
Martingale Theory for Finance

Tusheng Zhang

September 25, 2015

1 Introduction

In this course, we will introduce the basic theory of martingales, which is a
branch of modern probability and is a part of the mathematical foundations
for the modern theory of finance. We will see later that martingales are
mathematical models for fair games. The course consists of three parts.

1. Probability and Integration.
2. Martingales.
3. Applications in finance.

2 Probability spaces and σ-fields

A probability space is a mathematical model for an experiment involving
random variations. For example, toss a coin. We never know the exact
outcome in advance. More precisely, we have the following definition:

Definition 2.1 A probability space is a triple (Ω,F , P ), where
(a) the set Ω is called the sample space consisting of all possible outcomes

of the random experiment,
(b) F is a collection of events ( subsets of Ω ), called a σ-field, which

satisfies the following properties: (1). Ω ∈ F , (2). if A ∈ F , then Ac ∈ F ,
and (3) if A1, A2, ..., An, ... is a sequence of events belonging to F then

∪∞
n=1An = {ω : ω ∈ An for some n ≥ 1}

and
∩∞

n=1An = {ω : ω ∈ An for all n ≥ 1}
also belong to F .

(c) A probability measure P which assigns to each event A a number P (A)
(the probability of A) in such a way that

(i) 0 ≤ P (A) ≤ 1 for any event A,
(ii) P (Ω) = 1.
(iii) If A1, A2, ..., An, ... is a sequence of disjoint (mutually exclusive )

events, then

P (∪∞
n=1An) =

∞∑
n=1

P (An) = P (A1) + P (A2) + ...
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Example 2.2 Toss a coin two times.

In this case,
Ω = {HH,HT, TT, TH}

F is the collection of all possible subsets of Ω. P (A) is the probability of A.
If A = {HT, TH}, then P (A) = 1

2
.

Example 2.3 Choose a number randomly from the interval [0, 1].

In this case, Ω = [0, 1]. The basic events are intervals [a, b], 0 ≤ a ≤ b ≤ 1.
Choose F so that it contains intervals. For the probability P , we set

P ([a, b]) = length of [a, b] = b− a

This means that the chance that we select a number lying between a and b
is proportional to the length of the interval. The following are some of the
properties of a probability measure.

Proposition 2.4 If B1, B2, ..., Bn, ... is a sequence of events, then

P (∪∞
n=1Bn) ≤

∞∑
n=1

P (Bn)

Proof. Let A1 = B1, A2 = B2 \ B1, A3 = B3 \ (B1 ∪ B2), ..., An = Bn \
(∪n−1

i=1 Bi),... Then, An ⊂ Bn, so P (An) ≤ P (Bn). Moreover, ∪∞
i=1Bi = ∪∞

i=1Ai

and Ai are disjoint. Thus,

P (∪∞
n=1Bn) = P (∪∞

n=1An) =
∞∑
n=1

P (An) ≤
∞∑
n=1

P (Bn).

We write Bn ↑ B if B1 ⊂ B2 ⊂ B3... and B = ∪∞
n=1Bn. Likewise, write

Bn ↓ B if B1 ⊃ B2 ⊃ B3... and B = ∩∞
n=1Bn.

Proposition 2.5 If Bn ↑ B(Bn ↓ B), then P (Bn) ↑ P (B)(P (Bn) ↓ P (B)).

Proof. Assume Bn ↑ B. Introduce A1 = B1, A2 = B2 \ B1, ..., An =
Bn \Bn−1,...Then, Bn = ∪n

k=1Ak and

∪∞
n=1Bn = ∪∞

n=1An = B

Since A′
is are disjoint, we have

P (B) = P (∪∞
n=1Ak) =

∞∑
k=1

P (Ak)

Hence,
n∑

k=1

P (Ak) → P (B)
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But,
n∑

k=1

P (Ak) =
n∑

k=1

[P (Bk)− P (Bk−1)] = P (Bn)

The result follows.

Definition 2.6 A statement is said to be true almost surely if it holds with
probability one (full probability ).

σ-fields.

Definition 2.7

A collection F of events ( subsets of Ω )(information ) is called a σ-field if it
satisfies the following properties:

(1). Ω ∈ F ,
(2). if A ∈ F , then Ac ∈ F ,
(3). if A1, A2, ..., An, ... is a sequence of events belonging to F , then

∪∞
n=1An also belong to F .

Examples.
(i). F = {Ω, ∅} is the smallest σ-field.
(ii). F = {Ω, A,Ac, ∅} is a σ-field for any A ⊂ Ω.
(iii). The collection of all subsets of Ω is the biggest σ-field.

Definition 2.8 For any collection D of subsets of Ω, the smallest σ-field G
that contains D is called the σ-field generated by D.

We write G = σ(D). In fact, G is the intersection of all σ-fields that contain
D.

