Two hours

THE UNIVERSITY OF MANCHESTER

MARTINGALES AND APPLICATIONS TO FINANCE

27 January 2010
14:00-16:00

Answer ALL questions in Section A and TWO questions in Section B.

Electronic calculators may be used, provided that they cannot store text.

SECTION A

Answer ALL the four questions

A1. (i) Let $B_{n}, n \geq 1$ be a sequence of events. Determine which of the following statements is correct:
[4 marks]
(a)

$$
P\left(\cup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} P\left(B_{n}\right)
$$

(b)

$$
P\left(\cup_{n=1}^{\infty} B_{n}\right) \leq \sum_{n=1}^{\infty} P\left(B_{n}\right)
$$

(ii) Let X be a random variable on a probability space (Ω, \mathcal{F}, P) and \mathcal{G} a σ-field. State the definition of the conditional expectation $E[X \mid \mathcal{G}]$ of X given \mathcal{G} and show that $E[E[X \mid \mathcal{G}]]=E[X]$.
[6 marks]
A2. (i) State the definition of $Z_{n}, n \geq 0$ being a martingale with respect to a family of increasing σ-fields $\left\{\mathcal{F}_{n}, n \geq 0\right\}$.
[4 marks]
(ii) Suppose that $\left\{Z_{n}, n \geq 0\right\}$ is a martingale with respect to $\mathcal{F}_{n}, n \geq 0$. Deduce
(a) $E\left[Z_{n+3} \mid \mathcal{F}_{n}\right]=Z_{n}$.
[2 marks]
(b) Let $\mathcal{G}_{n}, n \geq 1$ be another sequence of increasing σ-fields such that $\mathcal{G}_{n} \subset \mathcal{F}_{n}$ for every $n \geq 0$. If Z_{n} is also \mathcal{G}_{n}-determined, prove that $\left\{Z_{n}, n \geq 0\right\}$ is a martingale with respect to $\mathcal{G}_{n}, n \geq 0$.
[4 marks]
A3. Let $X_{n}, n \geq 1$ be independent random variables with $P\left(X_{n}=1\right)=p$ and $P\left(X_{n}=-1\right)=q=$ $1-p$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the σ-field generated by $X_{1}, X_{2}, \ldots, X_{n}$. Put $S_{n}=\sum_{i=1}^{n} X_{i}$.
(i) If $p=q=\frac{1}{2}$, show that $\left\{Z_{n}=S_{n}^{2}-n, n \geq 1\right\}$ is a martingale with respect to $\mathcal{F}_{n}, n \geq 1$.
[5 marks]
(ii) If $p \neq q$, show that $\left\{Z_{n}=\left(\frac{q}{p}\right)^{S_{n}}, n \geq 1\right\}$ is a martingale with respect to $\mathcal{F}_{n}, n \geq 1$.

A4. Consider a financial market with one risk-free asset labeled 0 and d risky assets labeled $1,2,3, \ldots, d$. The terminal time is T. The prices of the assets at time $t(t=0,1, \ldots, T)$ are random variables $S_{0}(t), S_{1}(t), \ldots, S_{d}(t)$ on a probability space (Ω, \mathcal{F}, P).
(i) Write down the mathematical definition of a self-financing portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t), \ldots, \phi_{d}(t)\right)$ and explain what it means.
(ii) Let $\tilde{V}_{\phi}(t)$ denote the discounted value process of a portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t), \ldots, \phi_{d}(t)\right)$ and $\tilde{G}_{\phi}(t)$ denote the discounted gain process:

$$
\tilde{G}_{\phi}(t)=\sum_{\tau=1}^{t} \phi(\tau) \cdot(\tilde{S}(\tau)-\tilde{S}(\tau-1))
$$

where \tilde{S} is the discounted price. If

$$
\tilde{V}_{\phi}(t)=\tilde{V}_{\phi}(0)+\tilde{G}_{\phi}(t) \quad \text { for all } \quad t \geq 1
$$

prove that ϕ is self-financing.
[5 marks]

SECTION B

Answer TWO of the three questions

B5. Let $\left\{S_{n}, n \geq 0\right\}$ be a simple random walk, i.e., $S_{0}=0$ and

