right] \\
=Y_{n}+0
\end{gathered}
$$

which completes the proof.
If $Z_{n}, n \geq 0$ is a martingale, then we know that $E\left[Z_{n}\right]=E\left[Z_{n-1}\right]=$ $\ldots E\left[Z_{0}\right]$. Now the question is what will happen if the deterministic time n is replaced by a stopping time T. Namely, will $E\left[Z_{T}\right]=E\left[Z_{0}\right]$ be still true? Before answering the question, let us look at one example. Let $S_{n}, n \geq 0$ denote the capital gain in a series of fair games. Define $T=\min \left\{n ; S_{n}=10\right\}$, for example, the time at which the capital reaches 10 . Then $E\left[S_{T}\right]=E[10]=$ $10 \neq E\left[S_{0}\right]=0$. But the following theorem holds.

Theorem 5.7 (Doob's optional stopping theorem). Let Z_{0}, Z_{1}, \ldots be a martingale and T an almost surely finite stopping time. In each of the following three cases, we have $E\left[Z_{T}\right]=E\left[Z_{0}\right]$.

Case (i). T is bounded, i.e., there is an integer m such that $T(\omega) \leq m$.
Case (ii). The sequence $Z_{T \wedge n}, n \geq 0$ is bounded in the sense that there is a constant K such that

$$
\left|Z_{T \wedge n}\right| \leq K
$$

for all n.
Case (iii): $E[T]<\infty$ and the step $Z_{n}-Z_{n-1}$ are bounded, i.e., there is a constant C such that $\left|Z_{n}-Z_{n-1}\right| \leq C$ for all n.

Proof. The proof is an application of the dominated convergence theorem. First of all, we note that $Z_{T \wedge n} \rightarrow Z_{T}$ as $n \rightarrow \infty$. Since the stopped process $Z_{T \wedge n}$ is a martingale, we always have

$$
E\left[Z_{T \wedge n}\right]=E\left[Z_{0}\right]
$$

Case (i): Since $T \leq m$, we have $T \wedge m=T$ and so

$$
E\left[Z_{T}\right]=E\left[Z_{T \wedge m}\right]=E\left[Z_{0}\right]
$$

Case (ii). Since $\left|Z_{T \wedge n}\right| \leq K$ is bounded for all n, it follows from the dominated convergence theorem that

$$
E\left[Z_{T}\right]=\lim _{n \rightarrow \infty} E\left[Z_{T \wedge n}\right]=E\left[Z_{0}\right]
$$

Case (iii): Write

$$
\begin{gathered}
Z_{T \wedge n}=Z_{T \wedge n}-Z_{T \wedge n-1}+Z_{T \wedge n-1}-Z_{T \wedge n-2} \\
\cdots+Z_{3}-Z_{2}+Z_{2}-Z_{1}+Z_{1}-Z_{0}+Z_{0}
\end{gathered}
$$

Consequently,

$$
\begin{gathered}
\left|Z_{T \wedge n}\right| \leq\left|Z_{T \wedge n}-Z_{T \wedge n-1}\right|+\left|Z_{T \wedge n-1}-Z_{T \wedge n-2}\right| \\
\cdots+\left|Z_{3}-Z_{2}\right|+\left|Z_{2}-Z_{1}\right|+\left|Z_{1}-Z_{0}\right|+\left|Z_{0}\right|
\end{gathered}
$$

$$
\leq C+C+\cdots+C+\left|Z_{0}\right| \leq(T \wedge n) C+\left|Z_{0}\right| \leq C T+\left|Z_{0}\right|
$$

By virtue of the dominated convergence theorem, we have

$$
E\left[Z_{T}\right]=\lim _{n \rightarrow \infty} E\left[Z_{T \wedge n}\right]=E\left[Z_{0}\right]
$$

Application of Doob's optimal stopping theorem: Gambler's ruin problem

Gambler A and B play a series of games against each other in which a fair coin is tossed repeatedly. In each game gambler A wins or loses $£ 1$ according as the toss results in a head or a tail respectively. The initial capital of gambler A is $£ a$ and that of gambler B is $£ b$ and they continue playing until one of them is ruined. Determine the probability that A will be ruined and also the expected number of games played.