For example, if G = {A}, then G = σ(D) = {Ω, A,Ac, ∅}.

3 Integration with respect to a probability

measure.

Let (Ω,F , P ) be a probability space. Roughly speaking, random variables
are functions of outcomes.

Definition 3.1 A function X(ω) : Ω → R is said to be F- measurable
(random variable, or F-determined) if the events of the form {ω; a < X(ω) <
b} belong to F for all choices of a, b.

In this section we will define the integral of a random variable X against
a probability measure, denoted by

∫
Ω
X(ω)dP . This will be carried out in

three steps.
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Step1. Integral of a non-negative discrete random variable.

Let X be a non-negative discrete r.v. with values x1, x2, ..., xn, .... Let
Ai = {ω;X(ω) = xi}. Then

X(ω) =
∞∑
i=1

xiIAi
(ω)

Define ∫
Ω

X(ω)dP = E[X] =
∞∑
i=1

xiP (Ai) =
∞∑
i=1

xiP (X = xi) (3.1)∫
Ω
X(ω)dP is called the integral of X with respect to P .

Step 2. Integral of a non-negative random variable. Let X be a non-
negative r.v. We will introduce a sequence of non-negative discrete random
variables Xn that increases to X. For n ≥ 1, set

An,i = {ω; i

2n
≤ X(ω) <

i+ 1

2n
}, i = 0, 1, 2, ...

Then An,i forms a partition of the sample space Ω, i.e.,

Ω = ∪∞
i=0An,i

Define the n-th approximation Xn of X by

Xn(ω) =
i

2n
if ω ∈ An,i, i = 0, 1, ...

so that

X(ω)− 1

2n
≤ X∗

n(ω) ≤ X(ω)

for all n ≥ 1. Thus, for every ω, X∗
n(ω) → X(ω) as n → ∞. Since An,i =

An+1,2i ∪ An+1,2i+1, it holds that for ω ∈ An,i,

X∗
n+1(ω) =

{
2i

2n+1 = X∗
n(ω), if ω ∈ An+1,2i

2i+1
2n+1 > X∗

n(ω), if ω ∈ An+1,2i+1

Hence, X∗
n+1(ω) ≥ X∗

n(ω). Since X∗
n(ω) is discrete, E(X∗

n) =
∫
Ω
X∗

n(ω)dP is
already defined as above. Now we define∫

Ω

X(ω)dP = lim
n→

∫
Ω

X∗
n(ω)dP (3.2)

Note that
∫
Ω
X(ω)dP = ∞ is allowed in the definition.

Step 3. The general case.

In this step, we extend the definition to general random variables which
could take both positive and negative values. The idea is to write a random
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variable as a difference of two non-negative random variables. For a random
variable X(ω), define the positive part of X as

X+(ω) =

{
X(ω), if X(ω) > 0
0, if X(ω) ≤ 0

and the negative part of X similarly as

X−(ω) =

{
−X(ω), if X(ω) < 0
0, if X(ω) ≥ 0

Then it is easy to see that

X(ω) = X+(ω)−X−(ω), |X(ω)| = X+(ω) +X−(ω)

If at least one of
∫
Ω
X+(ω)dP and

∫
Ω
X−(ω)dP is finite, then we define∫

Ω

X(ω)dP =

∫
Ω

X+(ω)dP −
∫
Ω

X−(ω)dP (3.3)

Definition 3.2 X is said to be integrable with respect to P if both
∫
Ω
X+(ω)dP

and
∫
Ω
X−(ω)dP are finite.

It follows immediately that X is integrable if and only if
∫
Ω
|X|(ω)dP < ∞.

For A ∈ F , the indicator is defined as

IA(ω) =

{
1, if ω ∈ A
0, if ω ∈ Ac

From the definition, we have∫
Ω

IA(ω)dP = E(IA) = 0× P (IA = 0) + 1× P (IA = 1) = P (A)

In general, the integral coincides with the expectation.

In the sequel, we will use
∫
A
X(ω)dP to denote the integral of X on the

event A, that is, ∫
A

X(ω)dP =

∫
Ω

X(ω) · IA(ω)dP (3.4)

In the following theorem, we will list some elementary properties of the in-
tegral:

Theorem 3.3 1. If X, Y are integrable, then aX + bY is integrable
and ∫

Ω

{aX(ω) + bY (ω)}dP = a

∫
Ω

X(ω)dP + b

∫
Ω

Y (ω)dP,

where a, b are constants.
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2. |
∫
Ω
X(ω)dP | ≤

∫
Ω
|X|(ω)dP .

3. If X ≥ Y , then
∫
Ω
X(ω)dP ≥

∫
Ω
Y (ω)dP .

4. If X ≥ 0, then
∫
Ω
X(ω)dP ≥ 0 and if moreover

∫
Ω
X(ω)dP = 0,

then X(ω) = 0 almost surely.