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n},
$$

for $n \geq 1$, where $X_{i}, i=1,2 \ldots$ are independent random variables with $P\left(X_{i}=1\right)=p, P\left(X_{i}=-1\right)=$ $q=1-p$ and $p \neq q$. Put

$$
\mathcal{F}_{0}=\{\Omega, \emptyset\}, \quad \mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1 .
$$

Let a, b be two fixed positive integers. Define

$$
T=\min \left\{n ; S_{n}=-a \quad \text { or } \quad S_{n}=b\right\} .
$$

(i) Prove that T is a stopping time with respect to the increasing family of σ-fields $\mathcal{F}_{n}, n \geq 1$.
(ii) Show that $Y_{n}=S_{n}-n(p-q), \quad n \geq 0$, is a martingale with respect to the σ-fields $\mathcal{F}_{n}, n \geq 0$.
(iii) It is known from A3 (ii) that $Z_{n}=\left(\frac{q}{p}\right)^{S_{n}}, \quad n \geq 0$, is a martingale with respect to the σ-fields $\mathcal{F}_{n}, n \geq 0$. Moreover it is known that $E[T]<\infty$. Use the appropriate form of the Doob's Optional Theorem to deduce $E\left[Y_{T}\right]=0$ and $E\left[Z_{T}\right]=1$.
(iv) Use (iii) to find the values of $P\left(S_{T}=-a\right), P\left(S_{T}=b\right)$ and $E[T]$.

B6. Recall that the Poisson process of rate $\lambda,\{N(t): t \geq 0\}$, has the following properties:
(a) $N(0)=0$.
(b) Independent increments. For any $0 \leq s_{1}<t_{1}<s_{2}<t_{2}<\ldots<s_{n}<t_{n}, N\left(t_{n}\right)-N\left(s_{n}\right)$, $\ldots, N\left(t_{1}\right)-N\left(s_{1}\right)$ are independent.
(c) For $s<t, N(t)-N(s)$ has the Poisson distribution with parameter $\lambda(t-s)$.

Let $\mathcal{F}_{t}=\sigma(N(u), 0 \leq u \leq t)$ be the σ-field generated by the Poisson process.
(i) Show that $U(t)=N(t)-\lambda t, t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}, t \geq 0$.
(ii) Show that $V(t)=U^{2}(t)-\lambda t, t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}, t \geq 0$.
[12 marks]
(iii) Show that $W(t)=\exp \left[-\theta N(t)+\lambda t\left(1-e^{-\theta}\right)\right], t \geq 0$ is a martingale w.r.t. $\mathcal{F}_{t}, t \geq 0$.
[12 marks]
B7. Consider a one period financial market model consisting of a bank account S_{0} and a stock S_{1} modeled on a probability space (Ω, \mathcal{F}, P) with $\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}$ being the collection of all events and P a probability measure such that $p=P\left(\left\{\omega_{1}\right\}\right)>0, q=P\left(\left\{\omega_{2}\right\}\right)=1-p>0$. Suppose that the
current asset prices (time $t=0$) are $S_{0}(0)=5$, and $S_{1}(0)=d$ and the terminal prices (time $t=1$) are $S_{0}\left(1, \omega_{1}\right)=S_{0}\left(1, \omega_{2}\right)=5(1+r)$, and $S_{1}\left(1, \omega_{1}\right)=d_{1}, S_{1}\left(1, \omega_{2}\right)=d_{2}$, where $0<d_{1}<d_{2}$.
(i) Explain what it means to say that a portfolio $\phi=\left(\phi_{0}(t), \phi_{1}(t)\right)$ is an arbitrage opportunity.
[5 marks]
(ii) Find the condition (in terms of r, d, d_{1}, d_{2}) under which the market is free of arbitrage and determine the corresponding equivalent martingale probability Q.
[10 marks]
(iii) Explain what an European call option with strike price K means and write down the payoff of the option.
(iv) Assume $d(1+r)=5, d_{1}=3, d_{2}=8, K=7$.
(a) Find the price of the European call option.
(b) Construct a strategy (portfolio) to replicate the claim X in (iii).