Let \hat{S}_{n} be the fortune of gambler A after the n-th game. Then

$$
\hat{S}_{n}=a+X_{1}+X_{2}+\cdots+X_{n}=a+S_{n}
$$

where $X_{i}, i=1,2 \ldots$ are independent r.v.'s with $P\left(X_{i}=1\right)=\frac{1}{2}, P\left(X_{i}=\right.$ $-1)=\frac{1}{2}$. The game will stop at the time the gambler A or B is ruined, i.e., the game stop at

$$
\begin{aligned}
T & =\min \left\{n ; \hat{S}_{n}=0 \quad \text { or } \quad \hat{S}_{n}=a+b\right\} \\
& =\min \left\{n ; S_{n}=-a \quad \text { or } \quad S_{n}=b\right\}
\end{aligned}
$$

As discussed before, $\left\{S_{n}, n \geq 0\right\}$ forms a martingale. Since $S_{T}=-a$ or $S_{T}=b$, we have

$$
\text { (1). } P\left(S_{T}=-a\right)+P\left(S_{T}=b\right)=1
$$

Note that

$$
\{\text { Gambler } A \text { is ruined }\}=\left\{S_{T}=-a\right\}
$$

Since $\left|S_{T \wedge n}\right| \leq a+b$ for all $n \geq 1$, it follows from the Doob's theorem that $E\left[S_{T}\right]=E\left[S_{0}\right]=0$, which is

$$
\text { (2). } E\left[S_{T}\right]=(-a) P\left(S_{T}=-a\right)+b P\left(S_{T}=b\right)=0
$$

Solve (1), (2) together to get

$$
P\left(S_{T}=-a\right)=\frac{b}{a+b}, \quad P\left(S_{T}=b\right)=\frac{a}{a+b}
$$

Next we will find the expected number of games $E(T)$. To this end, define $Y_{n}=S_{n}^{2}-n, n \geq 0$. Then in example 4.2, we have showed (check) that Y_{n} is a martingale. So the stopped process $Y_{T \wedge n}=S_{T \wedge n}^{2}-(T \wedge n)$ is also a martingale. Thus we have

$$
E\left[Y_{T \wedge n}\right]=E\left[S_{T \wedge n}^{2}\right]-E[(T \wedge n)]=0
$$

This yields by dominated convergence theorem that

$$
\begin{aligned}
E[T] & =\lim _{n \rightarrow \infty} E[T \wedge n]=\lim _{n \rightarrow \infty} E\left[S_{T \wedge n}^{2}\right] \\
=E\left(S_{T}^{2}\right) & =(-a)^{2} P\left(S_{T}=-a\right)+b^{2} P\left(S_{T}=b\right) \\
& =a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=a b
\end{aligned}
$$

Example 5.8 Consider a simple random walk $\left\{S_{n}, n \geq 0\right\}$ with $0<S_{0}=$ $k<N$, for which each step is rightwards with probability $0<p<1$ and leftwards with probability $q=1-p$, i.e., $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ with $P\left(X_{i}=1\right)=p, \quad P\left(X_{i}=-1\right)=q$. Assume $p \neq q$. Use Doob optional stopping theorem to find the probability that the random walk hits 0 before hitting N.

Solution. Write $X_{1}, X_{2}, \ldots X_{n}, \ldots$ for the independent steps of the walk. Then $S_{0}=k, S_{n}=k+X_{1}+\ldots+X_{n}$ with

$$
P\left(X_{i}=1\right)=p, \quad P\left(X_{i}=-1\right)=q .
$$

Define $Z_{n}=\left(\frac{q}{p}\right)^{S_{n}}, n \geq 0$. Then as we have seen before $\left\{Z_{n}, n \geq 0\right\}$ is a martingale w.r.t. $\left\{\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 0\right\}$. Let $T=\min \left\{n ; S_{n}=\right.$ 0 or $\left.S_{n}=N\right\}$ be the first time at which the r.w. hits 0 or N. Then $S_{T}=0$ means that the random walk hits 0 before reaching N and $S_{T}=N$ implies that the random walk hits N before reaching 0 . Since $\left|Z_{n \wedge T}\right|=\left|\left(\frac{q}{p}\right)^{S_{n \wedge T}}\right| \leq$ $\max _{1 \leq l \leq N}\left(\frac{q}{p}\right)^{l}=M$, by the Doob's optional theorem,

$$
E\left[Z_{T}\right]=E\left[Z_{0}\right]=\left(\frac{q}{p}\right)^{k}
$$

On the other hand,

$$
\begin{gathered}
E\left(Z_{T}\right)=\left(\frac{q}{p}\right)^{0} P\left(S_{T}=0\right)+\left(\frac{q}{p}\right)^{N} P\left(S_{T}=N\right) \\
=P\left(S_{T}=0\right)+\left(\frac{q}{p}\right)^{N}\left(1-P\left(S_{T}=0\right)\right)
\end{gathered}
$$