5. If |X| ≤ Y and Y is integrable, then X is integrable.

These properties follows directly from the definition.

Question: Suppose Xn(ω) → X(ω) for each ω. Is it true that E[Xn] =∫
Ω
Xn(ω)dP → E[X] =

∫
Ω
X(ω)dP ?

The answer is no in general. Here is an example.

Example 3.4 Let Ω = [0, 1] and P be the generalized length. Define

Xn(t) =

{
n, 1

n
≤ t ≤ 2

n
,

0 otherwise.

Then Xn(t) → X(t) = 0 for every t ∈ [0, 1]. However,∫
Ω

Xn(ω)dP = 1 ̸→
∫
Ω

X(ω)dP = 0

But there are many cases where the question above has a positive answer.
Here are some theorems.

Theorem 3.5 (Monotone Convergence Theorem) Suppose Xn are r.v.’s with
0 ≤ X1(ω) ≤ X2(ω) ≤ X3(ω)... and X(ω) = limn→∞ Xn(ω). Then

lim
n→∞

∫
Ω

Xn(ω)dP =

∫
Ω

X(ω)dP

Example 3.6 Let Ω = [0, 1] and P be the generalized length. Define

Xn(t) = t− cos(t)

1 + 3n2

Then Xn(t) ↑ X(t) = t for every t ∈ [0, 1]. By the Monotone Convergence
Theorem we conclude that∫ 1

0

Xn(t)dt →
∫ 1

0

X(t)dt =
1

2

Theorem 3.7 (Dominated Convergence Theorem) Let Xn are r.v.’s such
that X(ω) = limn→∞ Xn(ω). Suppose there is a fixed integrable r.v. Y such
that |Xn(ω)| ≤ Y (ω) for all n ≥ 1. Then

lim
n→∞

∫
Ω

Xn(ω)dP =

∫
Ω

X(ω)dP
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Example 3.8 Let Ω = [0, 1] and P be the generalized length. Define

Xn(t) = 1− sin(nt)

n

Then Xn(t) → X(t) = 1 for every t ∈ [0, 1]. Furthermore, |Xn(ω)| ≤ 2
for all n ≥ 1 and t ∈ Ω. Applying the Dominated Convergence Theorem we
conclude that ∫ 1

0

Xn(t)dt →
∫ 1

0

X(t)dt = 1

4 Conditional expectation.

Let (Ω,F , P ) be a probability space. Let G be a σ-field( collection of events,
information). Given two events A, B, we know how to define the conditional
probability:

P (A|B) =
P (A ∩B)

P (B)

Now given an integrable random variable X(ω). Next we will define the
conditional expectation of X given G, denoted by E[X|G], which is another
random variable regarded as the best estimate of X based on the information
provided by G.

Definition 4.1 A random variable Y (ω) ia called the conditional expectation
of X given G, written as Y = E[X|G], if

(i) Y is G-measurable (determined by G),
(ii) for any event A ∈ G,

E[Y IA] =

∫
A

Y (ω)dP =

∫
A

X(ω)dP = E[XIA] (4.1)

This means that the two random variables X, Y , have the same average over
any event in G.

The following proposition collects some of the important properties of the
conditional expectation.

Proposition 4.2 (1). E[X1 +X2|G] = E[X1|G] + E[X2|G].
(2).E[cX|G] = cE[X|G].
(3).E[E[X|G]] = E[X].
(4). If Z is a random variable determined by G (G-measurable ), then

E[ZX|G] = ZE[X|G].

In particular,
E[Z|G] = Z.
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(5) If X is independent of G, then

E[X|G] = E[X]

(6). If G1 is another σ-field such that G1 ⊂ G, then

E[E[X|G]|G1] = E[X|G1]

Proof. Let us prove (3), (5) and (6).
(3). Let Y = E[X|G]. Since Ω ∈ G, we have

E[Y ] =

∫
Ω

Y (ω)dP =

∫
Ω

X(ω)dP = E[X]

(5). To show that E[X|G] = E[X], we need to check the two conditions
in the definition.

(i) Y = E[X] is a constant, which is certainly G-measurable (determined
by G).

(ii) For any A ∈ G, we need to show that
∫
A
Y dP =

∫
A
XdP . Since IA is

independent of X, it follows that∫
A

Y dP = E[X]

∫
A

dP = E[X]E[IA] = E[XIA] =

∫
A

X(ω)dP

(6). Let Z = E[X|G], Y = E[X|G1]. We need to show Y = E[Z|G1]. We
check the two conditions. By the definition of the conditional expectation, Y
is G1 measurable. For any A ∈ G1 ⊂ G, by the definition,

∫
A
ZdP =

∫
A
XdP ,∫

A
Y dP =

∫
A
XdP . Hence,

∫
A
ZdP =

∫
A
Y dP . The condition (2) is satisfied.
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