Two hours

THE UNIVERSITY OF MANCHESTER

MARTINGALES WITH APPLICATIONS TO FINANCE

$$
\begin{gathered}
\text { ? January } 2013 \\
09: 45-11: 45
\end{gathered}
$$

Answer ALL questions in Section A and Section B.

Electronic calculators may be used, provided that they cannot store text.

SECTION A

Answer ALL questions

A1. (i) State the Monotone Convergence Theorem.
(ii) Let $B_{n}, n \geq 1$, be an increasing sequence of events. Define $X_{n}(\omega)=I_{B_{n}}(\omega)$, the indicator of B_{n}. Set $X(\omega)=I_{B}(\omega)$, where $B=\cup_{n=1}^{\infty} B_{n}$.
a) Explain why $X_{n}(\omega) \leq X_{n+1}(\omega)$ and $X_{n}(\omega) \rightarrow X(\omega)$ as $n \rightarrow \infty$.
b) Deduce that

$$
\lim _{n \rightarrow \infty} P\left(B_{n}\right)=P(B) .
$$

A2. (i) Let X be an integrable random variable on a probability space (Ω, \mathcal{F}, P) and \mathcal{G} a σ-field. State the definition of the conditional expectation $E[X \mid \mathcal{G}]$ of X given \mathcal{G}.
(ii) Let $A, B \in \mathcal{F}$. Define $\mathcal{G}=\left\{\Omega, \emptyset, A, A^{c}\right\}$. Let $X=I_{B}$ be the indicator of B. Prove that

$$
E[X \mid \mathcal{G}]=P(B \mid A) I_{A}+P\left(B \mid A^{c}\right) I_{A^{c}} .
$$

A3. Let $X_{i}, i=1,2, \ldots$, be independent random variables with $P\left(X_{i}=1\right)=\frac{1}{2}, P\left(X_{i}=-1\right)=\frac{1}{2}$. Put

$$
\mathcal{F}_{0}=\{\Omega, \emptyset\}, \quad \mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1 .
$$

Define $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$, and $Z_{n}=S_{n}^{2}-n, n \geq 1$.
(i) Prove that $S_{n}, n \geq 1$, is a martingale with respect to $\left\{\mathcal{F}_{n}, n \geq 1\right\}$.
(ii) Show that $Z_{n}, n \geq 1$, is a martingale with respect to $\left\{\mathcal{F}_{n}, n \geq 1\right\}$.

A4. Consider a financial market with one risk-free asset labeled 0 and d risky assets labeled $1,2,3, \ldots, d$. The terminal time is T. The prices of the assets at time $t(t=0,1, \ldots, T)$ are random variables $S_{0}(t), S_{1}(t), \ldots, S_{d}(t)$ on a probability space (Ω, \mathcal{F}, P).
(i) Write down the definition of a self-financing portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t), \ldots, \phi_{d}(t)\right)$ and explain what it means.
(ii) Explain what it means to say that a financial market is complete and state the condition under which a market is complete.

SECTION B

Answer ALL questions

B5. (i) State the definition of $\left\{Z_{n}, n \geq 0\right\}$ being a martingale with respect to a family of increasing σ-fields $\left\{\mathcal{F}_{n}, n \geq 0\right\}$.
[5 marks]
Let $X_{i}, i=1,2, \ldots$, be independent random variables with $P\left(X_{i}=1\right)=p, P\left(X_{i}=-1\right)=q=$ $1-p$. Define $S_{0}=0$,

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

for $n \geq 1$. Then $\left\{S_{n}, n \geq 0\right\}$ forms a random walk. Let a and b be two positive integers. The first time at which the random walk leaves the interval $[-a, b]$ is given by

$$
T=\min \left\{n ; S_{n}=-a \quad \text { or } \quad S_{n}=b\right\} .
$$

For $\theta \geq 0$, introduce

$$
Z_{n}=\phi(\theta)^{-n} e^{\theta S_{n}}, \quad n \geq 0
$$

where $\phi(\theta)=E\left[e^{\theta X_{1}}\right]=e^{\theta} p+e^{-\theta} q$.
(ii) Prove that $\left\{Z_{n}, n \geq 0\right\}$ is a martingale with respect to the σ-fields $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq$ 0.
(iii) Explain why T is a stopping time with respect to the increasing family of σ-fields $\mathcal{F}_{n}=$ $\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$.
(iv) Use Doob's optional stopping theorem to explain why

$$
E\left[\phi(\theta)^{-T} e^{\theta S_{T}}\right]=1
$$

for any $\theta \geq 0$ satisfying $\phi(\theta) \geq 1$.
(v). Suppose there exists $\theta_{0}>0$ for which $\phi\left(\theta_{0}\right)=1$. Determine the probability that the random walk $\left\{S_{n}, n \geq 0\right\}$ hits $-a$ before visiting b.

B6. Consider a one period financial market model consisting of a bank account S_{0} and a stock S_{1} modeled on a probability space (Ω, \mathcal{F}, P) with $\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}$ being the collection of all events and P a probability measure such that $P\left(\left\{\omega_{1}\right\}\right)>0, P\left(\left\{\omega_{2}\right\}\right)>0$. Suppose that the current asset prices (time $t=0$) are $S_{0}(0)=10$, and $S_{1}(0)=15$ and the terminal prices (time $t=T$) are $S_{0}\left(T, \omega_{1}\right)=S_{0}\left(T, \omega_{2}\right)=10(1+r)$, and $S_{1}\left(T, \omega_{1}\right)=12, S_{1}\left(T, \omega_{2}\right)=30$.
(i) Write down the definition of the value process $V_{\phi}(t)$ of a portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t)\right)$. Explain what it means to say that a portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t)\right)$ is an arbitrage opportunity.
(ii) Use the fact that the discounted value process $\tilde{V}_{\phi}(t)$ is a martingale under an equivalent martingale probability measure to show that if an equivalent martingale probability measure exists, then the market is free of arbitrage.
(iii) Find the condition on the interest rate r under which the market is free of arbitrage and determine the corresponding equivalent martingale probability measure Q.
[10 marks]
(iv) Explain what an European put option with strike price K means and write down the payoff of the option.
(v) Assume $r=\frac{3}{5}, K=18$. Find the price of the European put option.