Thus we have

$$
P\left(S_{T}=0\right)+\left(\frac{q}{p}\right)^{N}\left(1-P\left(S_{T}=0\right)\right)=\left(\frac{q}{p}\right)^{k}
$$

Solve this equation for $P\left(S_{T}=0\right)$ to get

$$
P\left(S_{T}=0\right)=\frac{\left(\frac{q}{p}\right)^{k}-\left(\frac{q}{p}\right)^{N}}{1-\left(\frac{q}{p}\right)^{N}}
$$

Example 5.9 Let $X_{1}, \ldots, X_{n} \ldots$ be independent, integrable non-negative random variables with the same mean $E\left(X_{i}\right)=\mu$. Let T be a stopping time w.r.t. $\left\{\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 0\right\}$ such that $E[T]<\infty$. Show that

$$
E\left[\sum_{i=1}^{T} X_{i}\right]=E[T] \mu
$$

Solution. Let $Y_{0}=0, \quad Y_{n}=\sum_{i=1}^{n} X_{i}-n \mu$. Then $\left\{Y_{n}, n \geq 0\right.$ is a martingale. Indeed,

$$
\begin{gathered}
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\sum_{i=1}^{n} X_{i}-n \mu+X_{n+1}-\mu \mid \mathcal{F}_{n}\right] \\
=E\left[Y_{n}+X_{n+1}-\mu \mid \mathcal{F}_{n}\right]=Y_{n}+E\left(X_{n+1}\right)-\mu=Y_{n}
\end{gathered}
$$

In particular, the stopped process $Y_{n \wedge T}$ is also a martingale. This yields that

$$
E\left[Y_{n \wedge T}\right]=E\left[\sum_{i=1}^{n \wedge T} X_{i}-(n \wedge T) \mu\right]=0
$$

By the monotone convergence theorem we arrive at

$$
\begin{gathered}
E[T] \mu=\lim _{n \rightarrow \infty} E[(n \wedge T) \mu]=\lim _{n \rightarrow \infty} E\left[\sum_{i=1}^{n \wedge T} X_{i}\right] \\
=E\left[\sum_{i=1}^{T} X_{i}\right]
\end{gathered}
$$

Example 5.10 If $Z_{n}, n \geq 1$ is a martingale w.r.t. $\left\{\mathcal{F}_{n}, n \geq 1\right\}$, prove that $|Z|_{n}^{p}, n \geq 1$ is a submartingale for all $p \geq 1$.

Solution. Since $Z_{n}, n \geq 1$ is a martingale, $E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n}$. It follows that

$$
\left|Z_{n}\right|^{p}=\left|E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]\right|^{p} \leq E\left[\left|Z_{n+1}\right|^{p} \mid \mathcal{F}_{n}\right]
$$

Therefore $|Z|_{n}^{p}, n \geq 1$ is a submartingale.
Doob's maximum inequality and martingale convergence theorem

Theorem 5.11 Let $X=\left(X_{n}, n \geq 0\right)$ be a martingale such that $E\left[\left|X_{n}\right|^{p}\right]<$ $\infty, n=0,1, \ldots$ for some $p \geq 1$. Then for every N,

$$
P\left(\max _{0 \leq n \leq N}\left|X_{n}\right| \geq \lambda\right) \leq \frac{E\left[\left|X_{N}\right|^{p}\right]}{\lambda^{p}}
$$

and if $p>1$

$$
E\left[\max _{0 \leq n \leq N}\left|X_{n}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} E\left[\left|X_{N}\right|^{p}\right]
$$

Proof. Let

$$
T=\inf \left\{n ;\left|X_{n}\right| \geq \lambda\right\} \wedge N
$$

T is a bounded stopping time. Since $\left|X_{n}\right|^{p}, n \geq 1$ is a submartingale, we particularly have $E\left[\left|X_{T}\right|^{p}\right] \leq E\left[\left|X_{N}\right|^{p}\right]$. Note that

$$
\left\{\max _{0 \leq n \leq N}\left|X_{n}\right| \geq \lambda\right\} \subset\left\{\left|X_{T}\right| \geq \lambda\right\}
$$

and

$$
\left\{\max _{0 \leq n \leq N}\left|X_{n}\right|<\lambda\right\} \subset\{T=N\}
$$

We have

$$
\begin{aligned}
E\left[\left|X_{N}\right|^{p}\right] \geq E\left[\left|X_{T}\right|^{p}\right]= & \int_{\left\{\max _{0 \leq n \leq N}\left|X_{n}\right| \geq \lambda\right\}}\left|X_{T}\right|^{p} d P+\int_{\left\{\max _{0 \leq n \leq N}\left|X_{n}\right|<\lambda\right\}}\left|X_{T}\right|^{p} d P \\
& \geq \lambda^{p} P\left(\max _{0 \leq n \leq N}\left|X_{n}\right| \geq \lambda\right)
\end{aligned}
$$

This immediately gives

$$
P\left(\max _{0 \leq n \leq N}\left|X_{n}\right| \geq \lambda\right) \leq \frac{E\left[\left|X_{N}\right|^{p}\right]}{\lambda^{p}}
$$

For a real-valued $\left(\mathcal{F}_{n}\right)$-adapted process $\left(X_{n}\right)_{n \geq 0}$ and an interval $[a, b]$, define a sequence of stopping times τ_{n} as follows

$$
\begin{gathered}
\tau_{1}=\min \left\{n ; X_{n} \leq a\right\} \\
\tau_{2}=\min \left\{n \geq \tau_{1} ; X_{n} \geq b\right\} \\
\ldots \\
\tau_{2 k+1}=\min \left\{n \geq \tau_{2 k} ; X_{n} \leq a\right\} \\
\tau_{2 k+2}=\min \left\{n \geq \tau_{2 k+1} ; X_{n} \geq b\right\},
\end{gathered}
$$

We set

$$
U_{N}^{X}(a, b)(\omega)=\max \left\{k ; \tau_{2 k}(\omega) \leq N\right\} .
$$

Then $U_{N}^{X}(a, b)$ is the number of upcrossings of $\left(X_{n}\right)_{n=0}^{N}$ for the interval $[a, b]$.
Theorem 5.12 Let $\left(X_{n}\right)$ be a supermartingale. We have

$$
\begin{gather*}
P\left(U_{N}^{X}(a, b)>j\right) \leq \frac{1}{b-a} \int_{\left\{U_{N}^{X}(a, b)=j\right\}}\left(X_{N}-a\right)^{-} d P, \tag{5.1}\\
E\left[U_{N}^{X}(a, b)\right] \leq \frac{1}{b-a} E\left[\left(X_{N}-a\right)^{-}\right] \tag{5.2}
\end{gather*}
$$

Proof. We can assume that the process is stopped at N and also $a=0$. Otherwise consider the process $\left(X_{n \wedge N}-a\right)$. Set

$$
S=\tau_{2 j+1} \wedge(N+1), \quad T=\tau_{2(j+1)} \wedge(N+1)
$$

Then $\{S \leq N\}=\left\{\tau_{2 j+1} \leq N\right\}$, and $X_{S}=X_{\tau_{2 j+1}} \leq 0$ on $\{S \leq N\}$. Note that $\left\{\tau_{2 j+2} \leq N\right\}$ is the event that that the process $\left(X_{n}\right)_{n=0}^{N}$ has at least $j+1$ upcrossings for the interval $[a, b]$. Hence, we have

$$
\begin{gathered}
\left\{U_{N}^{X}(0, b)>j\right\}=\left\{\tau_{2 j+2} \leq N\right\}=\left\{S<N, X_{T} \geq b\right\} \\
\left\{S<N, X_{T}<b\right\}=\{S<N, T=N+1\} \subset\left\{U_{N}^{X}(0, b)=j\right\}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
b P\left(U_{N}^{X}(0, b)>j\right)=\int_{\left\{U_{N}^{X}(0, b)>j\right\}} b d P=\int_{\left\{S<N, X_{T} \geq b\right\}} b d P \\
\leq \int_{\left\{S<N, X_{T} \geq b\right\}} X_{T} d P=\int_{\{S<N\}} X_{T} d P-\int_{\left\{S<N, X_{T}<b\right\}} X_{T} d P \\
\leq \int_{\{S<N\}} X_{S} d P-\int_{\{S<N, T=N+1\}} X_{T} d P \leq 0-\int_{\{S<N, T=N+1\}} X_{N+1} d P=-\int_{\{S<N, T=N+1\}} X_{N} d P \\
\leq \int_{\{S<N, T=N+1\}} X_{N}^{-} d P \leq \int_{\left\{U_{N}^{X}(0, b)=j\right\}} X_{N}^{-} d P
\end{gathered}
$$

Adding the above inequality from $j=0$ to ∞ we obtain

$$
\begin{equation*}
E\left[U_{N}^{X}(0, b)\right] \leq \frac{1}{b} E\left[\left(X_{N}\right)^{-}\right] \tag{5.3}
\end{equation*}
$$

Theorem 5.13 Let $X=\left(X_{n}, n \geq 0\right)$ be a martingale such that $\sup _{n} E\left[\left|X_{n}\right|^{p}\right]<$ $\infty, n=0,1, \ldots$ for some $p \geq 1$. Then

$$
X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)
$$

almost surely.
Proof. For $a<b$, set

$$
U^{X}(a, b)=\lim _{N \rightarrow \infty} U_{N}^{X}(a, b)
$$

$U^{X}(a, b)$ is the number of upcrossings of the process $\left(X_{n}\right)_{n \geq 0}$. By Theorem, we have

$$
E\left[U^{X}(a, b)\right] \leq \lim _{N \rightarrow \infty} E\left[U_{N}^{X}(a, b)\right] \leq \sup _{N} E\left[\left(X_{N}-a\right)^{-}\right]<\infty
$$

This yields that $P\left(W_{a, b}\right)=0$, where $W_{a, b}=\left\{U^{X}(a, b)=\infty\right\}$. Set

$$
V_{a, b}=\left\{\liminf _{n \rightarrow \infty} X_{n}<a, \limsup _{n \rightarrow \infty} X_{n}>b\right\}
$$

Then $V_{a, b} \subset W_{a, b}$, and hence $P\left(V_{a, b}\right)=0$. Since

$$
\left\{\liminf _{n \rightarrow \infty} X_{n}<\limsup _{n \rightarrow \infty} X_{n}\right\}=\cup_{a<b, a, b \in Q} V_{a, b},
$$

where Q denotes the set of rational numbers, we deduce that

$$
P\left(\left\{\liminf _{n \rightarrow \infty} X_{n}<\limsup _{n \rightarrow \infty} X_{n}\right\}\right)=0
$$

Hence

$$
P\left(\left\{\lim _{n \rightarrow \infty} X_{n} \text { exists }\right\}\right)=1
$$

Example 5.14 Let $\left\{\mathcal{F}_{n}, n \geq 0\right\}$ be a sequence of increasing σ-fields. Let Z be an integrable random variable. Set $X_{n}=E\left[Z \mid \mathcal{F}_{n}\right], n \geq 0$. Explain why the limit

$$
X=\lim _{n \rightarrow \infty} X_{n}
$$

exists.
Solution. We knew from previous examples that $X_{n}, n \geq 0$ is a martingale. Moreover, we have

$$
\sup _{n} E\left[\left|X_{n}\right|\right] \leq \sup _{n} E\left[E\left[|Z| \mid \mathcal{F}_{n}\right]\right]=E[|Z|]<\infty
$$

By Theorem 4.11, $X=\lim _{n \rightarrow \infty} X_{n}$ exists.
Example 5.15 Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be independent random variables with $E\left[X_{i}\right]=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$. If $\sum_{i=1}^{\infty} \mu_{i}<\infty$ and $\sum_{i=1}^{\infty} \sigma_{i}^{2}<\infty$, show $\sum_{i=1}^{\infty} X_{i}(\omega)$ converges almost surely.
Solution. Set $Y_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right), \mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. It is easy to verify that $Y_{n}, n \geq 1$ is a martingale. Furthermore,

$$
\sup _{n} E\left[Y_{n}^{2}\right]=\sup _{n} \sum_{i=1}^{n} E\left[\left(X_{i}-\mu_{i}\right)^{2}\right]=\sum_{i=1}^{\infty} \sigma_{i}^{2}<\infty
$$

It follows from the martingale convergence theorem that

$$
\lim _{n \rightarrow \infty} Y_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)
$$

exists. Since by assumption,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu_{i}
$$

exists, we conclude that

$$
\sum_{i=1}^{\infty} X_{i}(\omega)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}
$$

exists.

